
Manual for RFCfurnace - DTU Energy RFCcontrol

furnace control software version 0.1

Søren Koch

November 4, 2017

Contents

1 Introduction 2

1.1 License . 2

2 User interface 3

3 Installation and system maintenance 5

3.1 Requirements . 5
3.2 Installation of RFCfurnace . 5
3.3 maintenance . 6

4 Global configuration 7

4.1 Configuration . 7

5 Module specifications 8

5.1 Debug . 8
5.2 RFC::Furnace . 8

1

DTU energy RFCfurnace 0.1

Chapter 1

Introduction

RFCfurnace is an add-on to RFCcontrol which enables a RFCcontrol rig to be used with
a simplified user interface. Only RFCcontrol rigs with a single controlable temperature
controler (TempControl device) can be used in this way.

The idea is that simple furnaces can be more easialy used by normal users without
knowledge of the complete RFCcontrol control and configuration interface.

For a complete description of RFCcontrol, please consult the RFCcontrol manual dis-
tributed along the RFCcontrol software or download it from https://www.RFCcontrol.dk

1.1 License

Copyright (C) 2015 Søren Koch, Karin V. Hansen and DTU Energy at Technical Uni-
versity of Denmark.

This program is free software: you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program. If not, see http://www.gnu.org/licenses/.

2 of 11 Implemented by Søren Koch

DTU energy RFCfurnace 0.1

Chapter 2

User interface

In figure 2.1 the log-in page is shown as an example of the control web pages. The top
part is where the navigation buttons are (in this case, the log-in button).

The main action is to select which furnace group the user wants to access (either to view
historical data and/or to control a furnace run).

It is possible to view data without logging in to the RFCcontrol system. If some data
are confidential or access to them are to be restricted for other reasons, access can be
restricted by setting up user access restriction by using .htaccess files in the test directories
(refer the Apache manual as well as the RFCcontrol manual as how to configure this).

Figure 2.1: Example of what a prelogin page may look like. The actual number of furnace
groups may vary greatly.

Figure 2.2 shows how a page may look after a furnace group has been selected. The
upper buttons takes the user to the furnace control page (shown in figure 2.3) and the
lower buttons navigates to historical data for the individual furnace runs.

If the user is not logged in and one of the burrons for controling a furnace is pressed, the
user is asked to login and will be redirected after login to the selected furnace.

On the furnace control page (like the one shown in figure 2.3) the user can either set up
a new furnace run (assuming the user has suficient permissions to do so) or display the
current run (if a furnace run is already running). In case of the user beeing a furnace
administrator (certified user, see the RFCcontrol manual), additional controls will be

3 of 11 Implemented by Søren Koch

DTU energy RFCfurnace 0.1

Figure 2.2: Example of what a furnace group may look like. The actual number of
furnaces may vary greatly.

avaliable below the ones shown in figure 2.3.

These controls allow the direct manipulation of the furnace as well as managing which
elements the furnace is configured to having already been exposed to. This element
exposure feature is to allow control about which elements a furnace has already been
contaminated with as certain elements have a high vapour pressure even as an oxide, one
notable example of this is Cobalt.

Figure 2.3: Furnace main page where a program has been set up and is ready for starting.

After a furnace run has been completed, the user who started the furnace run as well as
the user ordering this will recieve an email notifying the user about the end of the furnace
run as well as a figure showing the actual furnace run details.

4 of 11 Implemented by Søren Koch

DTU energy RFCfurnace 0.1

Chapter 3

Installation and system maintenance

This chapter describes how to install or upgrade a RFCfurnace system.

3.1 Requirements

In order to install the RFCfurnace system, the following must be available:

• A complete installation of RFCcontrol (https://www.RFCcontrol.dk)

• An Apache web server running with document root in /home/http/html. Note that
this is a non-standard location for document root on Red-hat based systems. The
reason for the non-standard location is that all measured data has to be stored and
accessible by the web-server and storing all that data in /var is likely not advisable
(as most backup utilities usually defaults to only backing up /home on daily basis).

• Gnuplot version 4.0 or later.

• Gnu make or similar functionality

• an update locate database (to update the locate database manually run
/usr/bin/updatedb as root

• A functioning connection to the Internet. The reason for this is that the RFCcontrol
installer downloads and installs additional Perl modules from CPAN.org.

3.2 Installation of RFCfurnace

In order to install the RFCfurnace system do the following:

• Unpack the tar-ball in a suitable location, cd into the resulting RFCfurnace direc-
tory.

• Run make.

• Once all errors have been resolved, run make test followed by make install.

5 of 11 Implemented by Søren Koch

DTU energy RFCfurnace 0.1

3.3 maintenance

Generally RFCfurnace requires little maintenance, however make sure that a proper
backup / restore procedure is in place, as any data logged by the RFCfurnace system is
likely costly in time and / or money and thus should not be lost by hardware or software
failures.

The RFCcontrol system includes a facility for automatic software updates. To enable
this, simply add the following line to root’s crontab file:

0 8 * * 1 /usr/local/bin/RFCfurnace/furnace updateer.pl ≫ /root/update log.txt &

This will update the system once every Monday (thus leaving several working days to
fix things if anything went wrong). The automatic update system then fetches any new
version which may have been deployed within the last week and installs this if it passes
the software test (make test). Thus it will not install any new software if mangled
configuration files exists, or if the new software version is incompatible with the existing
configuration files.

6 of 11 Implemented by Søren Koch

DTU energy RFCfurnace 0.1

Chapter 4

Global configuration

RFCfurnace adds the following section to the global RFCcontrol configuration file:

SECTION RCCfurnace

host_allow =

host_certify =

ENDSECTION

The two keys define access to the RFCfurnace system.

host allow determines which IP-addresses are allowed to start programs (furnace runs),
if no values are found, all IP-addresses are allowed.

host certify indicates which IP-addresses are allowed to access the ajax furnace.cgi inter-
face without user authentification (used mainly for reporting purposes). Only clients on
this list can do so and if the list is empty no-one can.

4.1 Configuration

As RFCfurnace uses a special directory to store furnace tun data in, the normal RFC-
control test directories are only used for background data logging. In order to prevent
the data directories to be excesively large, it is advisable to add the following line to each
RFCcontrol rigs crontab file:

Increment test number once a year

0 0 1 1 * /usr/local/bin/RFCfurnace/inc_test.pl $rig &

(where $rig is the indiviudual rig numbers)

7 of 11 Implemented by Søren Koch

DTU energy RFCfurnace 0.1

Chapter 5

Module specifications

This chapter contains the module specification for the perl modules supplied as part of
the RFCfurnace software suite. It includes function descriptions including number and
type of any function arguments.

Only the adidtional modules are described. For a description of the modules supplied by
RFCcontrol, but used / referenced by RFCfurnace, refer the RFCcontrol manual.

In the case of object oriented modules, any inheritance is also described (usually in the
beginning of the module description). For the object instances, usually only the member
functions intended to be public is described (as perl does not have a true private function
decleration). Note that some of the opject orientated modules define more than one class
type, but as all the class types in this case behave similarly (polymorphic), only the
main class is described as the subsequent clas definitions imlements the main class type
behaviour.

Each module is described in it’s own section.

5.1 Debug

The Debug.pm module is described in the RFCcontrol manual and will not be described
further in this document.

5.2 RFC::Furnace

Inherits from Debug (refer section 5.1).

Simple web interface to RFCcontrol rigs used as normal furnaces where usually only the
temperature setpoint is changed after initial setup.

To obtain an instance call the constructor in one of 2 ways:

$id = RFC::Furnace→new($rignr);

Where $rignr is an integer.

8 of 11 Implemented by Søren Koch

DTU energy RFCfurnace 0.1

Or:

$id = RFC::Furnace→new($ref);

Where $ref is a RFC::Rig instance.

$id→testdir([$]) Returns the directory path to the specified furance
run If called without arguments, returns the current
furnace run directory.

$id→runnr() Returns the current furnace run.
$id→list runs() Returns a ordered list of valid run numbers for this

furnace.
$id→writedata() makes a data read and stores it in the current run

directory.
$id→get plot([$][$]) Returns an array with the filename for a png of the

data for the specified runnr and the total runtime for
that run, if no runnr is specified, a plot for current
run is made. If the plot of a run has already been
made, the path and filename for that plot is simply
return ed unless a second argument is specified.

$id→get run info($) Returns a hash with the main information about the
specified furnace run as determined by parsing the
info file.

$id→set info(@) Appends the argument to the info file for current run.
$id→get info([$]) Returns the content of the info file for specified fur-

nace run. Default is current run.
$id→get program([$]) Returns the content of the program file for specified

furnace run. Default is current run.
$id→proglog($) Appends the argument to the proglog file for current

furnace run.
$id→get proglog([$]) Returns the content of the proglog file for specified

furnace run. Default is current run.
$id→start program($@) Starts a new furnace run. The first argument must

be the uername of the user starting the program. Ap-
pends the remaining argumenta to the program file
for current furnace run.

$id→stop program([@]) Terminates the current program by removing the se-
mafore. Any arguments passed the stop program
function is passed along to the proglog() function.

$id→is running() Returns true if a program is already running for this
furnace.

$id→readstring() performs a data aquisition and returns the resulting
string. Note does NOT store the data, use writedata
instead.

$id→append program(@) Appends one or more lines to the current program.
Note that each instance of RFC::Furnace starts out
with an empty program!

9 of 11 Implemented by Søren Koch

DTU energy RFCfurnace 0.1

$id→program to file() Returns a string which can be directly
saved to a file which can be run by
/usr/local/bin/RFCfurnace/run furnace.pl

$id→program to data() Returns a list of data points for the current program
which can be used for creating a graph of the current
program beeing made.

$is→get atemp() Returns the current temperature as reported by the
temperature controler

$id→temp Gets or sets the active temperature setpoint of the
RFC::TempControl device. See TempControl.pm for
details of the get temp and set temp functions

$id→temp Gets or sets the active temperature ramprate of the
RFC::TempControl device. See TempControl.pm for
details of the get ramp and set ramp functions

$id→get lines() Returns an array with 4 elements: The number
of comancs (new setpoints commands counts as
does hold/wait commands, but ramp rate commands
don’t). The maximum temperature setpoint. The
ramprate leading up to the highest temperature set-
point. The hold time at the highest temperature set-
point. Thus a simple program (ramping to a tem-
perature holding there and ramping down again will
report 3 lines.

$id→list elements() Returns a list of chemical elements which the furnace
has been recorded as having been exposed to. The list
is in the form of the atomic numbers, 1 for hydrogen
and so on.

$id→add element($) Adds the specified element to the list of seen elements.
The function accepts either the atomic number or the
short name (’10’ or ’Ne’ for neon for instance). The
function returns 1 if the element was added to the
list (that is that it has not previously been on the
list) nad 0 otherwise. Thus if you try to add the
same element twice, the first call to add element will
return 1 and the second 0.

$id→del element($) removes the specified element to the list of seen ele-
ments. The function accepts either the atomic num-
ber or the short name (’10’ or ’Ne’ for neon for in-
stance). The function returns 1 if the element was
removed from the list 0 otherwise.

$id→list tubes() Returns a list of allowble tube ids. If an empty list
is returned the furnace is assumed to be a chamber
furnace. The allowed tubes key in the main section
in the rig’s configuration contain the list of allowed
tubes and can only be modified by the certified users.

10 of 11 Implemented by Søren Koch

DTU energy RFCfurnace 0.1

RFC::Furnace also implements the Visitor pattern by suppliying the Accept() method.

$id→Accept($) Runs the Accept() method on the underlying
RFC::Rig instance as well as calling the VisitCom-
plex() function on the visitor.

$id→ClearVisitor() Special function which clears the list of already seen
visitors

RFC::Furnace also has a few class functions which can be called without an RFC::Furnace
instance. These function are described below.

RFC::Furnace::can start furnace() : This function returns true if the client system is
allowed to start and stop furnace runs. the host allow key in the RFCfurnace section in
the RFCcontrol configuration file contains the list of approved IP-addresses. If the list is
empty, all clients can start and stop furnaces.

RFC::Furnace::is authorised() : This funciton determines if a client system can access
the ajax furnace.cgi interface without user authentification (used mainly for reporting
purposes). The host certify key in the RFCfurnace section determines which clients are
allowed to do this. Only clients on this list can do so and if the list is empty no-one can.

RFC::Furnace::get element data() : This function returns an array of hashes cotaining
element information used for the page showing the periodic table of elements used for
selecting sample composition.

RFC::Furnace::get tube elements($): Returns a list ov elements which a given furnace
tube has seen on this server Is intended to be used for allowing the sharing of furnace
tubes between furnaces and servers. This function should be called for all servers and
compiled to a single list before displaying the result to the user.

RFC::Furnace::add tube element($$): Appends a specific element to the list of elements
a furnace tube has sen on this server (similar to add element() for furnaces). Arguments:
tube, element.

RFC::Furnace::del tube element($$): Removes a specific element from the list of elements
a furnace tube has sen on this server (similar to del element() for furnaces). Arguments:
tube, element.

11 of 11 Implemented by Søren Koch

