
Manual for RFCcontrol - DTU Energy RFCcontrol

control software version 6.3.2

Søren Koch

May 24, 2022

Contents

1 Introduction 6
1.1 Difference between version 5 and 6 . 8
1.2 Safety . 9
1.3 License . 9

2 User interface 10
2.1 Custom rig main page . 12
2.2 Running i-V curves . 13
2.3 Setting up a sequential program . 14
2.4 Setting up a test . 16
2.5 Creating standard test reports . 17

3 Installation and system maintenance 20
3.1 Requirements . 20
3.2 Installation . 21
3.3 maintenance . 25
3.4 Restricting access to raw data . 25

4 Global configuration 28
4.1 Global . 28
4.2 Admin . 30
4.3 Passwords . 30
4.4 User authentication control based on rig permissions 40
4.5 Server section . 41
4.6 Test rig control on server . 42
4.7 Gas factors . 42
4.8 Impedance acquisition control . 43
4.9 Report generation . 44
4.10 Global IV curve control . 44

5 Device description and philosophy of device design 46
5.1 Simple channel . 46
5.2 Control relay device . 46
5.3 Analog output device . 47
5.4 Gas device . 47
5.5 Gas group device . 49
5.6 Mass flow controller . 49

1

DTU energy RFCcontrol 6.3.2

5.7 Multiplexer device . 50
5.8 Power supply device . 51
5.9 Temperature logging device . 52
5.10 Temperature control device . 52
5.11 Filter devices . 53
5.12 PID devices . 54
5.13 Virtual (pure software) devices . 55
5.14 Order of device configuration when setting up a new test rig 56
5.15 Note on gas and simplechannel names for ease of reporting 58

6 Rig configuration 61
6.1 Main section . 62
6.2 IV curve control . 65
6.3 Datalog section . 67
6.4 Control logic section . 68
6.5 Thermocouple calibration . 68
6.6 User interface . 69

7 Alarms 71
7.1 Gas trip . 71
7.2 Voltage trip . 72

8 Server structure 73
8.1 Authentication cache server . 73
8.2 CGI-server . 74
8.3 Report server . 77
8.4 Serial server . 78
8.5 GPIB-server . 84
8.6 Custom program parser . 86

9 Web services 92
9.1 SOAP interfaces . 92
9.2 globalconf . 93
9.3 Remote interface . 93
9.4 Ajax callback interface . 93
9.5 Functions which can be called without log-in information 94
9.6 Functions requiring a valid log in session 97

10 System command interface (command line) 103

11 Module specifications 109
11.1 Debug . 109
11.2 SemaforeFile . 110
11.3 ElchemeaConfig . 112
11.4 SocketClient . 114
11.5 RFC::Header . 114
11.6 RFC::Main . 115

2 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

11.7 RFC::RFCCGI . 116
11.8 RFC::Device . 120
11.9 RFC::Observer . 122
11.10 RFC::Rig . 123
11.11 RFC::Visitor . 133
11.12 RFC::Cache . 134
11.13 RFC::Spline . 135
11.14 RFC::BaseDevice . 136
11.15 RFC::Simple . 145
11.16 RFC::BaseRelay . 146
11.17 RFC::Monostable . 147
11.18 RFC::AnalogOut . 148
11.19 RFC::PSU . 149
11.20 RFC::Elektro . 150
11.21 RFC::Kepco . 151
11.22 RFC::Keithley2400 . 152
11.23 RFC::PSU Bipolar . 153
11.24 RFC::PSU B2N . 154
11.25 RFC::PSUMulti . 154
11.26 RFC::MFC . 155
11.27 RFC::MKS . 156
11.28 RFC::Pcontrol . 156
11.29 RFC::Templog . 157
11.30 RFC::Gas . 158
11.31 RFC::CGas . 160
11.32 RFC::Multiplex . 160
11.33 RFC::GasGroup . 161
11.34 RFC::TempControl . 162
11.35 RFC::Honeywell . 163
11.36 RFC::Julabo . 163
11.37 RFC::Filter . 164
11.38 RFC::Redundancy . 165
11.39 RFC::SPDEV . 166
11.40 RFC::Ysplit . 167
11.41 RFC::Sum . 168
11.42 RFC::PLC . 169
11.43 RFC::PLCRead . 171
11.44 RFC::PID . 172
11.45 RFC::RFCPID . 174
11.46 RFC::Logic . 175
11.47 RFC::Math . 176
11.48 RFC::Typecast . 177
11.49 RFC::Alert . 178
11.50 RFC::Adapter . 180
11.51 RFC::VacuumControl . 181

3 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

12 Device configuration 182
12.1 Simplechannel . 183
12.2 Relay . 195
12.3 Templog . 200
12.4 Tempcontrol . 211
12.5 MFC . 223
12.6 Water . 248
12.7 Gas . 251
12.8 Gasgroup . 256
12.9 PSU . 257
12.10 Analog . 333
12.11 Multiplex . 337
12.12 Filter . 341
12.13 PID . 372
12.14 Logic . 379
12.15 Math . 387
12.16 Alert . 399
12.17 Adapter . 404

13 Troubleshooting 408
13.1 The web server only returns ’Internal server error’ when trying to display

the prelogin.cgi page . 408
13.2 Data logging suddenly stops or user interface appears unresponsive for a

single rig . 408
13.3 Show current values does not work or shows ERROR: ’xx.xx.xx.xx’ port

refused . 409
13.4 Sequential programs can not be started 410
13.5 Daily graphs looks strange (sudden jumps in values, missing graphs etc) 410
13.6 History plots shows strange sudden jumps in data values 411
13.7 Specific device data are not shown in the daily graphs 411
13.8 No data can be wiewed for a specific test (shows blank page) 412
13.9 User restrictions does not work (all users can still access data) 412
13.10 Font size on daily graphs too small . 412
13.11 Program execution stops and / or command interface behaves strangely

(some commands
work but others does not) . 412

13.12 RFCcontrol-ssl-server can not start and exits with ’Could not create
socket Invalid Argument’ . 413

13.13 report-server can not start and exits with ’Could not create socket Invalid
Argument’ . 413

13.14 report webservice can not be accessed 413
13.15 Users can not log in . 413
13.16 Rig list can not be shown . 414
13.17 Users can log in but not change anything or view new data 415
13.18 Log-in page does not complete loading or the list of servers is incomplete 416
13.19 Data logging on a rig is not running . 416

4 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

13.20 Errors are reported when users are trying to change process parameters 416
13.21 The logged data values from a Keithley 2700 / 2750 are not correct, i.e.

value -32768 . 417
13.22 The temperature logging does not report the right values 418
13.23 Temperature control does not work correctly or errors are reported when

trying to change temperature control setup 418
13.24 Remote impedance does not work . 419
13.25 i-V curves behave strangely . 420
13.26 PID regulators does not work although they are enabled and set-points

can be set . 421
13.27 Automatic software updates are blocked by a web proxy 421
13.28 Alerts does not work or are not sent although they are enabled 421
13.29 Adapters does not work although they are enabled 421
13.30 Programs stops prematurely without any apparent cause 422
13.31 CentOS 7 related issues . 422
13.32 Installation fails with an error like ’No package perl-XXXX available’ . 423

14 Examples 424
14.1 Using a PID and a galvanostatic power supply to emulate potentiostatic

control . 424
14.2 Potentiostatic control with fixed fuel utilization 426
14.3 Pressure regulation using mass flow controllers 428
14.4 Pressure regulation accounting for production / removal of gas in the

device under test . 429

15 FAQ / How-to 432
15.1 How to set up a stand-alone RFCcontrol password server on a system

with no DNS name . 432
15.2 How to prevent setting gas flows / DC current to zero upon starting a

new test . 433

5 of 433 Implemented by Søren Koch

Chapter 1

Introduction

RFCcontrol is a generalized control system for fuel cell, electrolyser cells, battery and
other types of materials test stations / test setups. It features data logging as well as
device control and can handle gas flow control, gas pressure control, temperature control,
relay control, control of DC power supplies as well as handle data acquisition through a
number of data logging devices.

The main features of RFCcontrol are listed below:

• Individual device configuration through user friendly graphical user interface.

• Detailed device control.

• Wide range of control and data logging devices supported, including but not limited
to:

– Brooks® and MKS® digital mass flow controllers.

– Tescom ER3000 digital pressure controllers.

– Analog pressure controllers as well as analog flow controllers

– Eurotherm® and Omron® temperature controllers as well as some controllers
from some other vendors (Honeywell®, Linkam® and West Instruments®).

– Delta Elektronika® DC power supplies.

– BK Precision® DC power supplies.

– EA Elektro Automatik® electronic loads.

– ICP-Con® DO-, DA-, DI- and AD-modules.

– Manual control devices (virtual) of flow controllers, pressure controllers as
well (for logging flow or pressure from ball flow meters or manual pressure
regulators).

– Composite gas control devices (using multiple MFC’s with different flow ranges
to increase range while maintain accuracy at low flows).

– Composite PSU/Eloads making it possible to use two PSU’s or a PSU-Eload
combo to emulate a full bipolar PSU.

6

DTU energy RFCcontrol 6.3.2

– Gas group device (a composite device) making it possible to use cross-over
valves/relays to facilitate fast gas composition switching by having two gas
lines with a cross over valve.

– Keithley® 2700 and 2750 scanning multimeters as well as 2400 source meters
(Support for these devices is through the gpib socket server supplied sepa-
rately).

– Possibility to control magnetic valves in front of the MFC’s in order to force
complete cutoff of gasses as most MFC’s do not completely close even if valve
override is used.

– Possibility to control a magnetic bypass valve to vent any initial gas overshoot
from MFC’s (may be required in some cases).

• Possibility for using filter devices to do spline interpolations on return values of
physical devices. This can be used to correct measured values if a custom calibration
of a device has been made.

• Possibility to use slaved gas controllers (a slaved device always have x% of the
master controler flow).

• Possibility to use multiplexed gasses (one MFC controlling one of multiple gasses
depending on relay settings).

• Software PID devices which can be used for pressure regulation and / or other
situations where stability can be improved by a PID feedback loop.

• Automatic data acquisition/logging which is independent of the user interface.

• Email notifications in case of user defined trigger levels has been exceeded.

• Possibility for automatic software updates.

• Possibility to use custom calibrated thermocouples for temperature measurements
in additional to the use of the standard thermocouple calibration tables obtained
from NIST (http://www.nist.gov). How to use custom calibration tables is de-
scribed in detail in chapter 6).

• Graphical display of all logged data.

• Centrally managed user authentication / user permission control.

• Trace-logging of all user activities involving changes in the status of a device.

• Easy integration to Elchemea© (http://www.elchemea.com/elchemea/) and
ElchemeaAnalytic© (http://www.elchemea.com) impedance acquisition and
impedance analysis software packages.

• Automated i-V curve acquisition (Only in case a DC-power supply is attached and
configured)

7 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

• Possibility for using custom designed software control systems including PID control
loops.

• Possibility for using custom designed graphical user interfaces for individual test
stations (requires custom programming in Perl, HTML and javascript).

• Uses only open source software (OSS).

• Possibility to use single sign on if multiple test stations running RFCcontrol are
used.

• Possibility for using single sign on in collaboration with non-RFCcontrol systems
(refer section 4.3.6).

Each hardware device controlled from RFCcontrol is handled through a software device
(object) which internally handles device communication and control. The RFCcontrol
system uses an object orientated approach enabling almost infinite configuration combi-
nations. The use of an object oriented approach also makes it more safe and easy to add
new device types, thus making maintenance easier to handle.

The first part of this documentation is an overview of the user interface (Chapter 2)
mainly intended for new users of the system. The second part (chapters 3 to 7) is mainly
intended for more advanced users and system administrators as it contains information
regarding configuration and hardware set-up of the system. It is assumed that any ad-
ministrators has a fairly advanced knowledge of Unix system administration and possibly
Perl programming as well.

Chapters 4 and 6 describes configuration of a RFCcontrol system (global and rig specific)
and chapter 7 describes the two currently defined watchdog programs as well as custom
created alarms.

Chapter 11 contains the documentation for the different Perl module supplied by RFC-
control and chapter 12 contains the device instance documentation, including device setup
tags and potential default values.

1.1 Difference between version 5 and 6

RFCcontrol version 5.x and earlier primarily used direct TCP:IP communication be-
tween different servers for intercommunication. This required a number of non-standard
TCP:IP ports to be open through the firewalls, which in some cases can be problematic
to configure, especially if switches or other network infrastructure blocks non-standard
traffic.

In order to address this problem, version 6 and onwards primarily uses webservice inter-
communication which only uses the standard https protocol. One disatvantage of this is
that communication will be a bit slower due to the added overhead of the XML and https
communication, however an added bonus to this shift is that communication encryption
is now solely depending on SSL supplied by the webserver. Thus the interconnumoication

8 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

between different RFCcontrol systems are no longer prone to encryption key mismatch if
a server is renistalled and the other systems still uses the old keys.

The use of webservices also makes remote control of RFCcontrol test stations possible by
simply using the exposed wsdl files (found in the https://host.domain/wsdl direcory on
each RFCcontrol server).

One disadvantage exists is if self signed SSL certificates are used. In this case the normal
SSL certificate checks needs to be disabled (refer section 9.1 for how to do this).

1.2 Safety

Do not use the RFCcontrol - DTU Energy RFCcontrol control software for any
situation that could result in injury or death! This software is NOT certified
to be used for safety related control and should not be used for such.

In cases where dangerous gasses or other equipment / materials are used
which could pose a threat to human safety, the safety should be monitored
by a self contained and autonomous safety monitoring system (for instance
by a safety PLC or similar system).

1.3 License

Copyright (C) 2015 Søren Koch, Karin V. Hansen, Martin Nielsen, Jens V. T. Høgh and
DTU Energy at Technical University of Denmark.

This program is free software: you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program. If not, see http://www.gnu.org/licenses/.

9 of 433 Implemented by Søren Koch

Chapter 2

User interface

RFCcontrol is based on the Apache web server software (Open Source Software, OSS).
The measured data are displayed in a number of web pages with one page for each rig
and for each day to avoid too much clutter (In the case of fuel cell tests, more than 20
individual channels may be monitored and displayed). The control part of the software
is in the form of a number of interactive web pages where one must first log in to use
some of them, whereas others are free to use without log in. In figure 2.1 the log-in page
is shown as an example of the control web pages. The top part is where the navigation
buttons are (in this case, the log-in button along with four more buttons which leads to
various pages usable for calculating for instance the Emf of a fuel cell at specific condition
(gas composition and temperature etc.).

It is possible to view data without logging in to the RFCcontrol system unless access
restrictions are put in place as described in section 3.4.

If some data are confidential or access to them are to be restricted for other reasons,
access can be restricted by setting up user access restriction by using .htaccess files in
the test directories (refer the Apache manual as how to configure this).

For instance if access to test 10 on rig 3 is to be disabled, place a .htaccess file in
/home/http/html/rig3/3test10/ (the content of the .htaccess file must be appropriate or
user access will not be restricted).

For more advanced user access control please see section 3.4 where it is dewcribed how
to restict access to specific tests based on user authorisation.

Figure 2.2 shows an example of the main page after the user has logged in. The exact
number of buttons on the top navigation bar may change according to user privileges
(typically more buttons will be available for users with elevated privileges). The top part
of the actual page contains buttons linking the the configuration and control page for
each rig available for the systems connected.

Below this part, a list of test rigs for whom data are available for inspection similar to
the list shown in figure 2.1 (unfortunately this is not visible in figure 2.2). Pressing one of
these buttons takes the user from the interactive part of the system to the normal static
web pages containing historic and current data for the test rig in question.

If the user presses one of the control buttons mentioned above, the user is directed to

10

DTU energy RFCcontrol 6.3.2

Figure 2.1: Example of what a prelogin page may look like. The actual number of rigs
may vary greatly.

Figure 2.2: Example of what a the main page may look like after the user has logged in.
The actual number of rigs may vary greatly. Notice the additional navigation buttons
visible on the top navigation bar.

a page resembling figure 2.3. The four or five rows on the page displays the current
conditions for the rig in question; Temperature, Gas flows, cell voltage (or any other
property that can be measured as a voltage) as well as current through the device/sample.
The last (fifth) row is for alerts / triggers (refer section 7).

11 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Below this information are buttons which takes the user to pages where the properties
displayed above can be changed. The bottom part is two logbook type fields, where
information of the history of the current test is shown (the program log on the right)
as well as the content of the sample information file (on the left) is shown. It is also
possible to add further information the the sample information file . The program log is
immutable by the user and all information in this file is computer generated and shows
what has happened and at what time.

Figure 2.3: Example of what a rig control page may look like.

2.1 Custom rig main page

If a more customized user interface for a rig is wanted, it is possible to use custom
designed main pages for a rig. To do this, make a copy of the file rig template.cgi located
in /home/http/cgi-bin/celltest/ and edit the copy to correspond to the user interface
design wanted.

In order to enable the custom layout, edit the rig’s configuration file by adding or changing
the ’main page’ key in the ’main’ section to have the value of the new file.

However, in order to create a custom layout for a rig, it will likely require quite some
programming experience with javascript, HTML as well as Perl and the Perl modules
distributed as part of RFCcontrol (refer chapter 11).

Documentation for a variety of services which can be accessed through AJAX calls can
be found in chapter 9.

Notice that any custom created rig main pages will likely need to be manually updated
if changes in the rig’s hardware configuration occurs as opposed to the default main page
which should work with most configurations. Thus it is only advisable to create custom
layouts for fixed systems where changes in the system hardware is unlikely or prohibited.

12 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

2.2 Running i-V curves

As RFCcontrol is designed to be used for testing of fuel cell and electrolyser cells, it has
a built-in functionality for acquiring i-V curves. An i-V curve is defined as a sequence
of measurements at different DC currents through the device under test. Usually an i-V
curve starts at zero current (OCV) and then gradually increase the DC current until a
certain limit in either current density or voltage has been reached.

In order for the build-in i-V curve acquisition system to work, the following prerequisites
must be met.

• A simplechannel device measuring the device voltage (returning the voltage in mV).

• A simplechannel device measuring the DC current through the device (in A).

• A unipolar DC power supply controlling the DC current through the device. Notice
that in case a bipolar PSU is used, it needs to be encapsulated in a PSU B2N device
which emulates a unipolar PSU in conjunction with a switching relay.

• A Templog device measuring the device temperature.

As RFCcontrol expects a normal fuel cell or electrolyser with a mixture of hydrogen and
water vapor on one side and air on the other, thus the cell voltage is expected to be
around 1000 mV at zero current (OCV). If this is not the case, the i-V curve program
may abort prematurely as it would suspect something wrong if the cell voltage is not in
this approximate range (700 to 1300 mV).

This abort mode is primarily intended to protect the device under test if something
unexpected occurs during an i-V curve resulting in loss of cell voltage. If the device
voltage is not in this range at OCV, it may be necessary to create a filter device which
either adds/subtracts and/or multiplies some fixed value to the true device voltage to
emulate a OCV of approx 1000 mV and then use this device as the voltage measure
device in the i-V control setup (refer section 6.2).

The way the i-V curve program operates is that it first measures the cell voltage a few
times and then slowly increase the DC current and measures the voltage and current
along the way. As it assumes a normal unipolar PSU, it can not in advance know if the
device is tested as a fuel cell or as an electrolyser, it only detects this once it measures
the DC-current (and thus the sign). RFCcontrol assumes that the current through the
device is positive if the device is run as a fuel cell and negative if the device is run
as an electrolyser. Thus once the current is 5 times the minimum defined (the epsilon
value, refer section 6.2) it checks the sign, and if the current is negative the program
proceeds assuming that the device is run as an electrolyser (and thus that the device
voltage increases for increasing (numerical) current. If the current is positive the i-V
curve program assumes the device is tested as a fuel cell and that increasing the current
will result in a decreasing device voltage.

Once the i-V curve program determines that the current limit has been reached or that
the device voltage exceeds one of the defined limits (either electrolysis limit voltage or
voltagelimit iv, refer 6.2), the current is gradually decreased again towards no current

13 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

condition (OCV) and once the OCV condition has been reached the i-V curve program
exits.

An i-V curve can be started either from the rig main page or from a sequential program.

2.3 Setting up a sequential program

By pressing the ’Program sequences’ button, the user may set up a custom program of
sequentially executed commands. These commands may be changes in gas flows and/or
composition, temperature, DC current through the device or AC impedance measure-
ments (using the Elchemea© software package running on a separate server). In figure
2.4 the program set-up page is shown.

Figure 2.4: Example of a sequential program setup page.

Apart from setting up new programs, it is possible to load old programs for new execution.
It should be noted, that a loaded program can be edited before execution and that all
executed programs are saved for later analysis/documentation. The text box on the left
shows the currently selected program and the buttons on the center of the page is for
adding the indicated actions with the parameters as defined by the right text fields.

If a program is already running, pressing the ’setup program’ button on the main page
(refer figure 2.3) a page resembling figure 2.5 will be shown. This page will show the
current program being run, and makes it possible to terminate the running program.

Only the impedance and TCP/IP socket call set-up will be addressed further as the rest of
the actions are self explanatory. In order to start an impedance, one must do the following:
First connect the Elchemea systems frequency response analyzer correctly to the device
under test. The exact set-up may wary, and it is always a good idea to run a manual
impedance sweep to ensure that all cables are connected properly before attempting
to run automated sequences including impedance sweeps. Once the connections are

14 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Figure 2.5: What the setup program page will look like if a program is already running.

approved (that is a continuous spectrum can be obtained), the Elchemea© system must
be connected to the network (press the ’connect to net’ button on the Elchemea© user
interface) and note the IP-address and the server port (default is 4040). Similarly, note
the session number and the Elchemea© user name of the rig in question. These four
values: IP-address, Server port, user name and session number, must then be input in
the appropriate fields on the set-up page.

2.3.1 Custom TCP/IP socket calls

A special command is the TCP/IP socket call. This command enables the RFCcontrol
system to access other servers/systems through a TCP/IP socket. Apart from specifying
the IP / host-name and port of the external system, a command and potential arguments
must be specified. The actual transmission of the socket call is in the form of a command
string terminated with two newline characters. The command string consists of the
actual command and any arguments joined together with the tab character (thus making
it possible to send commands / arguments containing spaces). The external system then
has to parse the supplied command string and any response from the external system is
simply treated as text and is appended to the rig’s program log.

This functionality enables the RFCcontrol system to communicate with other systems if
they accepts command through a TCP/IP socket interface.

15 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

2.4 Setting up a test

In order to set up a test the configuration of the rig must first be completed (refer chapter
5 and 6). After the configuration is checked for errors (that is the automated system is up
and running and the servers are all running, refer chapter 8) the new test can be started
from the user interface with one important exception.

In order to make sure that the data logging system is always running, the GUI is not
responsible for running the data logging. Instead the data logging is run by cron. Thus
the crontab file for the rig in question must contain the following lines (the arguments to
the individual programs may be different as may be the time intervals):

Must always run

0 * * * * /usr/local/bin/CGI-server 12 > /dev/null 2>/dev/null &

PID control programs and custom alert triggers

* * * * * /usr/local/bin/celltest/PID_fast_control.pl 12 &

* * * * * /usr/local/bin/celltest/PID_slow_control.pl 12 &

* * * * * /usr/local/bin/celltest/Check_alert.pl 12 &

* * * * * /usr/local/bin/celltest/Adapter_update.pl 12 &

END

########## Data logging commands #####

*/15 * * * * /usr/local/bin/logfile.pl 12

*/15 * * * * /usr/local/bin/cnv.pl 12 60 > /dev/null 2> /dev/null &

END

Daily updates of web pages and graphs

31 1 * * * /usr/local/bin/cnv.pl 12 0 midnight > /dev/null &

32 1 * * * /usr/local/bin/jdata.pl 12 > /dev/null 2> /dev/null &

33 1 * * * /usr/local/bin/history-plot 12 > /dev/null 2> /dev/null &

34 2 * * * /usr/local/bin/get_all_impedance 12 > /dev/null 2> /dev/null &

END

To change the crontab file for a rig, go to the miscellaneous setup page (example shown
in figure 2.6) and then press the ’scheduler’ tab (upper right). This will bring the user to
an editor allowing the user to edit the crontab file (for further info on the crontab system,
run ’man cron’).

An example crontab file is located in /home/celltest/conf/crontab example.txt, however
remember to change all instances of the string ’XX’ with the correct rig number (for
instance 5 in case or rig5).

The crontab system can also be used to run I-V curves at specific times (for instance once
a day) or similar time dependent tasks, however to use this functionality, it is advisable
to know UNIX® more than in a casual way.

16 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Figure 2.6: The rig miscellaneous setup page. Notice that this page does not concern
device configuration.

2.5 Creating standard test reports

The cell test software comes bundled with a powerful report generating functionality.
Unfortunately this report functionality only works for fuel cell / electrolyser tests and
not for normal electrode tests. In order to create a standard test report some knowledge
of UNIX® commands are necessary!

A prerequisite for using the report generating scripts described below is that the device
naming convention described in section 5.15 have been used.

1. Log in as the rig in question. E.g. Log in as rig2 for running reports on rig2.

2. If necessary perform preformatting of the jdata file using format jdata.pl $rig $test.

3. Perform any necessary calculations using jdata conv.pl (For instance if the T center
temperature sensor has malformed data, it may be necessary to rename an other of
the temperature sensors to T center, in effect setting T center to the value of the
other sensor).

4. Run history-plot $rig $test to see if the jdata file contains excessive data after the
test has been finished. If so, delete the extra lines in the jdata file and rerun (Hint:
use /usr/bin/head and /usr/bin/tail to find and extract the usable part of the jdata
file). Rerun history-plot $rig $test and check that the plots now look as expected.

5. Create a preliminary list of I-V curves by runningmake iv curves.pl $rig $test where
$rig and $test are the rig number and test number in question Note that the program
checks that you are logged in as the correct user!

17 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

6. Once make iv curves.pl has finished, point your web browser of choice to the data
presentation part of the cell test user interface and check that all I-V curves has
been processed and that all the I-V curves has meaningful data in them. Some of
the processed I-V curves may have been aborted ones (e.g. if the power supply was
not connected due to a relay under voltage situation etc.) and in this case the ’max
current’ will be reported as 0. Note all the I-V curves which must be removed from
the final report (that is, note each I-V curve number that must be removed).

7. Make a backup of the ivcurvetimes file located in the tests directory (found in the
rig’s home directory. E.g. /home/rig2/2test45/ in the case of test 45 on rig2).

8. Edit the ivcurvetimes file and remove the lines that represent the I-V curves which
must be removed. It is a good idea to start at the bottom and work towards the
start, as the line numbers changes when deleting a line!

9. Rerun ’make iv curves.pl’ and check that the resulting I-V curve data all have
meaningful data in them, if not repeat step 8.

10. If the i-V curves still do not run properly, check the ’epsilon’ key in the ’IV control’
section in the configuration file (note the backed up version in the test directory,
not the main configuration file). This key specifies which current threshold is used
(the current threshold is the value below which the current is assumed to be 0, that
is the PSU is disconnected and the cell is in OCV). If this key have a too low a value
compared the the measured values of the current at open circuit conditions (as you
can never measure 0 A with a current shunt), the make iv curves.pl program can
not determine OCV and the calculations fail. To fix this edit the configuration file
and specify a more sensible value for ’epsilon’.

11. Run the make report program which generates the actual report. In the case of test
45 on rig 2 the command would be make report 2 45.

12. The make report program is interactive and at times asks for further information.
Most of this is self explanatory except the part where I-V curves must be selected
for the flow variation figures. In this case an Emacs session is started for both the
air variation and for the hydrogen variation and in each case up to three I-V curves
must be selected (by removing all the other) to be included. Note that in order
to make the figure keys consistent, the lines must be rearranged so that the flow
values is listed in increasing order. Note that the whole lines must be moved and
not only the flow values (thus maintaining the internal integrity of the lines)!

13. Finally the actual LATEX report is written (this is initialized when make report asks
about the author of the report). Supply the requested information. In some cases
Macro information may be supplied, and in this case writing the specified letter
followed by a colon will include the whole string represented by that letter (saves
typing). The manually input information is saved in the report information.txt file
in the tests public directory (/home/http/html/rig2/2test45/report information.txt
in the case of test 45 on rig 2). The information in this file may later be changed
and the report can later be updated with this new information by running the

18 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

remake latex report program with the –recompile option. Note that when changing
this file it is advisable to use the nano editor, as Emacs tends to handle the different
carriage returns wrongly (that is not displaying everything correctly).

14. Review the finished report from the user interface by pressing the ’search reports’
button and search for the specified test number.

15. If errors are found, manual edit can be necessary. The LATEX file is located in the
web directory of the test in question, and edit the file in order to fix any errors.
Note that at any time make report or remake latex report is run, the LATEX file is
overwritten, so it may be a good idea to save a edited LATEX file under a different
name! Also note that in order to be able to access any postscript file created by a
manually edited LATEX file, the resulting PS file must be moved to (and overwrite)
the PS file in the test directory in the rig’s home directory.

16. If only changes in the figures are necessary, the figures may be changed and a new
report created by running the remake latex report with the --recompile option (e.g.
remake latex report 2 45 --recompile in case of test 45 on rig 2, note two ’-’ in front
of ’recompile’ !).

17. Finalize the report by execute the set finish program so that other users knows that
the report is ready for wider circulation (e.g. set finish 2 45 in case of test 45 on
rig 2).

19 of 433 Implemented by Søren Koch

Chapter 3

Installation and system maintenance

This chapter describes how to install or upgrade a RFCcontrol system.

3.1 Requirements

In order to install the RFCcontrol system, the following must be available:

• A Red-hat based Linux operating system (RHEL or CentOS) version 7 or later
or Ubuntu version 20.04 or later. It is possible that RFCcontrol - DTU Energy
RFCcontrol control software will install on other Linux operating systems, but it
has not been tested.

• Perl version 5.10 or later.

• An Apache web server running with document root in /home/http/html. Note that
this is a non-standard location for document root on Red-hat based systems. As
it is an non-standard location, it is incompatible with the SE-Linux system on
Centos/RHEL, which likely must be set to ’non-enforcing’ mode (refer your Linux
manual as how to do this). The reason for the non-standard location is that all
measured data has to be stored and accessible by the web-server and storing all
that data in /var is likely not advisable (as most backup utilities usually defaults to
only backing up /home on daily basis). Note that from version 5.6.1 this is no
longer nescesarry as RFCcontrol will now run with SE-linux in enforcing
mode!

• Gnuplot version 4.0 or later.

• Gnu make or similar functionality

• an update locate database (to update the locate database manually run
/usr/bin/updatedb as root

• A functioning connection to the Internet. The reason for this is that the RFCcontrol
installer downloads and installs additional Perl modules from CPAN.org.

20

DTU energy RFCcontrol 6.3.2

3.2 Installation

3.2.1 preinstallation

As RFCcontrol uses a few non-standard settings as compared to a vanilla CentOS or
RHEL the following steps must be performed before installation of the actual RFCcontrol
software.

• Create the root RFCcontrol user (usually called sofc or rfc). Notice that as RFC-
control rig users user id’s are calculated as follows, no normal users may have user
id’s between 600 and 1000 (for Centos 7 this range is 1100 to 1500) as described
below: The user id for a rig user is the rig number + 600, thus rig25 wold get user
id 625. Usually the first normal user will get user id 500, so a few normal users
can be created before the RFCcontrol software is installed. If the ’base userid’ key
in the ’main’ section in the RFCcontrol configruation file is set, this value is used
instead of the default (600) Note that CentOS 7 reserves userids below 1000, thus
for CentOS 7 and later the default base userid is set to 1100, thus RFCcontrol rig
users will (as default) have ids in the range 1100 to 1500.

• Move the document root for the Apache web-server to /home/http (cgi-scripts will
thus reside in /home/http/cgi-bin or /usr/lib/cgi-bin/ and HTML documents in
/home/http/html).

• Make Apache part of the group for the RFCcontrol user (edit /etc/group and add
apache to the correct group id).

• Edit /etc/httpd/conf/httpd.conf or /etc/apache2/apache2.conf and make sure that
the Apache server is set to start as the RFCcontrol group (refer previous step). Also
update the document root specified in the file to point to /home/http.

• Disable SE-Linux. This is necessary due to the non-standard location of the
document-root of the Apache web server. This is necessary as data files are stored
in the HTML directory and in order to facility easy backup, data are only stored in
/home. Thus only this directory needs to be on backup. A result of this is that a
RFCcontrol system should never be directly accessible from the Internet but must
be protected behind a firewall. Note that from version 5.6.1 this step is no
longer nescesarry as RFCcontrol will now run with SE-linux in enforcing
mode!

• make sure that TCP:IP port 2020 and 4040 is open to connection (refer your op-
erating system manual). Port 2020 is used by the password server / ssl server and
port 4040 is used by the report server which also handles server intercommunication
regarding which rigs are on which servers. As of version 6.0 this may no longer be
nescesarry as a number of webservices replacing the password and report servers are
avaliable through https (refer section 9.1). However if RFCcontrol 5.x servers needs
to be able to contact a RFCcontrol 6.x system, these ports (and the corresponding
server processes) must be open and running.

21 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

• Reboot.

• Make sure that the server can send emails to users and administrators and that the
mail transfer agent and mail server allows this. It is possible to install RFCcontrol
on a server which is not allowed to send mail (or which may even operate without
a network connection). In this case, refer section 15.1.

• Make sure that the system which is to run RFCcotrol is not directly accessible from
the Internet but is protected by an external firewall (in addition to the one bundled
with CentOS/RHEL/Ubuntu itself). The reason for this is that RFCcontrol is
not sufficiently hardened to be exposed to the Internet (and the data acquired
by RFCcontrol is potentially confidential themselves which in itself would exclude
direct Internet access). The system should however be able to contact the Internet
to download and install additional software during installation.

• If installing on a CentOS system, manually install the EPEL repository from
https://fedoraproject.org/wiki/EPEL. This repository is nescesarry for installation
of a number of Perl modules needed by RFCcontrol.

3.2.2 Steps to do before installation on a CentOS 7 system

As described in section 13.31 a number of things has changed between version 6 and
7 of CentOS, and before installing RFCcontrol on a centOS 7 system, run the ’cen-
tos7 CPAN configuration.bash’ script as root.

Notice that you need to log out of root before you proceed with the instalation as otherwise
the .bashrc file for root does not get rerun!

3.2.3 Steps nescesarry for installation on a Ubuntu system

It may be nescesarry to run the following line on system restart in order for root to be
able to access files in /tmp (WTF??!!??):

/usr/sbin/sysctl fs.protected regular=0

3.2.4 GPIB-server

If a Kepco power supply, Keithley scanning multimeter or a Keithley source meter is to
be used, install a GPIB communications card. After the GPIB driver to the card has
been installed (and verified that it work), download and install the gpib-server software
from https://www.elchemea.com/gpib/

3.2.5 Install RFCcontrol

In order to install the RFCcontrol - DTU Energy RFCcontrol control software system do
the following:

22 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

1. Unpack the tar-ball in a suitable location, cd into the resulting RFCcontrol direc-
tory.

2. Run make.

3. Inspect the output of the make program and resolve any errors (specifically the
ch4 program may cause errors if the p2c package is not already installed. If not,
running make p2c as root will install this package, a pascal to c converter).

4. On some systems it may be nescesarry to force install the perl Pod::WSDL module
nescessarry to generate the wsdl files used by the webservice interface.
If so, in a terminal type ’cpan’ and then:
force install Pod::WSDL

5. Also make sure that the web server (usually Apache) is running with document
root in /home/http/html.

6. Once all errors have been resolved, run make test followed by make install.

7. In order to ensure that all servers start upon system reboot, add the following line
to roots crontab file:
@reboot /usr/local/bin/celltest/start servers &

On a newly installed RFCcontrol - DTU Energy RFCcontrol control software system, no
rigs will be available, and each rig on the system has to be installed manually. To install
a rig, simply run the ./create rig.pl $rig script in the installation directory followed by
the script ./INSTALL RIG (the $rig argument must be an integer, for instance to install
rig15, run ./create rig.pl 15).

Note that on Ubuntu systems you have to run ./ubuntu create rig.pl $rig
instead!

If the current system is to act as a list server (for a group of RFCcontrol
servers), edit the global configuration file (refer chapter 4) and make sure
that the listserver key in the servers section is the host name of the current
system and add the host name as well as any other host names of other
RFCcontrol - DTU Energy RFCcontrol control software systems in the cluster
to the server names key (separated by comma). If the current system is not
intended to run as a list server, simply set the listserver key to the host name
of the listserver and leave the server names key blank.

3.2.6 Installing the password server

If the RFCcontrol system is used alone or the system is to act as a password
server as well, follow the steps given below in order to install and configure
the password server:

1. edit the configuration file (/home/celltest/conf/celltest global.conf) and
change the ’passwd server’ key in the ’paswds’ section to the hostname
of this server

23 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

2. In the ’servers’ section, change the ’listserver’ key to the hostname of
this server (This is not absolutely necessary, as the listserver does not
need to be the same server as the password server, however it is usually
convenient to have both on the same server.

3. In the ’servers’ section, change the ’server names’ key to the hostnames
on this cluster (for a single server system, it will just be the hostname
of this server).

4. Remove the line ’@reboot /bin/su -c “/usr/local/bin/celltest/RFCcontrol-
ssl-server –ssl &” - sofc’ from roots crontab file to make sure that it does
not start upon reboot as it is not needed on the server acting as password
server (it will automatically anyways though).

5. Add the line ’@reboot /bin/su -c “/usr/local/bin/celltest/celltest-passwd-
server –ssl &” - sofc’ to roots crontab file to make sure that the password
server starts upon reboot.

6. make sure that your MTA allows the server to send mail (can be tested
by running ’echo “Test mail” | mail -s “Test” user@foo.com’ , remember
to substitute for a proper email address).

7. Run the ’initialise passwdfile.pl’ script in the installation directory and
note the initial root password thus created.

8. Reboot the computer and it should be possible to log in using the pass-
word created in step 7.

9. If it will not be possible to send emails from the server proceed to step
13.

10. Connect the computer to the Internet so that mails with new users
passwords can be sent.

11. Create at least a single non-superuser user for normal operation of the
RFCcontrol - DTU Energy RFCcontrol control software system and as-
sign correct permissions.

12. Installation should be complete.

13. Use the script create user.pl found in the installation directory to create
non-superuser accounts (note the passwords assigned to each user).

14. Check that the created users thus created can log into the RFCcontrol
system.

24 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

3.3 maintenance

Generally RFCcontrol requires little maintenance, however make sure that
a proper backup / restore procedure is in place, as any data logged by the
RFCcontrol system is likely costly in time and / or money and thus should
not be lost by hardware or software failures.

The RFCcontrol system includes a facility for automatic software updates.
To enable this, simply add the following line to root’s crontab file:

0 8 * * 1 /usr/local/bin/celltest/celltest updateer.pl ≫ /root/update log.txt
&

This will update the system once every Monday (thus leaving several working
days to fix things if anything went wrong). The automatic update system then
fetches any new version which may have been deployed within the last week
and installs this if it passes the software test (make test). Thus it will not
install any new software if mangled configuration files exists, or if the new
software version is incompatible with the existing configuration files.

Additionally it may be advisable to add the following line to sofc’s crontab:

0 1 * * * /usr/local/bin/mail errors.pl

This will ensure that all users listed in the errormails key in the global section
in the global configuration file (refer chapter 4) will receive a mail each day if
errors were logged during the previous day. The mail will contain an extract
from the error file (/home/celltest/error.txt).

3.4 Restricting access to raw data

A default installation of RFCcontrol allows all users which can access the
server through http/https to view all stored data. If this is not desired (due
to potential confidential data or similar), it is possible to restrict which users
can view the data. This restriction is based on external validation of user
access and is handles smilar to external rig validation.

In order tu utilise this system, direct access to the data through the public
static web pages has to be disabled.

This is configured by using .htaccess files in all rig web directories (such as
/home/http/html/rig1 for instance).

The content of the .htaccess file must be as below:

order deny,allow

deny from all

allow from ip.of.server.itself

ErrorDocument 403 /cgi-bin/show_data.cgi?rig=rignr

Where ip.of.server.itself is the server IP address and ’rignr’ is the rig number

25 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

(e.g 15 for rig 15). The last line is for facilitate a user friendly redirect to
login if users are not trying to access data without beeing logged in.

An exapmle of an .htaccess file can be found in the installation directory

This will allow the server itself to access the data but noone else (and if a
user has ssh access to the server he/she will already have read access to the
data directly, so this is not a security hole in itself).

This allows the show data.cgi script to access the data and display them if
the user is validated.

In order to control validation, data access authorisationid key in the global
configuration file must have the id numbers of the authorisations to use for
validation. If a user is authorised for at least one of the authorisatio ID’s
listed, he or she wil l be granted access. The use of Or-ing allows for multiple
authorisations to give access to a particular rig.

Once this is set up, direct access to the data directories by a web-browser will
result in a 403 Forbidden error but users will still be able to access the data
but will now have to log in first to do so (and be validated).

3.4.1 Restricting access to data in specific tests

If data for a particular test is confidential or otherwise so sensitive so only a
limited number of peopel should have access, the restrictions described above
can be expanded to only allow particular users to access the specific test
data. This ii controlled by placing a specific .restrict file in the relevant test
directory.

If a .restrict file is placed in the test dir (e.g /home/http/html/rig3/3test5/
for test 5 on rig3) with content as described below, the system will check if
the user requesting access is authorised for at least one of the authorisations
listed in tha ’allow’ key:

To restrict set allow to authiorisation to allow

uses OR so if user is authorised for one of the authorisations in the list he/she is

allow = 132,86

(132 and 86 here is just examples of authorisation iD’s whicy could be used)

An .restrict template is located in the installation directory and can be copied
to the relevant directories.

3.4.2 Restricting users to view active status of a rig

If users should also not be able to view current data unless they are authorised
for the specific rig, then the configuration key restrict access auth only should

26 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

be set to ’yes’. This wil ensure that users will only be able to see active data
if they are authorised.

Note that a user may be authorised to view active status of a rig without
beeing authorised to view the historic data!

27 of 433 Implemented by Søren Koch

Chapter 4

Global configuration

The global configuration of the RFCcontrol - DTU Energy RFCcontrol control
software contains site wide configuration values which are not rig specific.
Below is a section by section description of the configuration file which should
only be changeable by the site administrators.

4.1 Global

SECTION global

logoutdelay = +10min

splineinterpol = /usr/local/bin/splinterpol

splineinterpoldata = /home/celltest/convert-tables

CGI_baseaddress = 2000

CGI_host = localhost

GPIB_host = localhost

logfile = /usr/local/bin/celltest/logfile.pl

errormails = foo@foo.bar

access_mode = celltest

account_number_regexp =

Only set allow_exec to yes if you really want users to be

able to execute arbitrary system commands!

allow_exec = no

proxy=http://proxy.foo.bar:proxy_port

account_number_regexp = ^\d{5,}\s+\w\-\w+

remote_equipment_database = https://foo.bar.baz/cgi-bin/database.cgi

mta = /bin/mailx

logbook_url = https://foo.bar.baz/cgi-bin/logbook.cgi

server_name =

project_number_validate_url = https://url.to.call/path/to/script/script?action=what_to_test&value

ENDSECTION

This section defines global variables and file locations. The individual keys
are used internally and should normally not be changed unless you are VERY

28

DTU energy RFCcontrol 6.3.2

sure about what you do! The access mode key specifies two things and can
have one of two values: ’celltest’ and ’electrodetest’. It defines what infor-
mation is necessary to start a new test (less in case of an electrode test) as
well as which user access parameter is used for user authentication for the
rigs. The account number regexp key specifies which regular expression (if
any) is to be used for verification when a user is starting a new test. If
no value is specified, the default regular expression ’\w+’ is used The al-
low exec key specifies if it is possible to run custom designed programs from
the ’set-up program’ page (section 2). Only programs placed in the directory
/usr/local/bin/celltest/user exec are allowed to be executed due to security
considerations. A default installation only supplies one program ’test.bash’
which can be used to test the option, but it does nothing. All other programs
must be custom designed. CAUTION: Any program placed in this directory
can be executed by one of the rig users if allow exec is set to true, so any
program must be designed with security in mind so it can only do what is
intended and not be ’hijacked’ to do something else. The default setting of
this key is ’no’ as allowing the execution of arbitrary programs is a poten-
tial security risk (consider what would happen if the program executed was
just a wrapper for ’rm -rf .*’). Also notice, that any programs placed in
/usr/local/bin/celltest/user exec must only contain alphanumeric characters
and the ’.’ and ’-’ character in the filename (this is necessary for security
purposes as the remote program parser rejects any commands that contains
anything other than those characters). The CGI host and GPIB host keys
may be absent and in this case the default is localhost. In most cases the
localhost setting is correct, but in some network configurations it may be
necessary to set the fully qualified host name instead (e.g. foo.bar.com) The
proxy key specifies the hostname and port of a web proxy (if such a system is
used) and the account number regexp key specifies if users should be forced
to use a particular format for project/account numbers when starting a new
test. If so, use an appropriate regular expression and define it here.

The mta key specifies if an external mail transfer agent (like mailx) is to be
used instead of the internal perl modules. In some cases the mail sonfiguration
on the server will require using a specific mail transger agent.

The remote equipment database key is used if a remote equipment database
can be used for storing user log entries. The value must be the website
address which can handle input of user log entries. The script is called with
the following variable parameters: name - username, pass - session token,
rig - rignumber, test - testnumber, equipid - ID on the remote system (refer
section 6.1), description - string supplied by user. In addition the following
fixed paramteter values are also supplied: actionn̄ew maint log, typeT̄estlog

The key logbook url is used in conjunction with the RFC::Main::remote system log()
function and if it is defined any argument (a text string) passed to the re-
mote system log function will be appended to the value of this string and a
web request with the resulting text string (which should resove to a url) will
be initiated. This can be used for appending text messages to any remote

29 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

logbook system as long as it allows web access. See the documentation for
the RFC::Main module for more info.

The tag ’server name’ can be used to supply a more human readable name
for the server when displaying it on overview pages and butttons etc.

The tag ’project number validate url’ can be used if validation of project
numbers can be done on remote site. The content of the project number
field on the start new test page is appended to the url string as is the login
information (name and pwd hash) and an ajax request is sent to the specified
URL. If the response is ’OK’ nothing more happens but any other response
triggers an alert box with the content. Please note that this validation is
merely advisory, as a failure does NOT prevent starting a new test.

4.2 Admin

SECTION admin

system_mail_users = foo@foo.bar

ENDSECTION

The admin section contains a key with a comma separated list of email ad-
dresses of the site administrators who is to receive system error mails.

4.3 Passwords

SECTION passwds

passwd_server_port = 2020

passwd_server = host.domain

force_encryption = no

#ignore_soap = no

#wsdl = wsdl_file_location

NB only used in standalone mode

passwdfile = /home/celltest/passwd

passwdlock = /home/celltest/pwd.lock

ENDSECTION

The passwd section contains the information necessary for user authentica-
tion. Two modes of user authentication exists. Either a local password server
must be running (using a very primitive flat file database using the Perl Tie
module, described below) or a full fledged RDBMS database must be running
which handles user authentication. In the first case the software is included
(must be configured to run at system boot up) and in that case the passwdfile
and passwdlock entries must contain valid file locations. The passwd server
key contains the DNS name of the server running the password server. The
passwd server port key contains the port number of the server program (must

30 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

correspond to the port the password server program binds to especially in the
case of an external authentication server). The force encryption key (if set to
yes) specifies if RSA encryption is to be used at all times (both by any server
running, but also by any client calls to a potentially remote password server
(refer section 4.3.4). The wsdl key specifies where the wsdl file for password
server access is to be retrieved. Default is in /wsdl/session.wsdl on the web
server hosting the password server

Irrespective of authentication method (either local flat file database or full
RDBMS) the authentication of user login proceeds as following:

1. User initializes a new session and supplies user-name and password.

2. If user-name and a hash of the supplied password matches the hash
stored in the database (not no plain-text passwords are stored) log-in
proceeds otherwise the user is not authenticated. Note that it is only
for new sessions that the actual user password is needed as explained in
the following steps.

3. A hash is calculated based on the stored password hash and a randomly
generated string (session key). This hash is returned to the application
and is used as a session key unique to this session and the user in question.
The random session string is stored in the password server.

4. All further session traffic is validated against this session hash as the
password server can calculate what the hash should be and compare
with the user supplied session hash.

5. If the user logs out, or too long time passes before a new command is
passed, the session key is deleted and a new session has to be initialized
as all further authentication with the old session hash will not validate.

Earlier versions of RFCcontrol used the crypt() function, but from 4.6.1 on-
wards, the local password server uses the bcrypt() function which uses the
EKS-Blowfish algorithm as the crypt function is no longer secure.

Irrespective of user authentication method, the active password server must
honor all the commands in list 4.3.2 through TCP-IP socket calls: arguments
must be separated by a tab character and requests terminated by two newlines
as shown in the example below where the actual string transmitted is shown
(in the case of a server which does not use encrypted communication, see
4.3.4):

Client sends:

isuser\ttest\n\n

And the server would send back something like

31 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

34\n\n

assuming user test had user id 34.

4.3.1 Single sign on from multiple test stations

If single sign on is to be used, all the servers which uses this must be con-
figured to use the same password server. Since the communication between
the client and server can be encrypted, it is possible without exposing user-
names and/or passwords assuming that the web-server only uses ssl (that is
that users can only access the test station using https).

In order to configure multiple test stations for this, make sure that all the
test stations are configured to use the same server for password authenti-
cation. Additionally they should properly also use the same list-server for
convenience.

One thing to remember is that for single sing-on to work reliably, the net-
work configuration for the individual test stations should be set up to use
proper individual DNS host names (so not all systems identify themselves as
’localhost’).

4.3.2 List of password server commands

• new session: Initializes a new user session, arguments: username pass-
word. Returns a session token if successful, 0 otherwise

• checkuser: Checks that the user is properly logged in, arguments: user-
name token. Returns the user-id if OK, 0 otherwise. Updates the
’last login’ field so that the users session is extended.

• checkuser sso: Arguments: username token. This command works like
the checkuser command except it allows the option of using single-signon
in collaboration with Non-RFCcontrol systems (refer section 4.3.6). Thus
if the user is not logged in to RFCcontrol, but is logged in to some remote
system which can be used for single-signon, and the password server can
verify that the supplied user credentials are valid (username and token
is valid), a new local RFCcontrol session is created. If the user is au-
thenticated by at least one of the remote resources the userid as well as
a new session-token is returned. The session token is used in the same
way as the ones returned by new session. If single-signon is not enabled,
this command returns -1 (user denied access).

• pwdstatus: Checks if a session is valid and returns ’RESET’ or ’EX-
PIRED’ instead of the user-id if the session is valid but the user password
has been reset or too long time has passed since last password change,
arguments: username, token.

32 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

• is logged in: Checks if a user is already logged in, arguments: username.
Returns 1 if user is logged in, 0 otherwise. A user is logged in if the users
record in the password database has a session key set and that it is not
too long since the user performed an action which required validation
through the checkuser command.

• logout user: Logs out a specific user, arguments user-name. This com-
mand removes the users session token, thus making all further uses of
that token invalid

• get users: Returns a list of users on the system, arguments: username
token.

• is user: Checks if a specific user exists, arguments: username. Returns
user-id if the user-name exists, 0 otherwise.

• is admin: Check is the user is an administrator, arguments username
token. Returns 1 if user is administrator and session is valid, 0 otherwise.

• adduser: Adds a new user to the system, arguments: username, real name,
[opt email]. If no email address is specified, the default address will be
username@dtu.dk. After user creation a new password will be sent to
the users email.

• adduser nomail: Adds a new user to the system, but instead of sending
a email with the new password it is returned to the caller. Arguments:
user-name, real name.

• deleteuser: Deletes a user from the system, arguments: administra-
tor username token, username. Notice that the user record is not deleted,
the user is merely set inactive (and is thus unable to log in).

• root access: Sets or removes superuser status for a user, arguments:
administrator username, token, user-name, status. Status is 1 for root
access and 0 for normal user.

• user auth: Sets use permission for a specific key for a specific user,
arguments: administrator username, token, username, key, permission.

• changepwd: Changes the users password to a new value, arguments:
username, token, new password.

• resetpwd: Resets a users password, arguments: administrator username,
token, username.

• checkauth: Checks if a user has permission for (one or more) specific
key(s), arguments: username, token, [key, min permission]... Returns
the user-id if the user has at least the requested permission for the
specified keys.

33 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

• multiauth: Checks for a uses permissions for multiple keys, arguments:
username, token, [key, min permission]... As opposed to checkauth, mul-
tiauth returns a list with success status for each individual check (each
check separated by newline).

• email: returns the mail address for a specified user, arguments: user-
name.

• exit: Shuts down the password server.

• get per: Checks if a user has permission for a specified key, arguments:
username, token, key, min permission. Returns the user-id if the user
has at least the requested permission for the specified key.

• get admin: returns the administrator status for a specified user, argu-
ments: administrator username, token, username.

• debug: turns debug on or off.

• ping: Returns a string containing the server name as well as other infor-
mation.

• check task status: Checks the status for a user in respect to a particular
safety regulation (refer section 4.4), arguments: user-name, task-id.

• check task cert: Checks if a user is certified in respect to a particular
safety regulation (refer section 4.4), arguments: user-name, task-id. A
certified user is allowed to authorize other users to the same regulation
and is automatically also authorized.

• is ssl: Returns 1 if RSA cryptography is to be used for password server
communication. Note can be used unencrypted (does not expose secret
information).

• public key: Returns the RSA public key for the server. Note that this
command can only be used unencrypted (as it is necessary to know the
public key before encryption can proceed).

• logout delay: Returns the maximum number of seconds between actions
before uses are automatically logged out. Note can be used unencrypted
(does not expose secret information).

• equip cert: Checks if the specified user is certified for the specified rig.
A user is certified if he/she is certified for all safety id’s attatched to the
rig and which are defined to require certification. Arguments: username
equipmentid Note that this funciton is NOT supported by the password
server supplied with RFCcontrol, the only reason for it beeing mentioned
here is for the syntax to be defined!

34 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

• equip auth: Checks if the specified user is authorized for the specified
equipment. A user is authorised if he/she is authorised for all safety
id’s attatched to the rig. Arguments: username equipmentid Note that
this funciton is NOT supported by the password server supplied with
RFCcontrol, the only reason for it beeing mentioned here is for the
syntax to be defined!

• list equip auth: returns a list of id’s nescesarry for a user to be autho-
rised to use the rig. Is intended to be used to find out which safety
authorisation(s) a user needs before he/she can use the rig. Arguments:
Equipmentid Note that this funciton is NOT supported by the password
server supplied with RFCcontrol, the only reason for it beeing mentioned
here is for the syntax to be defined!

4.3.3 Additional local password server commands

In addition to the above commands, the local password server (/usr/local/bin/celltest/
celltest-passwd-server) also accepts the following commands for manipulating
safety regulations:

• new task: Creates a new safety regulation. Arguments Name of regulation.

• task name: Gets or changes the name of a safety regulation: Arguments:
user-name, token, id, [opt new name].

• task valid: Gets or changes the valid status of a safety regulation: Ar-
guments: user-name, token, id, [opt new status]. Users can only be val-
idated against valid regulations (validation against an invalid regulation
always fails).

• get tasks: Returns a list of safety regulations (id numbers) separated by
newlines. Arguments: user-name, token.

• get task names: returns a list of safety regulations separated by new-
lines, each item contains the id number and a tab-character followed by
the nam e of the regulation. Arguments: user-name, token.

• set task cert: Sets a particular user to be certified for a specific safety
regulation. Arguments: user-name, token, user-name of user to certif y,
regulation id. returns 1 on success, 0 or -1 on failure.

• set task auth: Sets a particular user to be authorized for a specific safety
regulation. Arguments: user-name, token, user-name of user to autho
rize, regulation id. returns 1 on success, 0 or -1 on failure.

• rev task cert: Removes the certification for a user for a specific safety
regulation. Arguments: user-name, token, user-name of user to remove,
regulation id. returns 1 on success, 0 or -1 on failure.

35 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

• rev task auth: Removes the authorization for a user for a specific safety
regulation. Arguments: user-name, token, user-name of user to remove,
regulation id. returns 1 on success, 0 or -1 on failure.

• list cert: Returns a list of user-names which is certified for a specified
safety regulation. Arguments: user-name, token, regulation id.

• list auth: Returns a list of user-names which is authored for a specified
safety regulation. Arguments: user-name, token, regulation id.

4.3.4 Encrypted communication

It is possible to use encrypted communication between the password server
and the clients. To enable this, start the password server with the –ssl ar-
gument. The reason for this is that the password server handles information
which must remain secret (namely the users passwords) and thus greater
protection is warranted.

If encryption is enabled, some additional steps are added to all all commu-
nication between the password server and any clients (irrespective of origin,
even local requests will be encrypted):

1. If the ’force encryption’ key (refer section 4.3) is set to yes, proceed to
step 3.

2. check if server is using encryption: This is performed by doing an un-
encrypted ’is ssl’ request. If The ’is ssl’ call returns anything but 1,
encryption is disabled for this transaction and communication proceeds
according to section 4.3.2 with plain-text strings.

3. The client checks if it knows the public key of the server. This is done
by look-up in the known hosts file. If the key is known, proceed to step
5

4. Get the servers public key and store it in known hosts. The key is
retrieved by issuing an unencrypted ’public key’ request (no need for
encryption to get the public key as it is intended to be known to the
public).

5. If the server request string is shorter than 32 characters in length, pro-
ceed to step 11

6. Create a random string containing 32 chars and use this as a key for the
AES symmetric cipher.

7. Encrypt the server request using Crypt::CBC (using AES) and this key
and base64 encode the resulting ciphertext.

36 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

8. Encrypt the AES key using Crypt::OpenSSL::RSA and the servers public
key and base64 encode the resulting encrypted key.

9. Create the transmit string the following way: first the encoded key, then
an underscore and then the encoded command followed by two newline
characters (an underscore is used as separator as the RFC 2045 used by
MIME ensures that this character can not by accident be included in a
base64 string).

10. Transmit this string to the server and proceed to step 13.

11. Encrypt the real server request string using Crypt::OpenSSL::RSA and
the servers public key.

12. Base64 encode the resulting string and send it to the server (to make
sure that transfer over the network does not mangle the binary string
resulting from the encryption).

13. The server checks if it knows the public key of the client, if so proceed
to step 16

14. The server does a reverse public key request. This must be serviced by
either the password server if a local request is serviced or the RFCcontrol-
ssl-server if a remote request is serviced (one of the two servers must run
on a RFCcontrol server if encryption of password server intercommuni-
cation is used).

15. The server stores the client’s public key in the servers known hosts file.

16. the server examines the string and determines if an underscore is present,
if not proceed to step 20

17. The string is split up in two parts by the underscore, the first part is the
key, the second part is the command.

18. The server reverses the base64 encoding on the key and decrypt it using
it’s private key.

19. The server reverses the base64 encoding on the command and decrypts
it using the decrypted key and the Crypt::CBC module (using AES),
then proceed to step 21

20. The server reverses the base64 encoding and decrypts the message using
it’s private key.

21. The server processes the resulting request according to section 4.3.2.

22. If the result is less than 32 chars in length, proceed to step 28

23. Create a random string containing 32 chars and use this as a key for the
AES symmetric cipher.

37 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

24. Encrypt the result using Crypt::CBC (using AES) and this key and
base64 encode the resulting ciphertext.

25. Encrypt the AES key using Crypt::OpenSSL::RSA and the clients public
key and base64 encode the resulting encrypted key.

26. Create the transmit string as in step 9.

27. Transmit this string to the client and proceed to step 30.

28. The server encrypts the response using the clients public key.

29. The result is base64 encoded and transmitted back to the client.

30. the client examines the string and determines if an underscore is present,
if not proceed to step 34

31. The string is split up in two parts by the underscore, the first part is the
key, the second part is the result.

32. The client reverses the base64 encoding on the key and decrypts it using
it’s private key.

33. The client reverses the base64 encoding on the result and decrypts it
using the decrypted key and the Crypt::CBC module (using AES),then
proceed to step 35

34. The client reverses the base64 encoding and decrypts the message using
the clients private key.

35. The client returns the decrypted response to the user or program re-
questing the information.

Notice that the key exchange only happens once for each client. Once the
public key has been retrieved, it is used for all future requests. Thus if for
some reason a server has to be reinstalled or otherwise changed, remember to
delete the corresponding entries in known hosts or communication will fail!
(This is similar to how the ssh program behaves). The is ssl request is also
cached and is reused if the client program needs to do more than just a single
request to the server. However each new invocation of a program or script
which uses the password client function in RFC::Main will call ’is ssl’ at least
once, except if the ’force encryption’ key is set to yes, in which case the ’is ssl’
request is unnecessary and is skipped.

Also notice that if encryption is enabled on the password server, only the
three last commands in list 4.3.2 can be used without encryption!

As encrypting an empty string results in gibberis upon decrypting, the server
responds with a single space if the true request result in no response or
the empty string (the space character will be encrypted following the above
description however) and the client will detect this single space and return
an empty string instead.

38 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

4.3.5 How to run a local password flat-file database server

In order to run the local flat-file password server distributed with RFCcon-
trol - DTU Energy RFCcontrol control software, the following steps must be
followed:

1. If no previous password server has run, execute the initialise passwordfile.pl
script found in the installation directory. Caution: Executing this script
will erase any prior password file! Note the initial password assignet to
the root user!

2. Start the celltest-passwd-server script found in /usr/local/bin/celltest/.

3. log in using the password generated in step 1

4. change the root password to something suitable.

5. Create the normal users and assign them correct permissions (usually
celltest - modify). Creation of users can be done from the GUI only if
the server is connected to the network and is allowed to send mail! If
this is not the case, use the terminal program create user.pl found in
the installation directory RFCcontrol. The password for the new user
will then be printed out in the terminal instead of sent by mail (which
would never arrive).

6. add the line /usr/local/bin/celltest/celltest-passwd-server & to /etc/rc.local

4.3.6 Single sign-on in collaboration with non-RFCcontrol sys-
tems

It is possible to use RFCcontrol in a single-sign-on mode in collaboration with
Non-RFCcontrol systems. In order to do this the following prerequisites must
be met.

• All remote systems types in the collaboration must supply some form of
remotely accessible user verification in order to verify if a specific user
has a valid log-in session active.

• A special program must be made for each type of system which accepts a
username and a password-token as arguments and which returns either
0 (user not authenticated) or a true value (usually a user-id) in case
the user has a valid session based on the supplied credentials. These
programs must be placed in the directory /usr/local/bin/celltest/sso/.

• The RFCcontrol password server must be started with the special switch
–sso, which enables the single sign-on option (note 2 dashes).

39 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

• All links to RFCcontrol from the external sources must supply a ’name’
parameter (the user-name) as well as a ’pass’ parameter (which contains
the session token from the external system) and these two parameters
must be sufficient to verify that the user in question is authenticated.

If these prerequisites are met, it will be possible to make direct links from
external web-pages to RFCcontrol without the user having to log in to RFC-
control (assuming the user has a valid active session on the external system).

Upon receiving a request originating on one of the external systems, RFCcon-
trol will first try and validate using the local password server system (which
will fail) and then a checkuser sso request will be issued to the password
server.

This request will try all the programs in /usr/local/bin/celltest/sso/ to check
if one of them returns a true value. If so, the user is assumed to be au-
thenticated by the system related to that program and a new local session is
created and the user can proceed as if he / she had just logged in normally
on RFCcontrol.

Notice that this feature can be used to completely bypass all security if
by some means a program or script is placed in /usr/local/bin/celltest/sso/
which returns a true value (for instance a simple echo command will do this!).
Thus the single-sign-on option has to be explicitly enabled by the –sso switch
when starting the password server and the /usr/local/bin/celltest/sso direc-
tory must only be writable by root to prevent such attacks.

Troubleshooting

If encrypted communication is used for the password server, and one or more
of the remote systems uses a similar communication scheme as the RFCcontrol
password server (Other RFCcontrol clusters for instance) situations could
arrive in cases where a ’checkuser sso command’ is recieved and one of the
programs used to check remote systems forces a reverse public key request.
In this case a deadlock occour as the reverse public key request can not be
processed as long as the current request is running (and that can not finish
before the reverse public key has been recieved).

To prevent this, issue a ’isuser’ command using the password client raw()
function in the RFC::Main.pm library to each of the systems from each of
the other systems in order to load all public keys to and from the relevant
systems.

4.4 User authentication control based on rig permis-

sions

SECTION safety_task_access

40 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

rig6 = 18

rig35 = 8,1

rig36 = NONE

ENDSECTION

The safety task access section is only to be used if individual access rights
for particular rigs are to be used. A further condition is that the password
server honors the ’check task status user-id task-id’ request as well as the
’check task cert’ request. In the case this is not met, remove all entries in
this section!

If an entry is found for a rig, the number(s) for that rig is the task-id(s) in
the remote database for which the user must be authorized before he/she
can change any parameters for the rig in question (current, gas flows etc.).
In the example above, in order for a user to change process parameters for
rig 6, he/she should be authorized to use safety task number 18. If the user
is authorized for the rig in question, the access rights are set as if the user
had ’create’ rights in the global access system if the user had less than create
rights in the global system (note the global access rights are NOT changed
permanently, only for the current session). If the special key ’NONE’ is found
for a specific rig (in the example above for rig 36) the system assigns implicit
access rights to all users for that rig as if they had use rights assigned by
the remote database (without checking the database). This can be used for
overriding the access rights if problems is encountered and it for some reason
is not possible to change user permissions in the external database.

if more than one number is found (in the example above for rig 35, then all
skids must return a valid authorization for changes to be allowed. Additional,
only the first task id is checked for certification status (certified users are
allowed more freedom in configuration than merely authorized users).

Thus in order to be certified the user must be authorized for all task id
numbers listed as well as be certified for the first task id listed. If no entry
is found for the rig in question, the global access mode is used instead. The
permission which the system checks for is the one defined by the ’access mode’
key in the ’global’ section.

If no such key is defined, the default is to check for ’celltest’ and ’cell-
test admin’ (the administrator part is always generated by appending ’ admin’
to the access mode key, so if the access mode key is electrodetest, then the
admin-key will be electrodetest admin. Thus make sure that the password
server has the specified access keys defined.

4.5 Server section

SECTION servers

listserver = foo.bar

list_server_names =

41 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

server_names = host.domain.tld,host2.domain2.com

ENDSECTION

The servers section defines how many servers share the system software so
that internal navigation between different servers is possible and as painless
as possible. It also includes the listserver key, which specifies which server
is to be used as a list server. This makes server farm maintenance easier, as
each server only needs to know the name of the list server as well as which
rigs are valid on the local system. Only the list server needs to know the
names of all servers. It is also possible to use more than one list server (with
each list server maintaining it’s own list of known serves). In this case use the
list server names key and supply a comma separated list of list server names.
Notice that each list server need not know all servers.

4.6 Test rig control on server

SECTION celltest

rigs = 6,35,36,37

rigs_host.domain.tld = 6,35,36,37,40

start_test_mail_users = foo@foo.bar,foo2@foo.baz.bar

ENDSECTION

The celltest section defines the number and names of rigs on the server as
well as a list of users who get a system mail each time a new test is started
on one of the rigs. Notice, that if a rig is physically unavailable / removed,
but the data is still intended to be on line and available, make sure that the
rig number is removed from the rigs key, but not from the rigs ... key. In the
above example rig 40 will not be available to control, but the data will still
be on line and available.

4.7 Gas factors

SECTION gas

This section is for gas factors for Brooks mass flow controllers

n2 = 1

o2 = 0.988

h2 = 1.008

co2 = 0.773

co = 0.995

ch4 = 0.763

air = 0.998

d2 = 0.995

he = 1.386

ar = 1.395

42 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

ne = 1.398

kr = 1.382

xe = 1.383

no = 0.995

no2 = 0.758

n2o3 = 0.443

n20 = 0.752

ext_anode = 1

ext_cathode = 1

chx = 1

backup = 1

ENDSECTION

The gas section contains the gas factors for all the gasses which the system
knows about. If a new gas type is added to one of the rigs, make sure that
the corresponding gas factor is defined in this section! (refer section 6 and
12.5).

4.8 Impedance acquisition control

SECTION impedance

standard_compensation_files = /home/http/html/*.i2b

current_plot_frequencies = 10000:100:1

remote_client = /usr/local/bin/remote-client

comp_program = /usr/local/bin/hio_korr

ENDSECTION

The impedance section contains various information necessary for running
automated impedance using the Elchemea© software package in conjunction
with a Solartron® 1260 or 1255B. The standard compensation files key con-
tains the location of the compensation files. If the standard compensation files
key is empty or not defined, then the impedance compensation files for all
impedance compensation is assumed to be in the directory imp comp in the
main web directory for the individual rigs: In case of rig 5 the directory would
be /home/http/html/rig5/imp comp/ assuming standard file locations. If
the key is specified, it is possible to include limited pattern match like shown
above. In the example displayed above, only files ending with .i2b is included.
The current plot frequencies key contains the frequencies to be displayed in
the overview figures showing impedance data versus time for impedance spec-
tra obtained during constant current. The comp program key contains the
location and name of the impedance compensation program.

43 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

4.9 Report generation

The following configuration sections are all concerned with report generation
as well as graphics generation.

SECTION resistance_calc

minimum_relative_current_Rmin = 0.2

ENDSECTION

The resistance calc section contains only one key that define the relative cur-
rent above which the software algorithm tries to determine the minimum cell
resistance found during an I-V curve (only used when making reports).

SECTION GNUPLOT

output_type = ps

postportterm = post port enh color

postportsize = 1,0.5

multmargin = set lmargin 10;set rmargin 10;set bmargin 2

size = 1,1

halfsize = 1,0.5

quartersize = 1,0.25

location = /usr/bin/gnuplot

impedance_time_plot_type = points

ps-size = 0.5,0.5

png-size = 0.5,0.5

ENDSECTION

The GNUPLOT section contains location and default margins and terminal
types for automatically generated report figures using Gnuplot.

SECTION MDRIVE

location = M:/Path/To/Data/

mountloc = M:/Path/To/Mounting/Photos/

unm_loc = M:/Path/To/De-Mounting/Photos/

stringsize = 39

ENDSECTION

The MDRIVE section contains default path descriptions for cell data (only
used when making reports and specific for the network environment and Win-
dows/Samba shares in which the server and clients are located)

4.10 Global IV curve control

SECTION iVcurves

minimum_cell_voltage_for_iv = 400

44 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

maximum_cell_voltage_for_iv = 1600

minimum_current_step = 0.05

current_limit = 50

ENDSECTION

The iVcurves section contains absolute maximum and minimum cell voltages
for i-V curves. If an i-V curve exceeds one of these values, an emergency
shut-down of the i-V curve occurs. Note that the values are in mV! The
minimum current step key specifies the minimum stepsise (in A) for current
changes during i-V curves. before changing this, please refer to the speci-
fications of the attached DC power supplies as the value in this key should
not be lower than the resolution of the PSU’s! If the key does not exist,
the default value of 0.05A is used instead. The current limit key defines the
maximum allowable DC current. Default is 40 A, set this value to something
appropriate to the devices under test.

45 of 433 Implemented by Søren Koch

Chapter 5

Device description and philosophy of
device design

The RFCcontrol - DTU Energy RFCcontrol control software system uses a
number of logical and physical devices. Common to all of them is that they
can be queried for their status (by using the read function, refer section 12.1).
Some devices are read only whereas others are controllable. Below is a general
description of the main types of devices.

5.1 Simple channel

The most basic device type in the RFCcontrol - DTU Energy RFCcontrol
control software system is the simplechannel. This device type is typically
connected to a AD converter (digital voltmeter typically) and is a read-only
device type. Whenever the device is queried (read) the voltage or current is
measured and returned. The simplechannel device type is used by a lot of
the more complex device types in the RFCcontrol - DTU Energy RFCcontrol
control software system.

5.2 Control relay device

This device type is basically a Boolean device which usually is controlling a
physical relay which in turn can be used to control magnetic valves, switching
relays or digital input to other physical devices (PLC’s etc.). If the status of
the relay device is on, then a read will result in a ’1’ whereas a off state will
result in a value of ’0’. Note, that if the relay is controlling a normally open
magnetic valve, then a status of ’on’ will actually be a closed valve! As with
simplechannel (refer section 5.1) the relay device is used internally by a lot
of the more complex device types.

46

DTU energy RFCcontrol 6.3.2

5.3 Analog output device

This type of device is used to control DA converters (notice, do not confuse
this with a power supply). The actual physical device may be either a voltage
source or a current source (but not both at the same time!). In RFCcontrol -
DTU Energy RFCcontrol control software an analog output device is usually
used to control analog mass flow controllers or similar devices with only analog
input.

5.4 Gas device

The gas device is logically a gas tube with a flow measuring and/or flow control
device attached. This control device may range from a fully automatic and
electronically controllable device to a fully manual needle-valve (in which case
the logical gas device only remembers the value that the user specified he/she
had set the flow to). The name of the gas device may either be the gas name
or a logical name (in this case it must be configured which gas is actually
being controlled/measured).

Figure 5.1: Logical overview of a gas device. The control device may be a simple valve, a
pressure controller, a electronic mass flow controller or even a more complex flow control
device (possibly composite including parts of a multiplexer device (refer section 5.7).

A gas device may be configured as manual or automatic, if it is automatic,
then a MFC (or derived) device is attached to control the flow or the pressure.
Notice that a single gas device can have the flow rate or the gas pressure
controlled, but not both at the same time! This is the reason for pressure
control devices to emulate the MFC interface. If both flow rate and pressure
for a gas is to be controlled (physically in different controllers), one gas device
controls the flow and an other the pressure.

For example, the gas device ’h2’ would be set up to control the hydrogen flow
rate and the gas device ’h2 pressure’ would be used to control the pressure.
The two devices would then report data in L/hour and barA respectively.

5.4.1 Multiline devices

A special type of gas device is the multiline device. This device is a parallel
connection of two other gas devices (usually with different flow ranges) making
it possible to accurately control the gas flow over wider ranges than is possible
with a single gas device as usually the accuracy of a gas control device can
only be trusted over a single order of magnitude. Warning: never mix gas

47 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

devices configured to control flow rate with gas devices configured to control
pressure in a multiline device as the result would be unpredictable! Also
be careful not to create circular links as such a link will render the system
unresponsive due to deep recursion.

Figure 5.2: Logical diagram of a multiline gas device. M1 to M3 are magnetic valves
and MFC 1 to 3 are mass flow controllers with different flow ranges (in this example it
is assumed that MFC 1 has the lowest flow range and MFC 3 the highest). The grey
boxes containing a valve and a MFC indicate a primitive gas device (normal gas device as
according to section 5.4). The box labeled Multiline 1 is a multiline gas device consisting
of MFC 1 and 2 (in addition to the associated valves). This device itself behaves ’from
the outside’ as a primitive gas device, and can be used as such in other multiline gas
devices as it is in this example where the complete figure indicate a multiline gas device
consisting of a primitive (MFC 3 + M3) and a multiline device (multiline 1).

48 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

5.5 Gas group device

A RFCcontrol - DTU Energy RFCcontrol control software gas group device
is a purely logical device, and is used to group several gas lines into a single
logged value depending on the status of some control relay. The principle is
described in figure 5.3 where the status of a electronically controlled cross-
over valve is used to control if gas line 1 or 2 is shunted to the sample under
test (this is usually only used in cases where gas concentrations has to be
changed fast as a step function).

Figure 5.3: Logical overview of a 2 gas group devices. Device 1 is MFC 1 and 3 (both
hydrogen) and device 2 consists of MFC 2 and 4 (both nitrogen). However depending on
the status of the cross-over valve only MFC 1 and 2 or MFC 3 and 3 can supply gas to the
sample. Thus for each gas group, only the flow of one of the MFC’s should be counted as
supplied to the sample. To solve this, each gas device (MFC + magnetic valve) must be
assigned a control relay (the relay device controlling the cross over valve) and a control
value so that the gas group device knows which gas line to include upon a read request
depending on the setting of the cross over valve.

All RFCcontrol - DTU Energy RFCcontrol control software gas group devices
are read-only devices as the flow of the individual gasses are controlled by
themselves as is the status of the cross-over valve.

5.6 Mass flow controller

The mass flow controller device is a composite device. Logically it consist of a
cutoff valve, a flow control device and a bypass valve (refer figure 5.4). Only
the control device is mandatory however. The reason for this is that most
automatic flow control devices (mass flow controllers) usually can not close

49 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Figure 5.4: Logical overview of a MFC device. The only mandatory device is the MFC
(flow control device). The optional valve (A) is a cutoff valve to ensure that no gas can
flow and the valve (B) is a three-way valve (may be implemented as a normally open
and normally closed valve pair). The port of the three-way valve which is open upon
activation is connected to the system exhaust and the port open upon no valve activation
is connected to the test setup. Note that the complete MFC-device (one MFC and up to
2 magnetic valves) constitute the flow control device shown in figure 5.1.

completely, and thus the MFC device can include a cutoff valve which can
close the gas flow completely. The bypass valve is used in case no overshoot
of the gas flow is acceptable. In this case a three-way magnetic valve should
be mounted as shown in figure 5.4 and this valve will open for a short while
if the gas flow is to be turned on (from an off state). After the gas flow has
stabilized (and any overshoot has been vented through the aux output) the
valve returns to normal and the gas flow continues as normal. A RFCcontrol -
DTU Energy RFCcontrol control software MFC device must be connected to
a corresponding gas device and therefore it is usually advantageous to initially
configure all gasses before starting to configure MFC devices.

5.7 Multiplexer device

The RFCcontrol - DTU Energy RFCcontrol control software multiplexer de-
vice is a logical device consisting of a number of relay devices (refer section
5.2) used to control which gas line is selected as shown in figure 5.5. Only
one gas line is allowed to be selected at any time, however the gas control
valves used by the multiplexer device must NOT be confused with the control
valves used by the MFC devices as described in section 5.6 (physically it is
possible that the same magnetic valve may be used as both a multiplexer
valve and a cutoff valve though, but logically inside the RFCcontrol - DTU
Energy RFCcontrol control software system they must be different devices!).

50 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Figure 5.5: Schematic overview of a gas multiplexer device. The three different magnetic
valves control which gas (H2, N2 or Ar in this case) is allowed to be passed on. The output
in this case would be the input of a MFC device. This enables a single MFC device to
control multiple gasses (although only one at a time)!. Note that only mass flow control
er devices and not pressure controller devices can be connected to a gas multiplexer.

5.8 Power supply device

The power supply device is used to control power supplies (usually DC). This
must not be confused with the analog output device described in section 5.3.
As opposed the the analog output device it is possible to specify both the
current output as well as the voltage output and depending on the physical
device these values will usually be maximum values meaning that the PSU
may operate as both a constant voltage source or a constant current source.

For instance if the current is set to 10 A and the voltage is set to 5 V, then
depending on resistance of the sample being tested the output will be either
5 V (in case of a sample resistance above 0.5 Ohm) or 10 A (in the case the
sample resistance is below 0.5 Ohm). In either case the voltage or current
may be below the specified values, but never above.

A PSU device may also include a relay device to completely disconnect the
power supply from the sample under test (full open circuit conditions). In
this case the relay device must be connected to a large power relay capable of
handling the voltages and currents possible by the Power supply in question
(and this may be several hundreds of amperes in some cases!).

Notice that RFCcontrol defines the positive current direction as seen from
the device under test. Thus if a battery is discharged or a fuel cell is supplying
current as through a resistive load, then the current is positive. Similarly if a
battery is charged or an electrolyser is supplied power to generate gas, then
the current is negative.

51 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

5.9 Temperature logging device

The temperature logging device is a composite device usually consisting of
one or more simpeldevices as shown in figure 5.6. The primary input device
usually measures a thermovoltage from a thermocouple and then converts it
(using the appropriate conversion tables) to a temperature by using the cold
junction temperature determined by the values of the secondary channels
(refer figure 5.6). If accurate temperature measurements are to be made up
to 3 measurements may be needed (one voltage measurement and 2 resistance
measurements). However, if more than one thermovoltage are to be measured,
the cold junction measurements can be shared as long as the screw terminals
in question are in thermal contact (and can be assumed to be at the same
temperature).

All RFCcontrol - DTU Energy RFCcontrol control software temperature log-
ging devices are read-only devices.

Figure 5.6: Logical overview of a temperature logging device. The actual temperature
measured is the temperature at the thermocouple junction at the right. The screw ter-
minals on the left is assumed to be at normal temperatures and be connected to a AD
converter by normal Cu-wires. As the measured thermovoltage depends not only on the
temperature of the thermocouple junction but also of the ’cold junction’ (where the com-
pensation cable is connected to normal uncompensated cables) this temperature must be
known as well. This is best achieved by measuring the resistance of a Pt-1000 resistor
in thermal contact with the screw terminals. However in order to accurately measure
this resistance it is necessary to compensate for the resistance in the wires from the AD
converter and to the screw terminals, and this can be done by measuring the resistance
of a simple short circuit (below the Pt-1000 shown in the figure).

5.10 Temperature control device

A RFCcontrol - DTU Energy RFCcontrol control software temperature con-
trol device is connected to a temperature controller and is used to set the
temperature set point and ramp rate. The physical temperature control de-

52 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

vice must be configured to only work by accepting a ramp rate and a set point,
and any changes in set point must result in the controller ramping from the
current set point to the new one by the current ramp-rate. Notice that a lot
of commercially available controllers can be configured to run autonomous
programs, however this option should NOT be used in conjunction with the
RFCcontrol - DTU Energy RFCcontrol control software system.

5.11 Filter devices

A special virtual device class called filter is also available. The device is
purely virtual and works by converting the read value of a normal device to
a calculated value based on the filter device type and settings. A filter device
passes all commands sent to it to the underlying device. The only influence
is on the return value of a read request (and hence readstring requests). If
a read request is passed to the filter device, the underlying device processes
the read request and returns the value to the filter device. Depending on
the type and internal settings of the filter device, the returned value is then
mathematically transformed and the transformed value is then returned to
the caller instead of the raw read value from the underlying device.

The most common filter is a spline interpolation which allows conversion
according to a (potentially non-algebraic) monotonic function specified by a
spline table.

One specific feature of a filter device is that it will masquerade as the same
device type as the underlying device. Thus if a simplechannel device is fil-
tered, the resulting filter device will itself be available as a simplechannel
device and if a gas device is filtered, the resulting device will be available as
a gas device! Any filter device will also be available as a filter device however
(for configuration and explicit invocation). The reason for letting filter de-
vices masquerade as the underlying device type is to allow the filter devices
to work between simple and complex devices. For instance if an analog MFC
device measures a specific flow, a filter device can be configured to correct
the measured flow (from the simplechannel device) according to a calibration
table before the flow is calculated based on gas factors, thus resulting in a
higher accuracy than without filtering.

Warning: One side effect of the ability of filters to masquerade is that it
is possible to accidentally create circular links in the configuration for a rig.
Therefore whenever filters are used, be extremely careful that no circular links
are crated, as just one such link will render the whole system unresponsive
(due to deep recursion)!

53 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

5.11.1 Summing devices

A special filter device is the Summing device. This device operates on more
than one input (all of which must be of the same type). Whenever the read
operation is performed on an instance of this device type, the result is the
arithmetic sum of the read function call on the input devices. This device
can thus be used to get the sum of gas flows for specific control situations
where for instance feed-forward is needed for a PID control device to operate
properly. Additionally any setflow command performed on one of the inputs
is forwarded to the output device (if it is defined) but with the sum of the
inputs as argument instead of the original command input. As with the logic
devices described in the next section, whenever summing devices are used, a
detailed schematic should be maintained for better operator overview of the
control system as a whole.

5.11.2 Typecast devices

A final special filter device type is the Typecast device. This device type can
convert an underlying device to an other type (as viewed from observers on
the typecast device). The benefit of this is that it makes it possible to use for
instance the DC current as a gas flow (with the proper conversion according
to Faraday’s law of electrolysis).

However typecast devices are NOT necessary for simply logging gas flows
and/or DC-current load for later processing, only in special cases such as
active control of gas flow as a function of DC current load might a typecast
device be necessary (chapter 14 has an example of a situation where typecast
devices are necessary).

5.12 PID devices

An other special device type is the PID device. This virtual device operates
on two other devices, an input device and an output device, and the PID
device tries to correct the output device so that the input device measures a
specific value (normal PID regulator).

A PID device can operate in two modes, fast and normal. In fast mode, the
control loop is as tight as possible (1 second delay between each iteration,
may take longer if the devices themselves are slow or queuing prevent fast
measurements) whereas the normal mode an iteration is only performed once
a minute.

Due to the nature of a PID regulator, be careful that the settings are appro-
priate, as otherwise unstable operation may result.

Normally it is good practice to wait with PID devices until such time as it
has been proved that they are necessary.

54 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

5.13 Virtual (pure software) devices

RFCcontrol supports a number of purely virtual device classes. These devices
exists only as logical connection between other devices which is connected to
the actual physical devices.

Common to all the pure virtual devices is that they do not do any data logging
by themselves (specifically the readstring function returns undefined). The
reason for this is that the underlying devices (which actually controls or reads
from physical devices) should handle this.

Pure virtual devices can operate on input and / or output devices depending
on type and configuration.

Although pure virtual devices does not contribute to the data logging, they
only work correctly if they are enabled ad opposed to most other types of
devices which would get auto-vivified if they are needed by other devices.

5.13.1 Logic devices

These virtual devices operates on one or more input devices, each of which
must be of either relay type, logic type or the special filter device type
’Schmidt trigger’.

The logical devices can have a optional output device (which must be of a
relay type) which is intended to convey the result of the logical operation to
the rest of the rig control system (usually physical relays). If a output device
is configured, it is automatically set to be read-only, as control of the output
relay state should be exclusively through the logic device and not directly
through the user interface.

The different types of logical devices implements the normal Boolean op-
erators (AND, OR, XOR etc.) and allows for cross linking control signals
between devices (for instance, closing a specific gas may force the opening of
a valve on an other gas line entirely etc).

Whenever it is intended to include logical devices in a rig’s control system, it
is an extremely good idea to have detailed schematics of the intended control
system prepared with unique names for all logical operations as well as all
other devices. If no such detailed schematics are available, it is far too easy
to create an other logical control system than intended, and it may even be
possible to create circular references which would render the complete rig
control system inoperable!

5.13.2 Arithmetic devices

An other special device class is the arithmetic devices. These virtual devices
operates on one or more input devices.

55 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

The different types of arithmetic devices implements the normal arithmetic
operators (plus, minus, multiply etc) and allows for cross linking signals be-
tween devices.

As with logic devices, whenever it is intended to include arithmetic devices in
a rig’s control system, it is an extremely good idea to have detailed schemat-
ics of the intended control system prepared with unique names for all logical
and arithmetic operations as well as all other devices. If no such detailed
schematics are available, it is far too easy to create an other control sys-
tem than intended, and it may even be possible to create circular references
which would render the complete rig control system inoperable due to deep
recursion!

Arithmetic devices implements the observer pattern on their inputs and thus
forwards any commands to any devices which listens on the arithmetic device.

5.13.3 Adapter devices

Adapter devices encapsulate other devices in a manner similar to filter de-
vices. As opposed to filter devices, adapter devices supply functionality which
the encapsulated device itself does not supply. For instance, a normal gas de-
vice does not support slowly ramping the gas flow to the new set point, but
by applying a ramp rate adapter to a gas device this can be accomplished.

5.13.4 Alert devices

Alert devices are intended to be used to create custom watchdog programs.
Each alert device monitors a single device (which can be of any type except
an other alert device) and if the value (the result of a read operation) exceeds
a specific threshold an alarm event is raised (which as a minimum sends an
email to the rig operator / owner but potentially also takes corrective action).

5.14 Order of device configuration when setting up

a new test rig

In order to avoid errors when setting up a completely new rig, one should
configure the devices in the following order:

1. Simplechannels (all basic measurements including devices which will be
used internally by other more complex devices).

2. Simple gas devices (Initially all simple gasses should just be configured
as manual).

56 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

3. Multiline gas devices (should just refer to simple gas devices configured
above).

4. Analog output devices (usually used internally in more complex devices).

5. Relay devices (usually but not always used by more complex devices).

6. Power supply devices.

7. Temperature control devices

8. Any potentially necessary filter devices (Note some filter devices may
be necessary to configure later if the underlying device has not yet been
configured)!

9. Temperature logging devices (will be simple if all the input devices was
configured in step 1).

10. MFC devices

11. Reconfigure gas devices to account for MFC’s if necessary.

12. Gas multiplexer devices. Notice that only gasses that are enabled can
be configured as part of a multiplexer!

13. Reconfigure MFC devices to account for multiplexers (select relevant
multiplexer and set gas change to automatic) Remember to set the cor-
rect possible gas names in the gasses list as only those in that list is
avaliable when configuring the gas multiplexer in the next step.

14. Reconfigure gas multiplexers to set correct relay devices / port numbers
to the corresponding gasses.

15. Gas group devices.

16. Logic devices if necessary (caution, do not create more complex control
systems than necessary!).

17. PID devices if necessary.

In all cases, remember to setup any filter devices at at the same time as the
normal devices (e.g a filter device operating on a simplechannel device should
be configured at the same time as the normal simplechannel devices).

Remember to enable the devices from which the values should be logged as
part of automatic data logging or if the device should be avaliable for user
control.

57 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

5.15 Note on gas and simplechannel names for ease

of reporting

In order to facilitate easy reporting of fuel cell or electrolyser tests using the
reporting system distributed with RFCcontrol, a number of device names has
special meaning.

Notice that it is only for reporting purposes that the following device names
are special and for normal operation and control they are irrelevant and can
even be non-existent.

For historical reasons (The first fuel cell test using the predecessor to RFC-
control was ran in 2001 and more than 1000 test has been run since then),
some of the device names described in the following sections contain capital
letters In order for reporting to proceed properly, this capitalization must be
preserved.

5.15.1 Simplechannel device names for current, voltage and
pressure

The following simplechannel names are used for special calculations during
reporting.

• cell voltage: A simplechannel with this name is assumed to report the
fuel cell / electrolyser cell voltage in mV and must be positive when
anode is in contact with reducing gas and cathode is i contact with air
or other oxidizing gas!

• O2 in: A simplechannel with this name is assumed to represent the
voltage measured across a zirconia based pO2 sensor measuring on the
anode gas (reducing gas) stream before the fuel cell. The reported value
is assumed to be in mV and value must be negative when reducing gas
is used.

• O2 out: A simplechannel with this name is assumed to represent the
voltage measured across a zirconia based pO2 sensor measuring on the
exhaust of the anode gas. The reported value is assumed to be in mV
and value must be negative when reducing gas is used.

• current: A simplechannel directly measuring the DC current through the
device in A. Notice that positive current direction is when the device is
run as a fuel cell (meaning that a negative current is observed when a
device is run as an electrolyser).

• pressure: A simplechannel directly measuring the gas pressure in at-
mospheres. Note that if no pressure logging device is defined (no device
called pressure) the reporting scripts assumes a pressure of 1 atmosphere,

58 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

so a pressure measuring device is only needed for situation where exper-
iments are performed in anything else than atmospheric pressure.

5.15.2 Gas device names

• backup: gas stream measuring the flow of diluted hydrogen (9% hydro-
gen in nitrogen) to the anode.

• h2: gas stream measuring the flow of pure hydrogen to the anode.

• o2: gas stream measuring the flow of pure oxygen to the anode (to
combine with H2 before the cell to make water vapor).

• co: gas stream measuring the flow of pure carbon monoxide to the anode.

• co2: gas stream measuring the flow of pure carbon dioxide to the anode.

• ch4: gas stream measuring the flow of pure methane to the anode.

• h2: gas stream measuring the flow of pure nitrogen to the anode.

• ar: gas stream measuring the flow of pure argon to the anode.

• he: gas stream measuring the flow of pure helium to the anode.

• h2o: gas stream measuring the flow of water to the anode. Note that
the flow is to be reported in L/hour gas at 0 C, NOT liquid flow!

• air: gas stream measuring the flow of air to the cathode (assuming 21 %
oxygen in nitrogen).

• o2 cathode: gas stream measuring the flow of pure oxygen to the cath-
ode.

• n2 cathode: gas stream measuring the flow of pure nitrogen to the cath-
ode.

Notice that if other gas device names for the above gas streams are used
reporting will likely involve quite some manual data processing!. However
additional gas device names can be used without problems (as only the ones
described above are used for reporting purposes). If other gasses than the
above mentioned is used, make sure that they do not contain reactive species
which can influence the fuel or oxygen utilization as this will render the cal-
culations performed by the reporting scripts invalid! For instance if an other
gas string containing hydrogen is used (let’s call it ’external h2’), the fuel
utilization calculation will only be based on the value found in the ’h2’ col-
umn and the hydrogen from the external source will be disregarded and not
included resulting in completely wrong calculation.

59 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

5.15.3 Temperature logging device names

• T center: A device measuring the temperature of the fuel cell/electrolyser
cell at the center of the cell (in Celsius).

• T corner: A device measuring the temperature of the fuel cell/electrolyser
cell at the corner of the cell (in Celsius).

• T in: A device measuring the temperature of the anode gas stream where
the O2 in sensor is placed (in Celsius).

• T out: A device measuring the temperature of the anode gas stream
where the O2 out sensor is placed (in Celsius).

• T air flow: A device measuring the temperature of the cathode gas
stream (in Celsius).

5.15.4 water bottle device names

• bottle temp: For historical reasons the water bottle connected to the H2

/ backup gas stream has been named this. Notice that only the pure
hydrogen and diluted hydrogen (h2 and backup) is assumed to pass this
water bubler, NOT the rest of the anode gasses (n2, o2, ar, co, co2 or
ch4).

60 of 433 Implemented by Søren Koch

Chapter 6

Rig configuration

Each rig has it’s own configuration file. The file is divided into sections which
allows individual configuration values to have identical identifiers as long as
they are in different sections.

In order to configure a rig, go the rig device configuration page. This can
be accessed from the main page (shown on figure 2.3) and then pressing the
’setup iv curve parameters’ tab and then pressing the ’rig configuration’ tab.
This will bring yo to a page resembling figure 6.1 or 6.2.

Figure 6.1: Example of what a device configuration page may look like. If no device
is selected, only the top line is shown (device type and name as well as the new device
button). In this example, a mass flow controller device is selected.

Each device will have it’s own configuration page like the ones shown in figure
6.1 or 6.2.

Only fields which is active (that is used) in the current device configuration

61

DTU energy RFCcontrol 6.3.2

Figure 6.2: An other example of the device configuration page. In this example, a mass
temperature log device is selected.

is shown on the page, thus changing one value may add or remove displayed
fields if the change activates or disables other fields.

The different data fields will either have a fixed set of possible values (all of
which will be selectable from a drop down menu), or will be a floating point,
integer or free text field (indicated by having no drop down box).

At the bottom of each device configuration page, a check box is displayed
which can be checked to include the device explicitly in the data logging (that
is, the device will get an explicit column in the raw data file with the name of
the device and the value (determined by the read function (refer chapter 11).
It is good practice only to add a device to the explicit data logging once it
is fully configured to avoid communication errors or other inconsistencies to
interfere with the automatic data logging. At the bottom is also two buttons,
one for testing the device (useful for debugging as well as configuration) and
an other for device monitoring. Pressing the monitor button will bring up a
small page displaying continuous measurements using the selected device.

6.1 Main section

The top section is the ’main’ section of which an example is shown here:

SECTION main

gas_names = h2,o2,air,o2_cathode,n2_cathode,ch4,co2,ch4,co,ar,n2,backup

temp_names = T_center,T_in,T_out,T_corner,T_air_flow

simple_channel_names = cell_voltage,current,O2_in,O2_out,inplane_V_hydrogen

62 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

relay_names = relay1,relay2

water_names = bottle_temp

gas_group_names = H2,N2

automatic_flowcontrolers = 1,2,3,4

cell_area = 16

vogt_gasses = h2,co,ch4

additional_vogt_gasses_cutoff = co2

additional_gas_trip_program =

warning_message = Warning to be displayed on the main control page

warning_mails = foo@foo.bar,foo2@foo.bar

number_of_plot_cols = 4

main_page =

legacy_mode = no

set_zero_output_start_test = yes

equipmentid = 0

authorisation = local

command_to_execute_at_test_start =

remote_log_url =

fixed_impedance_url =

#fixed_impedance_url = https://foo.bar.baz/cgi-bin/elchemea/main.cgi

ENDSECTION

This section defined the number and names of gasses, flow controllers, water
bublers, voltage channels etc. Each of the gasses, voltage channels etc. will
have it’s own configuration section defining the specific set-up of that node
as specified in chapter 12.

Only thew keys which should be manually manipulated (either through man-
ual edit or through the ’miscellaneous setup’ page in the user interface) is
discussed here.

The cell area key specifies the cell area for the particular fuel cell / device
under test and is only used for reporting purposes (to calculate area spe-
cific resistances for instance). The vogt gasses key specifies which gasses is
monitored for gas trips (refer chapter 7.1). At least one of the gasses in the
list must be above the cut-off value specified in that gas’ configuration sec-
tion (refer section 12.7) unless a gas trip is initiated (refer chapter 7.1). The
’aditional vogt gasses cutoff’ key which is optional specifies which gasses in
excess of those specified for monitoring should be set to 0 in the case of a gas
trip.

It should be noted, that there may be spelling errors in the configuration
key or section names and that one should be VERY careful about correcting
them, as they are hard coded into the application (OK so sue me, English
is not my native language and spelling is not important for variable names
inside an application).

Any line starting with a hash (#) is considered a comment and is ignored by
the application. Additionally, the order of the sections and individual keys
within the sections is arbitrary and does not influence the application as long

63 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

as no duplicate key names exists in the same section!

The warning mails key specifies which email addresses are to receive mail
notifications in case of other a voltage trip or a gas trip (refer chapters 7.1
and 7.2). Note that this key can be absent, in which case the corresponding
addresses found in the global configuration are used instead (in effect, this
key overrides the global value if it exists, refer chapter 4).

The number of plot cols key specifies the number of columns in the daily plots
(default is 3 if no value is specified).

The warning message key may be missing but if it exists, the value will be
displayed on the main control page for the rig in question.

The main page key specifies if a custom designed rig main page is to be used
instead of the default (refer section 2.1). The default is for this key to be
empty or not exist. If it exist and contains the name of a file located in
/home/http/cgi-bin/celltest/, this file will be used instead of rig main.cgi.

The legacy mode key is used to enable all configuration tags for some devices
which in previous versions of RFCcontrol included implicit creation simple
devices. This mode of configuration is deprecated and is strongly discouraged
as it is much harder to debug and configure than the normal configuration
order as described in chapter 5 and specifically in section 5.14. However for
backwards compatibility setting this key to ’yes’ will enable the full configu-
ration options.

The set zero output start test key determines if gas flows as well as DC out-
put for all controllable devices is to be set to zero upon starting a new test.
If the key is not present, the default value of ’yes’ is used. In most cases it is
desired to set all gas flows and DC output to zero upon starting a new test
so as to have a known start state, however in some cases (such as controlling
pressures as shown in section 14.3) it may be better to leave settings as they
are.

The equipmentid key is used only if a remote database is used for storing user
log entries (refer section 4) and should be set to th ID number for this rig in
that database.

The authorisation key is only used in case the equipmentid key is set. In
this case the RFCcontrol system tries to completely offload all authorisation
and certification checks to the remote password server. Please note that this
feature is not supported by the password server supplied with RFCcontrol.

The key ’command to execute at test start’ is used if a program needs to be
run wheneever a new test is started. This program must be executable by
apache for it to work, and the path and filename may only conatin letters,
digits and underscores in addition to (, . - + - /). The restriction in file name
is to awoid code injection. If this key is set, the program is run whenever a
new test is started, but only at that time. When the program is executed it
is called with a single argument, the rig number (15 in the case of rig15).

64 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

The key remote log url is used in conjunction with the RFC::Main::remote log()
function and if it is defined any argument (a text string) passed to the re-
mote log function will be appended to the value of this string and a web
request with the resulting text string (which should resove to a url) will be
initiated. This can be used for appending text messages to any remote log-
book system as long as it allows web access. See the documentation for the
RFC::Rig module for more info.

The fixed impedance url key can be used in the case an Elchemea system
is pemanently affixed to the test station in question. In this case the IP
address or hostname of the Elchemea system in question can be added to
this key making it possible to directly be redirected to the correct system
as well as handling single signon (in case the Elchemea sysem uses the same
authentification system). Note that this functionality can only be used with
Elchemea version 6.1.1 or later!

6.2 IV curve control

In order to correctly control how an I-V curve is run, the system needs to know
which channels to use for voltage and current measurements respectively.

SECTION IV_control

current_label = current

voltage_label = cell_voltage

pressure_label =

temp_label = T_center

voltagelimit_iv = 600

ivpause = 5

currentstep1 = 0.25

currentstep2 = 1

currentstep3 = 0.1

epsilon = 0.01

currentlimit = 40

diff_current_limit = 0.5

OCV_measure_number = 5

electrolysis_limit_voltage = 1400

allow_caching = No

iv_control_names =

ENDSECTION

Most of the keys can be manipulated from the ’miscellaneous setup’ interface
or the ’setup iV curves’ interface (refer figure 2.6 and 6.3).

The current label key specifies which channel label is to be used for mea-
suring the current through the device (usually one of the voltage channels
configured to measure the voltage across a shunt resistor and thus report the
current). Similarly the voltage label key specifies which device label is used

65 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Figure 6.3: The setup iv curve page.

for voltage measurements. In both cases, note that it is only the label name
(usually one of the simple channels, refer section 12.1) that is to be speci-
fied, NOT the internal channel numbers or similar. The ’temp label’ specifies
which device is used for the cell temperature which is printed in the i-V table
and is not used in any calculations so this label is only for information. The
’pressure label’ specifies which device data is used for the gas pressure used
in any calculations so this label is only for reporting purposes. If experiments
are only ever performed at atmospheric pressure, this label can be left blank.
The voltagelimit iv is the minimum cell voltage for an i-V curve (normally
run that is). The ivpause is how many seconds to wait between each current
step. The currentstep1 to 3 is the size of the current steps (for explanation as
to when each step size is used refer figure 6.3). The currentlimit is the maxi-
mum current allowed for the i-V curve and the diff current limit key specifies
how large the deviation between the set current and the measured current is
allowed to be before the i-V curve is aborted (useful for detecting under volt-
age trips). The ocv measure number is the number of OCV measurements to
be made before and after the actual i-V curve. The electrolysis limit voltage
is similar to the voltagelimit iv key except in the case of a fuel cell mode i-V
curve the result of a cell voltage above this limit results in a emergency shut-
down of the i-V curve (the reverse is the case in a i-V curve run in electrolysis
mode, there a cell voltage below the voltagelimit iv will force an emergency
shutdown). If the I-V curve is run in electrolyser mode, this value works as a
normal I-V curve voltage limit. It should be noted that all the voltage limits
is in mVolt and not in Volt! The ’epsilon’ key is discussed in section 2.5.
The ’allow caching’ key specifies if caching is allowed during i-V curves (refer
section 6.2.1). If no key or value is found the default behavior is ’No’.

66 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

The ’iv control names’ key specifies which PSU’s are to be used for controlling
the current through the device under test during I-V curves. If only one PSU
exists (as it will do in most cases), this key can be omitted. Usually only one
PSU should be listed in this key, but in some cases multiple PSU names can
be configured (separated by comma). The most common case for multiple
PSU names to be configured in this key is if several devices are tested in
parallel within the same rig (each with it’s own PSU).

6.2.1 Caching of values during i-V curves

From version 4.8.1 and onwards, it is possible to allow caching during i-V
curves. This enables some speedup as cached values can be used instead of
measured ones. For instance the temperature of a screw terminal block can
likely be assumed to change only little during an i-V curve making it feasible
to measure it only at start and then reuse that value for the rest of the i-V
curve.

The way caching works is that During normal (non-caching) operation, a file is
kept up to date with the latest measured values for the devices which honors
caching (not all RFC devices do, for instance all filter devices as well as PID
regulator devices can never use caching). Once a caching situation occurs
(during i-V curve acquisition) the values for the devices configured to use
caching is loaded from that file instead of being physically measured.

Caching is dangerous though. First of all, if caching is allowed for a physical
value which actually do change during the i-V curve, none of the changes
will be logged or even observed (meaning potential loss of relevant data)!
Secondly, If the last (non-caching) measurement resulted in an error (for
instance a loose connection or communication error), an incorrect value will
be stored and all subsequent caching reads will use this wrong value. This is
normally not a problem, as in normal operation only one data line containing
the erroneous value will occur (and this can then later be discarded), however
if caching is used all lines for that i-V curve will contain the erroneous value.

For this reason the default behavior is for caching to be disallowed, in other
words it has to be explicitly enabled. Both under i-V setup and in the indi-
vidual device configurations where the user has to decide which devices can
safely be cached during i-V curve acquisition.

6.3 Datalog section

The datalog section controls if additional commands must be run at each nor-
mal data acquisition (that is for each execution of /usr/local/bin/celltest/logfile.pl
).

The ’additional log program’ key specifies which program (if any) is to be run
and the ’log program arguments’ specify which (if any) arguments must be

67 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

passed to the program. The system expects the output from any programs
thus called to conform with the normal format of the logfile program. Thus
for each item to be logged, the result must be a string containing 4 items
separated by spaces, the first item being the name of the item, the second
the time the logging was performed (formatted as yyyy:mm:dd:hh:mi:ss), the
third the time as an integer (utime) and lastly the value.

An example of a single item is shown below:

bottle_temp_1 2015:07:15:18:02:46 1436976166 28.556

The datalog section may be completely absent in which case it is ignored and
the configuration of this section can be accessed from the miscellaneous setup
interface (refer figure 2.6).

It should be noted that only programs located in the directory
/usr/local/bin/celltest/logprograms/ can be accessed in this way and they
must be executable by the rig user(s)!

6.4 Control logic section

The ’control logic’ section contains setup information for the vogt programs
(refer section 7.1 and 7.2). The ’voltage limit vogt’ key specifies the mini-
mum cell voltage (in mV) below which a voltage trip occurs. Similarly the
’electrolysis limit vogt’ key determines the maximum voltage (in electrolysis
mode). This section also contains the setup information for any additional
gas and/or voltage trip programs as well as the channel name for temperature
adjustment.

All these keys are defined and modified through the miscellaneous setup in-
terface (refer figure 2.6).

6.5 Thermocouple calibration

The RFCcontrol - DTU Energy RFCcontrol control software system also al-
lows for the use of custom calibration tables for thermocouple operation for
data acquisition purposes where accurate temperature measurements are nec-
essary.

Figure 6.3 show the tab used to access the page shown in figure 6.4 where
it is possible for rig administrators to add calibration data.. Only system rig
administrators can access this page, but once a data file has been loaded, it
will be available to all rigs on the system for temperature logging purposes
(refer figure 6.2).

In order to load a calibration file for a specific thermocouple, a list of cali-
bration values must be prepared with one data point on each line containing

68 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

the voltage (in mV) followed by the corresponding temperature separated by
space (an example can be seen for the selected file in figure 6.4). This list
must then be added in the text area on the right and a proper file name must
be added in the text field above. Once both file name and data has been
entered, a ’load’ button will appear and the data can be loaded. To view the
uploaded data, select the file in the drop down menu on the left and a graph
should show up displaying the loaded data as shown in figure 6.4.

Figure 6.4: Thermocouple calibration input page. The page shows what it looks like once
a calibration file has been input and selected. The graph in the center shows a plot of
the data uploaded and can be used for sanity checks of the data (the data should show
a continuous line with no sharp bends and/or singularities).

6.6 User interface

This section defines which data to present on the main rig screen (that is
which data channels to measure and show as ’on-line data’. The four keys are
shown below, and each key contains a comma separated list of the names to
display. The temp manes will be devices instances of one of the ’Tempera-
ture log’ classes, the gas names must be devices instances of the ’Gas’ class
and the voltage and current names must be devices instances of one of the
’Simplechannel’ classes (for class definitions, refer chapter 12).

SECTION user interface

temp = T_center,T_corner

gas = h2,o2,air,co2,co,ch4

voltage = cell_voltage,O2_in,O2_out

current = current

69 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

alert =

pO2_voltagerange = 300,1400

ENDSECTION

The current key also specifies if the rig in question is a normal cell test rig or
a single electrode test rig. If an identifier is mentioned in the ’current’ key,
the rig in question is a cell test rig, whereas if the current key is empty the
rig is an single electrode rig. The distinction is only important in the start
of a new test and in case of controlling DC current through the device under
test, which is only possible in the cell test mode. The ’pO2 voltagerange’ key
is only used for the history plots and has no influence on tests being run. It
is only used to specify the voltage range displayed on the cell voltage and
pO2 plots of the reports and overview figures. The key can be missing in
the configuration file and in this case the default values are used. The default
value used in cell test mode is 300 – 1400 mV and -100 – 1400 mV in electrode
test mode.

All the keys can be manipulated from the ’miscelaneous setup’ interface (refer
figure 2.6).

70 of 433 Implemented by Søren Koch

Chapter 7

Alarms

It is possible to setup email notifications if certain process parameters passes
defined thresholds.

Each rig can be configreud with a number of alarm devices each with it’s own
alarm level. The configuration of these alarm devices is done in the same
way as normal data logging or control devices. The only difference is that
any enabled alarm device is not logged durring nromal data logging, but is
checked each minute if the trigger threshold has been passed. It should be
noted, that the status of the alarm devices is only checked once a minute, thus
it is possible for the system to be in a state which should trigger an alarm
(and potentially correcting commands) for up to one minute before the alarm
actually occours.

If an alarm occours, an email notification is sent by the rig to the recipients
defined in the warning mails key (refer section 6.1).

Notice however that it is only possible to recieve email notifications if the
server on which RFCcontrol is installed is allowed to send mail (some MTA’s
does not allow emails to be forwarded from unknown users, so check your
local system administrators as to how this is configured for your organisa-
tion). Additionally, the alarm device system can potentially be misused to
email-spam unsuspecting users, so take care in how the system is configured
(normally a system running RFCcontrol should never be directly accessible
from the internet).

7.1 Gas trip

The definition of a gas trip is when the security box determines an unsafe
condition and shuts down the H2, CO, O2 etc. and switches the anode gas
stream to 9%H2 in N2 (backup gas).

From version 6.0 it is only possible to use alert devices in combination with
logic devices to achieve better control of a gas trip situation.

71

DTU energy RFCcontrol 6.3.2

Figure 7.1 shows a diagram of how this can be set up. The basic principle is
that an Or-gate is connected to the gasses which must be monitored and if one
of the gasses has a true value (that is the gas flow is above the cutoff report
value as specified in the configuration for that gas), then the alert device will
recieve a true value (1).

Figure 7.1: Gas trip survaliance control system using a generic alert device. The alert
device must be configured with a threshold value of 0.4 and a reset value of 0.6.

If more complex situations are to be monitored, it is possible by inserting
other logic and/or gas devices in the control system. Once the alert device
recieves a false value (0) it will then execute the configured commands deemed
nescesarry to correct the gas trip or prevent damange to the device under test
(for instance by switching off any DC power supplies).

7.2 Voltage trip

The definition of a voltage trip is that either an external level relay has de-
termined an under voltage / over voltage situation and shut down the power
supply, or that the application has determined that an under voltage / over
voltage situation occurs (outside an I-V curve).

In order to protect the device under test, one or more alert devices needs to
be configured to correctly handle this situation in such a way that the over or
under-voltage situation is corrected. This is most often achieved by setting
the output current of any DC power supply connected to the device to the
ocv condition,

72 of 433 Implemented by Søren Koch

Chapter 8

Server structure

The programs mentioned in italics below all reside in the /usr/local/bin/celltest
directory but some of them have symbolic links to /usr/local/bin. Most of
the programs are written in Perl, but the GPIB-server is written in C.

8.1 Authentication cache server

From version 6.2.0 an autheitication cache server (/usr/local/bin/celltest/auth cache.pl)
is included as this version also relies more heavily on user authentication and
if its relies on network access to external systems, this may rsult in delays.

The authentication cache server binds to port 4042 on localhost (in order to
not be avaliable from the outside).

Thus an authentication cache server cna be started which will locally cache
results of user authentication for a short time in order to be able to reuse the
results withhout having to contact n external server.

The commands this server understands are the follwing:

• ping: Simply returns a text string indicating that the server process is
running.

• login ok: Checks the supplied login credentials and returns the userid
if the credentials are valid. Arguments: username, session hash. If the
value is too old, it will recheck remotely and return the result of this
new check 8as well as update the cached value)

• is admin: Checks the supplied login credentials are valid and returns true
if the user is an administrator. Arguments: username, session hash. If
the value is too old, it will recheck remotely and return the result of this
new check 8as well as update the cached value)

• get auth: Returns the cached authenticsation value for the specified user
and key. Arguments: username, key. Will return undefined if the value

73

DTU energy RFCcontrol 6.3.2

is older than the timeout.

• set auth: Sets the authenticsation value for the specified user and key.
Arguments: username, key, value.

•

•

8.2 CGI-server

The CGI server (CGI-server) is responsible for parsing all user commands to
the cell test system proper. Each rig runs it’s own CGI server as user ’rig#’
where the # is the rig number (e.g. 1 or 13 etc..). The CGI server accepts
the following commands only (in order to avoid direct execution of possibly
damaging commands like ’rm -rf’ or similar, refer Leslie Stein’s excellent book
CGI.pm for further reading on the subject of web security).

• IV’: This command starts an I-V curve using the program iV curve.pl.

• ’stop iv’: This command removes the semaphore file telling the IV curve.pl
program to stop the current iV curve and return to OCV.

• ’measure’: Performs a complete measurement using logfile.pl.

• ’custom’: Starts the currently selected program using custom prog.pl
(refer section 2.1). Arguments are the program name to execute (only
one program can be running at a time for a given rig!).

• ’stop custom’: Stops the currently running program by sending an SIG-
INT to the process in question. The custom prog.pl program then shuts
down cleanly and stops any running I-V curve.

• ’cmdlog’: Dumps the rest of the input as a comment in the command
log.

• ’logbook’: Dumps the rest of the input as a comment in the command
log as well as in the rig loogbook.

• ’impedance ok’: This command is used for for notifying the rig that
delayed
impedance has finished (use in conjunction with multiplexed impedance
analyzer where the individual impedance requests are put in queue).

• ’debug’: Turns debug on and off

• ’touch file’: Touches a file, arguments: file name to touch. Note that
only files in the user directory for the rig can be touched!

74 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

• ’crontab read’: Gets the content of the rigs crontab.

• ’crontab file’: Sets the rigs crontab to the content of the specified file,
arguments: file name

• ’quit’: Shuts down the CGI-server, do not use unless necessary as it
could ruin other peoples work!

• ’timeslot begin’: Marks that a requested time slot is starting. Removes
the
semaphore used for waiting for time slot allocation and sets the semaphore
indicating a running time slot.

• ’timeslot end’: Removes the semaphore used to indicate a running times-
lot. Used by the shared resource to indicate that a reserved time slot
has expired and thus ensures that no new commands indicated to be run
during a reserved time slot is executed.

• ’set mailfile’: This command sets the mail file which blocks further error
mails form being sent (to avoid mail bombs inn case the error condition
persists). This command is deprecated and will be discontinued in the
future!

• ’unlink mailfile’: This commands removes the file telling the system that
an error mail has already been sent (in the case of a voltage trip, refer
section 6). This command is deprecated and will be discontinued in the
future!

• ’set H2mailfile’: Similar to ’set mailfile’ but for another file. This com-
mand is deprecated and will be discontinued in the future!

• ’unlink H2mailfile’: Similar to unlink mailfile, but for the H2mailfile in-
stead. This command is deprecated and will be discontinued in the
future!

• ’current’: This command sets the DC current through the device. Ar-
guments are ’ocv’ for open circuit condition or the current to be set
(ex. 10.5 for 10.5 A). If more than one DC current device is found in
the current configuration, a second argument is necessary, this being the
name of the device to control. This command is deprecated and will be
discontinued in the future!

• ’voltage’: This command sets the DC voltage to the device. Arguments
are ’ocv’ for open circuit condition or the voltage to be set (ex. 2.5
for 2.5 V). If more than one DC current device is found in the current
configuration, a second argument is necessary, this being the name of the
device to control. This command is deprecated and will be discontinued
in the future!

75 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

• ’set temp’: This command sets the temperature set point for the furnace
controller, arguments are temperature (C) and device name to control. I
only one furnace controller is part of the configuration, the device name
can be omitted. This command is deprecated and will be discontinued
in the future!

• ’set ramp’: This command sets the temperature ramp rate for the fur-
nace controller, arguments are ramp rate (C/hour) and device name to
control. I only one furnace controller is part of the configuration, the
device name can be omitted. This command is deprecated and will be
discontinued in the future!

• ’relay’: Sets the status of a relay device, arguments are name of device
and status to be set (0 for off and 1 for on). This command is deprecated
and will be discontinued in the future!

• ’gas’: Sets the gas flow for a single gas. Arguments are: gas name, flow.
This command is deprecated and will be discontinued in the future!

• ’water’: Sets the status of a water bubler using water.pl. Arguments
are:
bubler name, status. This command is deprecated and will be discon-
tinued in the future!

The CGI-server is usually accessed directly from the control system (via the
web-pages) but in order to facilitate direct access the CGI client.pl program
is available.

Notice, that if timeslot begin, timeslot end, cmdlog, logbook or impedance ok
commands are to be recieved from external systems, the corresponding port
for the CGI server in question must be open and not blocked by the local
firewall! (refer the operating system manuals for firewall setup).

The CGI client.pl program has the following usages (based on the above list):

CGI_client.pl $rignr IV

CGI_client.pl $rignr stop_iv

CGI_client.pl $rignr measure

CGI_client.pl $rignr custom $programname

CGI_client.pl $rignr stop_custom

CGI_client.pl $rignr cmdlog $text_to_be_logged

CGI_client.pl $rignr logbook $text_to_be_logged

CGI_client.pl $rignr impedance_ok $ip:$port $user $mode $session $fileid

CGI_client.pl $rignr debug

CGI_client.pl $rignr quit

CGI_client.pl $rignr timeslot_begin

CGI_client.pl $rignr timeslot_end

CGI_client.pl $rignr crontab_read

CGI_client.pl $rignr crontab_file $filename

CGI_client.pl $rignr touch $filename

76 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

CGI_client.pl $rignr set_mailfile

CGI_client.pl $rignr unlink_mailfile

CGI_client.pl $rignr set_H2mailfile

CGI_client.pl $rignr unlink_H2mailfile

CGI_client.pl $rignr current $current

CGI_client.pl $rignr voltage $voltage

CGI_client.pl $rignr relay $name $status

CGI_client.pl $rignr gas $gasname $gasflow

CGI_client.pl $rignr water $bublername $status

In the list above all words beginning with a ’$’ is a variable (and the exact
value must be determined and substituted).

8.3 Report server

The report-server program is used when accessing test reports as well as
synchronizing access to test rigs on different servers. It accepts the following
commands:

• ’quit’: Shuts down the report-server.

• ’version’: Reports the version of RFCcontrol running on this server.

• ’search’: Search for test reports on a target system, search, value to
match.

• ’is ssl’: Returns 1 in encryption is to be used. Similar to the corre-
spoknding command for the password server (refer section 4.3.4).

• ’public key’: Returns the servers public key. Similar to the correspoknd-
ing command for the password server (refer section 4.3.4).

• ’servers’: Returns a list of valid server names (if the server is specified as
being a list server, that is the server-names key is in the servers section
of the global configuration file is specified (refer section 4).

• ’list servers’: Returns a list of valid list server names (if the server is
specified as being a list server, refer section 4).

• ’rigs’: Returns a list of valid rigs on the system. It first searches for an en-
try in the global configuration file section ’servers’ named ’rigs $hostname
= ...’ and if it exists, returns the rigs mentioned here. If no such line is
found, it returns the rigs listed in the ’rigs’ key in stead (simmilar to the
call to ’active rigs’ listed below). The reason for this difference is that a
specific rig may be decommissioned (thus no longer possible to control),
but the data should still be accessible. Thus by using the ’rigs’ request
one could get a list of all possible rigs that have recorded data at some
point, even ones which may no longer be operational.

77 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

• ’active rigs’: returns a list of active rigs on the system (that is rigs where
commands are possible).

• ’last user’: Returns the username of the last (real) user which executed
a command on the specified rig number. This command does not report
the system users (’warning system’, ’custom prog.pl’ etc.) but only real
user commands.

• ’rig auth’: Terurns a true value if the specified user is authorised for the
rig in question. Arguments: rignumber username.

• ’is report’: Returns a string if the rig and test corresponding to the
specified arguments has had a report generated and if it has been fi-
nalized. The returned string contains the cell name followed by either
’REPORT’ or ’PDF’ if a report has been prepared (depending on for-
mat being postscript or pdf respectively) followed by ’FINISHED’ if the
report has been finalized. Arguments: Rignumber, testnumber. The
reason for returning the cell number as part of this call is that it is the
only part of the report file name which can not be determined by the
rig and test number directly.

If the report server is started with the –ssl option or the ’force encryption’
key is set to ’yes’ in the passwds section of the server configuration file (refer
section 4.3), only the ’is ssl’ and ’public key’ commands can be used without
encryption. If encryption is used, the communication between the clients
and the servers are similar to the one for the password server communication
described in section 4.3.4.

The report server can be accessed through the report-client as follows:

report-client $IP_or_hostname search $value_to_match

report-client $IP_or_hostname quit

report-client $IP_or_hostname is_ssl

report-client $IP_or_hostname public_key

report-client $IP_or_hostname servers

report-client $IP_or_hostname rigs

report-client $IP_or_hostname active_rigs

report-client $IP_or_hostname rig_auth $rignr $user

report-client $IP_or_hostname is_report $rig $test

The report server then returns a list with the tests that matched the given
search term. It only searches the data found in the file /home/celltest/info table.txt
on the target system!

8.4 Serial server

The serial server handles all communication to the serial devices (one server
must be running for each serial device used). The server must be run as root,

78 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

as only root has access to the hardware devices (/dev/ttyS0 etc.). The server
assumes that all modules communicate with baud rate 9600 except in the case
of the power supplies which operates at 4800 baud. The serial server accepts
the following commands only:

• ’quit’: Shuts down the serial server, do not use unless you intend to shut
down the serial devices. Note that this command is only avaliable from
local connections (from same IP as server).

• ’debug’: Toggles the debug information on/off: If any arguments are
passed, the argument specifies if debugging is to be on or off (accepts
enable/disable). Note that this command is only avaliable from local
connections (from same IP as server).

• ’temp’: This command communicates with an Eurotherm® controller
using the bisynch protocol: Arguments: mode, address, tag, [opt. new value].
Where mode is either ’R’ or ’W’ for read or write respectively.

• ’modbus’: This command communicates with an Eurotherm® controller
using the modbus protocol. Arguments: mode, address, tag number,
[opt. new value] where mode is one of the following: ’R’ for raw read,
’RI’ for integer read, ’G’ for floating-point read, ’W’ for integer write,
’P’ for floating-point write and ’H’ and ’HC’ for communicating with a
Honeywell temperature controler (refer the Honeywell.pm module for
further information).

• ’omron’: This command communicates with an Omron® controller us-
ing the modbus protocol. Arguments: mode, address, tag number, [opt.
new value] where mode is one of the following: ’R’ for integer read and
’W’ for integer write.

• ’brooks’: This command is used for communication with a Brooks® S-
type mass flow controller. The command assumes that the controller is
working with a baud rate of 19200 and a parity of ’odd’. Arguments:
tag number, action, [opt value] where action is one of the following:
INIT, READFLOW, SETFLOW, OVERRIDE.

• ’mks’: This command sends the specified command string to a MKS®
mass flow controler and returns the response string. The command as-
sumes that the controler is working with a baud rate of 9600, 8 data
bits, 1 stop bit and no parity. Arguments: address, command string.
The server automatically calculates the checksum bytes, so they should
not be included in the command string.

• ’bronkhorst’: This command is for communication with a Bronkhorst®
mass flow controller. Arguments: command, [opt value] where command
is one of the following: string, readflow, setflow, readset. Note that no
address argument is necessary as the server assumes only one device on
the serial port (Direct RS232 communication)!

79 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

• ’init’: This command initializes a DC power supply (of type Delta Elek-
tronika® daisy chained through RS232). Arguments: 31 RS232 box address,
max voltage. Note that it is necessary to remember the initial argument
’31’ (for historical reasons this argument is maintained although it is not
used)!. Note that this comand is only avaliable from local connections
(from same IP as server). This command is deprecated and should not
be used.

• ’current’: This command sets the DC current for the power supply. Ar-
guments: 31 RS323 box address, current where current is either ’OCV’
for open circuit operation or the current to be set. Note that it is nec-
essary to remember the initial argument ’31’ (for historical reasons this
argument is maintained although it is not used)!. This command is dep-
recated and should not be used.

• ’delta’: This command supersedes the current command described above.
It is used for Delta Elektronida PSU’s. Arguments: mode, address, [op-
tional arguments depending on mode], where mode is one of the list:
(raw, idn, init, current, volt, measure volt, measure current, ocv, on).

• ’elektro’: This command is used for controlling Electronic loads (EL 9160 300 HP
and similar). Arguments: mode, address, [optional arguments], where
mode is one of the following list: (idn, ocv, on, remote, read, write,
read values, raw, hex, raw byte read, raw byte write).

• ’relay’: Sets the status of an ICP-con® relay box (model 7064 or 87064
or compatible). Arguments are: address, relay number, status where
status is 1 for closed and 0 for open.

• ’icptest’: Performs a test of the ICP-module (all models that accepts
the ’$AA2’ command) on the address specified, the return value is the
string returned by the module.

• ’icp raw’: passes the argument directly to the RS232/RS485 bus, used
for setting the configuration if ICP modules. Please read the documen-
tation for the ICP-con® modules for further info.

• ’icpmultiread’ Reads the status of a ICP-con® analogue to digital data
acquisition module returning a string containing all the measured values
separated by newlines.

• ’multiplex’: This command has a umber of sub commands as following.
All commands regards ICP-con® relay modules model 7064 or 87064 or
compatible.

– ’SET SINGLE’: This command sets all the relays except one in the
off position (Note relay numbers starts with 0). Arguments: mod-
ule address, relay number.

80 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

– ’SET MULTI’: This command sets all relays to the specified state.
Arguments: module address, relay-status. The relay status string
is in binary representation (ex. ’10010110’).

– ’READ’: This command returns the status of the relay module in the
form of a binary representation string (ex ’10010110’). Arguments
are module address.

– ’READ RAW’: Returns the raw status string from a relay module.
Arguments: module address.

• ’volt set’ or ’flow’: These commands sets the output voltage of a ICP-
con® multichannel analogue output module (model 7024 or 87924 or
compatible). Arguments: module address, channel number, output voltage.
Range of output voltage depends on module configuration, refer ICP-
con® module manual.

• ’strgr’: This command read the voltage of the input of a ICP-con®
strain gauge module (model 7016 or compatible). Arguments: mod-
ule address.

• ’strgs’: This command sets the output voltage of a ICP-con® strain
gauge module (model 7016 or compatible). Arguments are: module address,
output voltage (Note only positive voltages can be set!, range depends
on module configuration).

• ’da’: Sets the output voltage of a ICP-con® module. Arguments: mod-
ule address, output voltage, This command may be incomplete, use at
own risk!.

• ’icp7017read’: This command reads the analog values of a ICP-con®-
7017 module and returns the values as a carriage return delimited list.
Arguments: module address

• ’relay crc’: Identical to ’relay’ except it uses CRC checksum for serial
communication.

• ’icptest cŕc’: Identical to ’icptest’ except it uses CRC checksum for serial
communication.

• ’icp raw crc’: Identical to ’icp raw’ except it uses CRC checksum for
serial communication.

• ’icpmultiread crc’ Identical to ’icpmultiread’ except it uses CRC check-
sum for serial communication.

• ’multiplex crc’: Identical to ’multiplex’ except it uses CRC checksum for
serial communication.

• ’volt set crc’ or ’flow crc’: Identical to ’volt set’ and ’flow’ except it uses
CRC checksum for serial communication.

81 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

• ’strgr crc’: Identical to ’strgr’ except it uses CRC checksum for serial
communication.

• ’strgs crc’: Identical to ’strgs’ except it uses CRC checksum for serial
communication.

• ’da crc’: Identical to ’da’ except it uses CRC checksum for serial com-
munication.

• ’icp7017read crc’: Identical to ’icp7017read’ except it uses CRC check-
sum for serial communication.

• Keithley: This command can be used for communication with keithley
2700 ad 2750 scanning multimeters as well as directly to other types of
de3vices (through the w, r and c commands). The command type must
be spe3cified as a single letter as shown below:

– w: Writes the second argument verbatim to the device. Does NOT
wait for a response!

– r: Reads from the device.

– c: Sends the second argument command to the device and reads the
sesponse.

– k: Only valid for Keithley 2700 or 2750 scanning multimeters! Closes
the specified channel, sets the specified measure type and does a
single measurements. Returns the result. The measure type is set
as a string. Common types are: ’volt:dc’, ’volt:ac’, ’res’ and ’fres’
(fres being 4-point resistance measruements, only avaliable for some
types of scanner cards). If no measure type is specified, ’volt:dc’ is
assumed. Arguments: channel nr [opt setup], where channel nr is
in the form ’BCC’ (3 digits), where B is the board nr (1 or 2 for
Keithley 2700 and 1 to 5 for Keithley 2750) and CC is the channel
nr on the board (from 01 to 40 depending on board type).

– b: Same as k, except that a burst measurement of n points is per-
formed instead.

• ’julabo default’: use to communicate over RS232 with Julabo circulator
using the default instrument communication settings. $command = the
command code $arg = argument if needed for the command please see
instrument manual.

• ’julabo raw’: like ’julabo default’ but with specifying the used $bau-
drate, $parity and $handshake valid baudrate: 1200 , 2400, 4800, 9600,
valid parity: ’none’, ’odd’, ’even’ valid handskake: ’rts’,’xoff’,’none’
$command = the command code $arg = argument The server is started
with the two arguments: the serial device to bind to (ex. ttyS0) and
the baud rate. If an optional third argument is used, then the server

82 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

emulates the tty given as this argument. Thus serial-socket-server-
9.0.pl ttyM0 9600 ttyS20 will bind to /dev/ttyM0 but pretend to be
/dev/ttyS20. The serial server is usually accessed only by the command
system through the web pages (refer section 9), but the serial-socket-
client-1.2.pl program can access the serial server directly. The serial
client has the following usages (based on the list above):

See the examples below for the individual commands.

serial-socket-client-1.2.pl $tty quit

serial-socket-client-1.2.pl $tty debug [opt. $mode]

serial-socket-client-1.2.pl $tty relay $address $relay $status

serial-socket-client-1.2.pl $tty icptest $address

serial-socket-client-1.2.pl $tty icp_raw @args

serial-socket-client-1.2.pl $tty icpmultiread $address

serial-socket-client-1.2.pl $tty multiplex SET_SINGLE $address $relay

serial-socket-client-1.2.pl $tty multiplex SET_MULTI $address $statusstring

serial-socket-client-1.2.pl $tty multiplex READ $address

serial-socket-client-1.2.pl $tty multiplex READ_RAW $address

serial-socket-client-1.2.pl $tty flow $address $channel $value

serial-socket-client-1.2.pl $tty volt_set $address $channel $value

serial-socket-client-1.2.pl $tty strgr $address

serial-socket-client-1.2.pl $tty strgs $address $value

serial-socekt-client-1.2.pl $tty icp7017read $address

serial-socket-client-1.2.pl $tty da $address $value

serial-socket-client-1.2.pl $tty relay_crc $address $relay $status

serial-socket-client-1.2.pl $tty icptest_crc $address

serial-socket-client-1.2.pl $tty icp_raw_crc @args

serial-socket-client-1.2.pl $tty icpmultiread_crc $address

serial-socket-client-1.2.pl $tty multiplex_crc SET_SINGLE $address $relay

serial-socket-client-1.2.pl $tty multiplex_crc SET_MULTI $address $statusstring

serial-socket-client-1.2.pl $tty multiplex_crc READ $address

serial-socket-client-1.2.pl $tty multiplex_crc READ_RAW $address

serial-socket-client-1.2.pl $tty flow_crc $address $channel $value

serial-socket-client-1.2.pl $tty volt_set_crc $address $channel $value

serial-socket-client-1.2.pl $tty strgr_crc $address

serial-socket-client-1.2.pl $tty strgs_crc $address $value

serial-socekt-client-1.2.pl $tty icp7017read_crc $address

serial-socket-client-1.2.pl $tty da_crc $address $value

serial-socket-client-1.2.pl $tty temp r $address $tag

serial-socket-client-1.2.pl $tty temp w $address $tag $value

serial-socket-client-1.2.pl $tty modbus r $address $tagnr

serial-socket-client-1.2.pl $tty modbus ri $address $tagnr

serial-socket-client-1.2.pl $tty modbus g $address $tagnr

serial-socket-client-1.2.pl $tty modbus w $address $tagnr $value

serial-socket-client-1.2.pl $tty modbus p $address $tagnr $value

serial-socket-client-1.2.pl $tty modbus h $address $cmd_type $byte_count @args

serial-socket-client-1.2.pl $tty modbus hc $address $cmd_type @args

serial-socket-client-1.2.pl $tty omron r $address $tagnr

83 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

serial-socket-client-1.2.pl $tty omron w $address $tagnr $value

serial-socket-client-1.2.pl $tty brooks $tagnr init

serial-socket-client-1.2.pl $tty brooks $tagnr readflow

serial-socket-client-1.2.pl $tty brooks $tagnr setflow $value

serial-socket-client-1.2.pl $tty brooks $tagnr override $value

serial-socket-client-1.2.pl $tty mks $adr $cmdstr

serial-socket-client-1.2.pl $tty bronkhorst string $cmdstr

serial-socket-client-1.2.pl $tty bronkhorst readflow

serial-socket-client-1.2.pl $tty bronkhorst setflow $value

serial-socket-client-1.2.pl $tty bronkhorst readset

serial-socket-client-1.2.pl $tty init 31 $address $max_volt

serial-socket-client-1.2.pl $tty current 31 $address $value

serial-socket-client-1.2.pl $tty delta idn $address

serial-socket-client-1.2.pl $tty delta raw $address [@args]

serial-socket-client-1.2.pl $tty delta ocv $address

serial-socket-client-1.2.pl $tty delta on $address

serial-socket-client-1.2.pl $tty delta volt $address $voltage

serial-socket-client-1.2.pl $tty delta current $address $current

serial-socket-client-1.2.pl $tty delta measure_volt $address

serial-socket-client-1.2.pl $tty delta measure_current $address

serial-socket-client-1.2.pl $tty delta init $address

serial-socket-client-1.2.pl $tty elektro idn $address

serial-socket-client-1.2.pl $tty elektro remote $address [on/off]

serial-socket-client-1.2.pl $tty elektro ocv $address

serial-socket-client-1.2.pl $tty elektro on $address

serial-socket-client-1.2.pl $tty elektro read_values $address

serial-socket-client-1.2.pl $tty elektro read $address $tag

serial-socket-client-1.2.pl $tty elektro write $address $tag $value

serial-socket-client-1.2.pl $tty elektro raw_byte_read $address $tag

serial-socket-client-1.2.pl $tty elektro raw_byte_write $address $tag [@args]

serial-socket-client-1.2.pl $tty elektro raw $address $mode $length [@args]

serial-socket-client-1.2.pl $tty elektro hex $address [@args]

serial-socket-client-1.2.pl $tty keithley w $command

serial-socket-client-1.2.pl $tty keithley r

serial-socket-client-1.2.pl $tty keithley k $channel_nr [$setup]

serial-socket-client-1.2.pl $tty keithley k $channel_nr $number_of_points [$setup]

serial-socket-client-1.2.pl $tty julabo_raw $baudrate $parity $handshake $command $arg

serial-socket-client-1.2.pl $tty julabo_raw $baudrate $parity $handshake $command

As for the CGI client.pl program in the above list all stings beginning with
a ’$’ is variables and any string beginning with a ’@’ is an array of variables
(described in more details previously).

8.5 GPIB-server

Although the GPIB server is not distributed with NAME it is described
briefly here, as any keithley device (simple channels for instance) assumes a

84 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

functioning GPIB-server to work up against. The GPIB-server handles all
communication with devices attached to the GPIB controller (Keithley mul-
tichannel multi meters mainly). The server version 2.9+ accepts the following
commands:

• ’I’: This command initializes the channel definitions (is automatically
run at server start-up and is only intended if changes have been made
to the channel definitions).

• ’D’: Turns debug information on and off (printed on standard out, so
redirect this somewhere sensible).

• ’R’: This command reads from the specified device address. Arguments:
device address.

• ’W’: This command writes a command string to the specified device.
Arguments: device address, command string (remember quotes!).

• ’T’: This command sets the GPIB communication delay to the specified
number of milliseconds (default is 1 ms).

• ’C’: Combined write and read command.

• ’K’: This command reads a channel on the Keithley 2700 multimeter. Ar-
guments: address:board number channel number (the set-up is found in
the channel definitions). Note that no space between the gpib address,
the colon ’:’, the board number or channel number. Example: measure
channel 4 on board 1 on gpib 16: gpibclient K 16:104

• ’B’: Same as K, but in a burst mode instead with an additional argument
specifying how many consecutive measurements to perform. Note that
this blocks the keithley and gpib bus until the measurements has been
performed and the result returned!

• ’V’: Same as ’K’ except that the channel set-up must be specified as an
additional argument.

• ’Q’: This command forces the server to quit gracefully (no core dump).

The channel definitions are located in the directory /etc/gpib/ The gpibclient
program can be used to directly access the gpib-server: usage:

gpibclient I

gpibclient D

gpibclient C $address $command_str

gpibclient R $address

gpibclient W $address $command_str

gpibclient K $address:$channel

gpibclient T $delay

gpibclient B $address:$channel number_of_measurements_in_a_row

85 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

gpibclient V $address:$channel $set-up

gpibclient Q

Although the true GPIB server is not distributed with NAME, an small
dummy server is, it can be found in the dummy gpib server directory in
the distribution directory, and can be compiled and installed by running the
make and make install commands in that directory. This small dummy server
emulates a true GPIB server, and has some of the functionality described
above. Specifically it honors the D,T,I and K commands (although the K
command only returns a fixed value, -32768). This dummy server is included
in order to test the system and to provide a harness for developers in case
the normal GPIB server is not available.

8.6 Custom program parser

The custom prog.pl program is used to parse the program sequence generated
by the set-up user interface described in section XX. The parser recognises
the following commands (the colon before the descriptive text is NOT part
of the command!):

• exit: This command exits the program thus ignoring all following lines.

• wait = XX: This command lets the program wait for XX minutes before
executing the next item.

• gas:YY = XX: This command sets the gas flow for gas ’YY’ to XX
L/hour.

• gas:ramp:XX YY ZZ QQ: This command ramps the flow for gas XX from
the curent level to the specified setpoint (YY) with a stepsize of ZZ and
with QQ seconds in between. The stepsize can not be less than half the
accuracy of the gas flow controler in question (which is usually 1 % of
full scale) and the time between steps can not be less than 1 second.

• current = XX [YY]: This command sets the DC current to XX. In order
to set open circuit conditions uses the value ’OCV’ instead of a number.
If the YY argument is added it must be the name of the controler to be
used. If an analog controler is to be used, the second argument must be
specified.

• current:ramp:XX YY ZZ QQ: This command ramps the DC current for
PSU or analog output XX from the curent level to the specified setpoint
(YY) with a stepsize of ZZ and with QQ seconds in between. The time
between steps can not be less than 1 second.

• voltage = XX YY: This command sets the DC voltage to XX on device
with name YY. In order to set open circuit conditions uses the value
’OCV’ instead of a number.

86 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

• water = X: This command sets the status of the water bubler, use 1 for
enabled and 0 for disable (e.g. bypass).

• m leak: This command runs three normal measurements (using log-
file.pl) and sets a mark in the program logfile (proglog) that a ’leak
measurement’ has been performed. Note that a leak measurement is
nothing more than a normal measurement except for the mark in the
proglog file.

• iv: This command starts an iV curve by forking and thus imediately
executes the next line in the program. Usually this command is not
used.

• ivwait: This command runs an I-V curve and waits until the I-V curve
is finished before the next line is executed.

• killiv: This command kills any running I-V curve (started by the com-
mand ’iv’ in the case the I-V curve is still running by the time this
command is reached, usually after an appropriate wait command).

• temp = XXX: This command sets the furnace setpoint to XXX °C

• ramp = XX: This command sets the ramp rate of the furnace to XX
°C/hour.

• addjust temp XXX YY: This command tries to adjust the temperature
setpoint so that the measured temperature is close to the target. The
algorithm uses the temperature for the first temperature channel defined
in the main section! XXX is the target temperature and YY is the
maximum temperature offset allowed before the algorithm aborts trying
to adjust. Note that this function waits 3 hours before the adjustment
in order to allow the temperature to stabilise and to avoid oscillations if
more than one adjustment are called. Also note, that this function uses
a feedback loop, thus if it measures/reads garbled values, it may set the
temperature completely erroneous!

• text = xxxxxx... : This command simply appends the string after the
equals sign to the program logfile (proglog) of the current test.

• measure: This command runs two measurements using logfile.pl with a
10 second wait in between.

• c stepY = XX: This command updates the configuration file (specifically
the ’currentstepY’ value in the corrent section (refer section 4.7)) The
current step value is set to XX A. This command is valid for current step
1 through 3.

• c limit = XX: This command updates the configuration file similar as
c step and sets the current limit value to XX A.

87 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

• v limit = XX: This command updates the configuration file similar as
c limit and sets the voltage limit value for i-V curves to XX mV (Used
in i-V curves run in fuel cell mode!).

• e limit = XX: This command updates the configuration file similar as
c limit and sets the electrolysis voltage limit value for i-V curves to XX
mV (Used in I-V curves run in electrolyser more!.

• ivpause = XX: This command updates the configuration file similar as
c step and sets the wait tome between current steps in I-V curves to XX
seconds.

• gas multiplexer XX YY: This command changes the setting of gas multi-
plexer XX to use gas YY. The program waits 10 seconds before executing
the next command.

• relay:X = Y: This command sets the status of a relay output with name
X to status Y. Note that the relay name X must be defined in the rig
configuration file. The status value is either ’Yes’ for on or ’No’ for off.

• PID:YY = XX: This command sets the setpoint for PID device ’YY’ to
XX.

• impedance XXX.XXX.XXX.XXX:YYYY ZZ AAAA BBBBBBB...: This
command runs an impedance on an external Elchemea© system found at
IP address X and port Y run by user A and using configuration for session
Z. Finally the resulting file is compensated (by complex subtraction)
using the file found at location B (*).

• potsweep XXX.XXX.XXX.XXX:YYYY ZZ AAAA: This command runs
an potential sweep on an external Elchemea© system found at IP ad-
dress X and port Y run by user A and using configuration for session Z
(*).

• chrono XXX.XXX.XXX.XXX:YYYY ZZ AAAA: This command runs an
chronoamperometry/potentiometry on an external Elchemea© system
found at IP address X and port Y run by user A and using configuration
for session Z (*).

• current impedance XXX.XXX.XXX.XXX:YYYY ZZ AA: This command
runs an impedance in constant current mode (utilising the external
shunt). Options are similar to impedance command above except that
the compensation is done automatically with out specifying which file)
(*).

• change channel XXX.XXX.XXX.XXX:YYYY A: This command changes
the measure channel on the remote Elchemea© system at IP-address X
and port Y to channel A (valid values are 0, 1, 2 and 3). Note that this
command can only be accessed through the manual edit functionality (*).

88 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

If a relay device is found with the name ’multiplex channel’, the status
of this relay (which should be a manual (e.g. virtual) relay) is set to the
channel value. This is usefull for data procesing purposes as the selected
channel number will be logged by the dala logging subsystem for later
referencing. For instance it can be included in the ’relay names ivtable’
key in the report section (refer section 6) in which case it will bee dis-
played in the impedance tables.

• socket X:YYYY [args]: This comand sends a TCP/IP socket call to the
specified host (X) and port (YYYY). Any additional arguments (seper-
ated by the tab character) is passed on to the remote server. As opposed
to the impedance, chrono and potsweep family of commands, the host
value for this command can either be a TCP/IP address or a normal host-
name. The returned text string form the remote system is appended to
the proglog file directly.

• mail: user.name@domain.address message to user: This command at-
tempts to send the message to the specified email address. A message is
logged that the mail was sent or in the case of error, that no mail could
be sent. Note that only alphanumeric characters are supported in the
address (that is a-z, A-Z, underscores, punctuations and 0-9 is allowed)
both as user name and as domain name and that this command can only
be accessed through the manual edit functionality (note remember the
colon after the mail command!).

• function device type device name function name [arguments]: This com-
mand calls the specified member function on the RFC::BaseDevice de-
rived instance with the specified type and name. If no device instance
is returned by $rig→get device() an error is raised and the same hap-
pens if no function matches the specified function name for the device
instance in question. Notice that this command could potentially leave
the RFCcontrol rig instance in an undefined state as blindly calling mem-
ber functions on a device could result in unwanted (or indeed undefined)
behaviour! Thus this function should only be used if no other option
is found for achieving the desired result. Also note that only already
initialised devices are avaliable as this command does NOT attempt to
initialise new devices not already loaded as part of the rig instance ini-
tialisation.

Remember that some member functions require objects and / or ref-
erences as arguments, and as the function command can only supply
strings and / or numbers as arguments, any call to a member function
expecting a reference or object will fail (Refer capter 11 for descriptions
of the avaliable member functions).

• timeslot start XXX.XXX.XXX.XXX YYYY ZZZ: This command is used
to initiate and wait for a time slot of duration Z minutes on a shared

89 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

resource on IP X and port Y (could be an impedance multiplexer for in-
stance). The command sends a timeslot request to the shared resource
and waits untill the timeslot wait semafore is removed (by a reverse
callback to the CGI-server, refer section 8.2). Once the semafore is
removed the program continues. However any commands executed be-
fore the corresponding ’timeslot end’ command will only execute if the
’timeslot start’ seafore exists! The format of the timeslot request string
which is send to the shared resource is: add item timeslot $time $rig-
name $ip address where $time is the time in seconds!, $rigname is the
rig name (’rig1’ for rig 1) and $ip address is the ip-address of the current
system so that the remote server knows where to send the reverse call-
back once the timeslot is due. Note that this command is only accesible
through the manual edit functionality.

• timeslot end: This command marks the end of a time synchronised se-
quence (a time slot on a shared resource as described above). Note that
this command is only accesible through the manual edit functionality.

• wait for input: devicename [optional maximum wait time]: This comand
delays further program execution untill the specified device (which must
be a relay or a device which masquerade for a relay such as logic de-
vices) returns a true value. If the optional maximum time (minutes) is
specified, once this time is exceeded the program will continue even if
the device has not returned a true value yet. Note that if the specified
device name does not exist as one of the avaliable relay names, an error
is raised and the program continues.

Note that some of the commands in the above list is only accessible through
the manual edit functionality whereas others are directly accessible through
the GUI shown in figure 2.4. All commands marked with an asterisks (*)
are ONLY available in conjunction with an external Elchemea© impedance
control system. An example of a custom program file is shown below:

wait = 1

temp = 650

wait_for_input: impedance_ready 120

gas:o2 = 0.5

wait = 15

current = 0

measure

current_impedance 10.0.17.119:4040 2 rig1 comp:

current = OCV

ivwait

wait = 1

gas:o2 = 2.5

wait = 15

current = 0

measure

90 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

current_impedance 10.0.17.119:4040 2 rig1 comp:

current = OCV

ivwait

wait = 1

gas:o2 = 4

wait = 1

gas:o2 = 6.1

wait = 15

current = 0

measure

current_impedance 10.0.17.119:4040 2 rig1 comp:

current = OCV

ivwait

wait = 1

gas:o2 = 3

wait = 1

gas:o2 = 0.5

text = End of non synchronised program

timeslot_start 10.0.10.120 4041 60

current_impedance 10.0.10.120:4040 2 rig1 comp:

timeslot_end

mail: foo@foo.bar Program is finished

91 of 433 Implemented by Søren Koch

Chapter 9

Web services

RFCcontrol includes a number of ways for other systems to interface with
it as well as a number of rig and device functions through the web interface
implemented by the rig ajax run.cgi and ajax interface.cgi scripts as well as
true webservices accessed through SOAP.

9.1 SOAP interfaces

Prior to version 6.0 of RFCcontrol, most interserver communication was per-
formed by direct TCP/IP RPC calls (to the password server as well as the
report server). This requires the TCP ports 2020 and 4040 to be open through
firewalls, which sometimes is not possible. As of version 6.0 all these calls can
be performed through the web services defined by the wsdl files in the /wsdl
directory (https://host.domain/wsdl/, subsittute your own hostname for yor
RFCcontrol server(s)).

The report.wsdl file defines the webservice frontend for the report server,
and all commands (except quit, is ssl and public key) described in section 8.3
can be accessed through this webservice.

Similarly the session.wsdl file defines the web service which replaces the direct
call to the passsword server (refer sections 4.3.2 and 4.3.3).

The cgi service.wsdl file defines all the functions which will be needed for
remotely controlling a RFCcontrol rig. However it does not contain any func-
tionality for configuring a rig, it only exposes the normal control functions,
such as set current, change temperature and start a new test as well as login
and logout etc.

Although the SOAP interface method is slower than the direct TCP:IP calls
(due to the nescesarry overhead caused by the webserver and XML transfor-
mations), it is to be prefered as it is less prone to errors, notably it will awoid
the need to cach the public keys from the remote servers.

One thing to note however is that if self signed certificates are used, the

92

DTU energy RFCcontrol 6.3.2

following command needs to be executed in the RFCcontrol install directory

make allow selfsign

Although normal TCP::IP is deprecated it can be enabled by setting the
’ignore soap’ configuration value in the ’passwds’ section to ’yes’ in the global
configuration file (refer

9.2 globalconf

), in which case no SOAP calls are attempted.

9.3 Remote interface

The ajax interface.cgi script exposes a number of information which can be
accessed from external systems which needs to interface with RFCcontrol.

Section 8.3 describes the TCP:IP socket interface which can be used for some
of the interaction (mainly between individual RFCcontrol servers who is part
of a cluster and where confidential information could be transmitted).

The web service interface described in this section can only expose public
information, and is primarily designed for interfacing with ElchemeaAnalytic.

Detailed information regarding the usage of the web interface can be obtained
by pointing your browser at host.domain/cgi-bin/celltest/ajax interface.cgi
where the web service script in lack of any parameters will print a page
describing the expected input parameters and different available functions.

The way to limit information to only be available to authorized users is to add
a .htaccess file in the root directory (test directory) of the data which is to
be kept confidential (Refer the Apache documentation as to how to properly
configure Apache to restrict access by using .htaccess files).

If such a file is located in the test directory, all web service calls which could
transmit any information from within such a directory merely return an empty
string.

9.4 Ajax callback interface

In addition to the remote web service interface, RFCcontrol also has a number
of functions which is intended to be called by Ajax callback through the
rig ajax run.cgi script.

The function exposed by the rig ajax run.cgi script can be used by third party
programs to remotely control a RFCcontrol rig instance making interfacing
with other systems possible.

93 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

The following sections describe each of the individual functions exposed by
this interface as well as the parameters which must be specified for the spec-
ified function to run.

A common parameter for all the functions described is this section is the ’rig’
parameter which must contain an integer corresponding to the rig number
that is to be accessed / controlled. An exception to this is the checkuser and
new session commands which do not require this.

A third parameter is the ’action’ parameter which controls which action is to
be taken.

9.5 Functions which can be called without log-in in-

formation

The first list of functions can be called without log-in information.

9.5.1 checkuser

Returns ’OK’ if the user session is valid and an error otherwise The parame-
ters are:

• ’name’ - Username

• ’pass’ - session token

9.5.2 new session

Initiates a new login session. If the supplied username and password combi-
nation is correct it returns ’OK’, the userid and a new valid session token. It
retuns an error message if credentials was not valid. The parameters are:

• ’name’ - Username

• ’pass’ - Password

9.5.3 get imp data

This function returns the impedance data from an impedance file where the
file name matches the specified name. The parameters are:

• ’rig’

• ’action’ - action parameter, must be: ’get imp data’

94 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

• ’testno’ - The test number of the test to access.

• ’file’ - The filename to access.

If a .htaccess file exists in the test directory no information is exposed unless
the ’name’ and ’pass’ parameters are also supplied (and the user in question
has a valid log in session and is authorised to access data for the rig in question,
refer section 9.6).

9.5.4 show log

This function returns the content of the current program log for the specified
rig. Parameters are:

• ’rig’

• ’action’ - action parameter, must be: ’show log’

If a .htaccess file exists in the test directory no information is exposed unless
the ’name’ and ’pass’ parameters are also supplied (and the user in question
has a valid log in session and is authorised to access data for the rig in question,
refer section 9.6).

9.5.5 show info

This function returns the content of the current test log for the specified rig.
Parameters are:

• ’rig’

• ’action’ - action parameter, must be: ’show info’

If a .htaccess file exists in the test directory no information is exposed unless
the ’name’ and ’pass’ parameters are also supplied (and the user in question
has a valid log in session and is authorised to access data for the rig in question,
refer section 9.6).

9.5.6 show error

This function returns the content of the current error log for the specified rig.
Parameters are:

• ’rig’

95 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

• ’action’ - action parameter, must be: ’show error’

If a .htaccess file exists in the test directory no information is exposed unless
the ’name’ and ’pass’ parameters are also supplied (and the user in question
has a valid log in session and is authorised to access data for the rig in question,
refer section 9.6).

9.5.7 is iv

This function returns 1 if an i-V curve is running, 0 otherwise. Parameters
are:

• ’rig’

• ’action’ - action parameter, must be: ’is iv’

9.5.8 get callibration file

This function returns the content of a custom thermocouple calibration file
for the specified rig and file name. Parameters are:

• ’rig’

• ’action’ - action parameter, must be: ’get callibration file’

• ’filename’ - The name of the file containing the calibration data, located
in /home/celltest/convert-tables/userfiles/

9.5.9 plot callibration file

This function returns a link to an image file (a png file) which shows a plot of
the contents of a thermocouple calibration file. The returned link is a relative
link beginning with celltest/png Parameters are:

• ’rig’

• ’action’ - action parameter, must be: ’plot callibration file’

• ’filename’ - The name of the file containing the callibration data, located
in /home/celltest/convert-tables/userfiles/

96 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

9.6 Functions requiring a valid log in session

The following functions require a valid log-in before they can be accessed,
and in addition the the ’rig’ and ’ajax’ parameters must also be called with
the ’name’ parameter (the user-name) as well as the ’pass’ parameter (which
does NOT contain the password but a session token).

In addition to a valid log-in session, the user must also be authorized to change
parameters on the rig in question (refer section 4.4).

9.6.1 list caching

This function returns a list of devices for which caching is enabled (refer
section 6.2.1).

The parameters are:

• ’rig’

• ’name’ - User name

• ’pass’ - Session token

• ’action’ - action parameter, must be: ’list caching’

9.6.2 start iv

This function starts an i-V curve for the specified rig. Notice that only one
i-V curve can be running at the same time for a particular rig.

The parameters are:

• ’rig’

• ’name’ - User name

• ’pass’ - Session token

• ’action’ - action parameter, must be: ’start iv’

9.6.3 stop iv

This function stops an i-V curve for the specified rig.

The parameters are:

• ’rig’

97 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

• ’name’ - User name

• ’pass’ - Session token

• ’action’ - action parameter, must be: ’stop iv’

9.6.4 get programs test

This function returns a list of previously run programs for the specified rig
and test number.

The parameters are:

• ’rig’

• ’name’ - User name

• ’pass’ - Session token

• ’action’ - action parameter, must be: ’get programs test’

• ’session’ - The test number to access. If the current test is to be accessed,
this parameter can be omitted.

9.6.5 set imp

This function attempts to start an impedance scan on an external Elchemea
(or compatible) system. Notice that an impedance scan can only be started
using this function if no user programs are running.

The parameters are:

• ’rig’

• ’name’ - User name

• ’pass’ - Session token

• ’action’ - action parameter, must be: ’set imp’.

• ’server’ - IP address of the Elchemea system to access.

• ’port’ - TCP port to contact (default is port 4040 for a normal Elchemea
system).

• ’impuser’ - User-name on the Elchemea system.

• ’session’ - Elchemea Session number from which to use the configuration.

98 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

• ’comp’ - File name of compensation file. If standard compensation is used
the value must be ’DEFAULT’ and the compensation files ’short.i2b’ and
’shunt.i2b’ located in the web directory ’imp comp’ for the rig in question
is used. First by subtracting the the measured file with ’short.i2b’ file
and the by multiplying the ’shunt.i2b’ file (the data that is, not the files
themselves).

9.6.6 set multiplex

This function sets a particular gas multiplexer to the specified gas.

The parameters are:

• ’rig’

• ’name’ - User name

• ’pass’ - Session token

• ’action’ - action parameter, must be: ’set multiplex’

• ’dev’ - Device name of the multiplexer.

• ’gas’ - Name of the gas to enable.

9.6.7 set relay

This function sets a particular relay to the specified value.

The parameters are:

• ’rig’

• ’name’ - User name

• ’pass’ - Session token

• ’action’ - action parameter, must be: ’set relay’

• ’dev’ - Device name of the relay.

• ’status’ - Device value to set.

99 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

9.6.8 set gas

This function sets a particular gas to the specified flow rate.

The parameters are:

• ’rig’

• ’name’ - User name

• ’pass’ - Session token

• ’action’ - action parameter, must be: ’set gas’

• ’dev’ - Device name of the gas device.

• ’flow’ - Flow rate to set.

9.6.9 set pid

This function sets a particular PID device to the specified set-point.

The parameters are:

• ’rig’

• ’name’ - User name

• ’pass’ - Session token

• ’action’ - action parameter, must be: ’set pid’

• ’dev’ - Device name of the PID.

• ’setpoint’ - New Set-point.

9.6.10 set current

This function sets a particular DC power supply or analog output device to
the specified current output.

The parameters are:

• ’rig’

• ’name’ - User name

• ’pass’ - Session token

• ’action’ - action parameter, must be: ’set current’

• ’dev’ - Device name of the multiplexer.

• ’current’ - New value.

100 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

9.6.11 set voltage

This function sets a particular DC power supply or analog output device to
the specified voltage output.

The parameters are:

• ’rig’

• ’name’ - User name

• ’pass’ - Session token

• ’action’ - action parameter, must be: ’set voltage’

• ’dev’ - Device name of the multiplexer.

• ’voltage’ - New value.

9.6.12 add info

This function add the specified test string to the info file for the current test
of the specified rig.

The parameters are:

• ’rig’

• ’name’ - User name

• ’pass’ - Session token

• ’action’ - action parameter, must be: ’add info’

• ’comments’ - The text string to append.

9.6.13 run device function

This function runs a specified member function on a RFC::BaseDevice derived
class instance. Although this function is merely intended for getting data, it
can be misused. To minimize damage, it can only be called by logged in users.

The parameters are:

• ’rig’

• ’name’ - User name

• ’pass’ - Session token

101 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

• ’action’ - action parameter, must be: ’run device function’

• ’type’ - Device type

• ’dname’ - Device name

• ’function’ - Name of the device instance member function to call (refer
chapters 11 to 12 for full documentation on device member functions).

• ’arguments’ - List of arguments to the specified member function. If the
member function can be called without arguments, this parameter can
be omitted. The actual number of arguments vary depending on which
member function is used (refer chapters 11 to 12 for full documentation
on device member functions).

102 of 433 Implemented by Søren Koch

Chapter 10

System command interface
(command line)

Although RFCcontrol is designed to be used primarily through the web in-
terface, a lot of command line tools are included in order to facilitate greater
freedom in running complex test sequences as well as system debugging in
the case of malfunctioning hardware etc. Below is a list of the most used
command line tools for the cell test control system:

Most of the programs and scripts are located in /usr/local/bin/. However
some are located in /usr/local/bin/celltest/ and thus require full path for
execution.

• CGI client.pl (discussed in section 8.2)

• celltest-passwd-client : Command line interface to the password server,
refer section 4.3 for details.

• gpibclient (discussed in section 8.5)

• serial-socekt-client-1.2.pl (discussed in section 8.4)

• make iv curves.pl (discussed in section 2)

• make report (discussed in section 2)

• set finish $rig $test (discussed in section 2)

• remake latex report (discussed in section 2)

• test rig conf.pl $rig : This program runs the test script for a particular
rig. This script runs through all devices initialized based on the current
configuration file. If the configuration file is somehow been corrupted,
this script can sometimes help find the inconsistency / error (depending
on how mangled the configuration is).

103

DTU energy RFCcontrol 6.3.2

• list uninitialised devices.pl $rig : This program list any devices which is
defined in a rig’s configuration but which with the current configuration
is uninitialised. Note that uninitialized devices is not necessary unused
at all times!

• OCV corr : This program has a lot of command line options and is used
primarily for correcting fuel cell resistances for conversion impedance.
For a complete list of options, run the command: OCV corr –help.

• iV curve.pl $rig [opt –debug] : Runs an i-V curve for the rig in ques-
tion. If the –debug option is specified, information is printed to std-
out during operation. Usually this program is called from the GUI
or as part of a programmed sequence. If called from the command
line it tries to show the resulting i-V curve graph in a separate win-
dow (requires X11-forwarding), if no X11 forward is possible a harmless
’Graphics::GnuplotIF : cannot find environment variable DISPLAY’ will
be shown).

• gas.pl $rig $gas $flow : This program sets the gas flow for a particular
rig and gas to the specified value. This program is deprecated and will
likely be excluded from future releases.

• set current $rig $value: Sets the DC-current for a rig. This program is
deprecated and will likely be excluded from future releases.

• set voltage $rig $value: Sets the DC-voltage for a rig. This program is
deprecated and will likely be excluded from future releases.

• potentiostat.pl $rig $voltage [opt $range opt $istep opt $psuname] : Em-
ulates potentiostatic control for a constant current controlled power sup-
ply. The program is intended to be run from the scheduler (crontab).
If no power supply name is specified, the first item in the list of PSU’s
is used (only advisable if only one power supply is attached to the rig!).
This program is deprecated and is no longer supported. Use the func-
tionality described in chapter 14 instead.

• water.pl $rig $name $status: Sets the status for the water bubler for a
particular rig. This program is deprecated and will likely be excluded
from future releases.

• cnv.pl $rig [opt delay] : This program updates the web-pages displaying
the current data for the rig in question. Note that only the figures
for the data for the current day are updated! If a delay is specified, the
program waits the specified number of seconds before creating the graphs
(intended to be used when called from crontab to allow the logfile.pl
program to finish before plotting commences). Should normally only be
called from the crontab interface.

104 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

• relay-socket-server-1.0.pl $virtual tty $remote host $remote port : This
program is used if the hardware set-up requires more serial ports than
can physically be fitted to the control computer. In this case a slave
server is set up with the real serial server and the relay server is started
with the correct parameters and RFCcontrol can use the remote serial
port as if it was on the local computer. Notice that using this makes the
RFCcontrol system vulnerable to network failures which it it otherwise
would not be!

• jdata.pl $rig $test : This program creates the jdata file from the raw
measured data. If passed the optional ’raadata’ argument the raadata
file is not recreated (if it has been edited to remove excessive data lines
which could for instance be at the start before heating).

• format jdata.pl $rig [opt $test] : This program is used to reformat an
existing jdata file if changes in the number of columns and / or order of
alignment has occurred during the test. If no test argument is specified,
the current test is assumed. Notice that for tests with large data files
this program may take a while to run!

• jdata conv.pl $rig $test “$func” $output col $input col 1 .. $input col n :
This program can be used to do columnar calculations on a jdata file.
It can be compared to awk. Unlike awk it does not work on column
numbers, but on column names (jdata file format), thus if the jdata file
changes the order of alignment during a test, jdata conv.pl will handle
this correctly. jdata conv.pl only has limited calculation capability and
no loops etc. To get a more detailed description run jdata conv.pl with-
out arguments. Notice that for tests with large data files this program
may take a while to run!

• get jdata value.pl This program can be used to extract a specific data
value from a jdata line. The program expects the keyname as argument
and the jdata line supplied to stdin:
tail -1 jdata | /usr/local/bin/celltest/get jdata value.pl coulomb

• get all impedance.pl $rig [opt $test] : This program tries to create impedance
and bode plots of all impedance files located in the impedance directory
(/home/http/html/rig1/1test34/impedance) in the case of test 57 on
rig1. If the test argument is omitted the latest test is used as default

• impedance multiplot.pl $rig $test $options $file1 $title1 $fileN $ti-
tleN : This program creates an impedance plot with multiple scans on
the same graph. For a complete list, run impedance multiplot.pl without
any options.

• hio korr $mode correction file [files to be corrected] : This program is
used to do impedance correction (for for instance inductance). The

105 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

modes are one of -A, -S, -M or -D for addition, subtraction, multipli-
cation or division respectively. The program does the full complex op-
eration on all frequencies in all the files. It is useful for correcting large
amounts of impedance files. Note that it can only handle files in the .i2b
format.

• program iv.pl $rig $current : This program can be used to make pro-
grammed i-v curves in the case a long term experiments is to be run
where I-V curves are to be acquired each day and the test is to be run
in constant current otherwise. The current argument is the steady state
current to be applied between the I-V curves. This program is intended
to be run from crontab.

• leak [options] : This program can be used to calculate the leak current
through the cell if the gases is only hydrogen/water and air use the –help
option for a full list of options. Note that this program is superseded
by the OCV corr program which can handle a much wider range of gas
compositions.

• logfile.pl $rig [opt test | conf | ignore | caching | debug] : This program
handles the actual data logging for the entire system. The program is
intended to be run by crontab (without the optional test argument) but
if run with this argument is also prints the result to standard out in
additional to appending the result to the normal data logging file. The
logfile.pl program also contains the possibility to test a configuration file.
To do this, use the ’conf’ argument. The program will then output addi-
tional information regarding the current configuration. Note that with
the ’conf’ argument no data logging is performed! the ’ignore’ argument
changes the behaviour of the file locking system for data logging. If this
option is specified, the logfile program does not exit if the i-V curve se-
mafore is detected. Additionally the program waits for the internal file
lock insread of exiting if no lock could be aquired. Notice that if custom
designed data logging programs are to be used they must implement a
similar behaviour to avoid race conditions or out of processes id errors
(in case too many logging programs are started simultaneously). The
caching argument (introduced in version 4.8.1) specifies that the logfile
program atempts to use cached values for the devices which is set up to
do so (refer section 6.2.1). A last option is calling the logfile program with
the ’debug’ option which enables debugging information. Additional de-
bug information can be aquirired by specifying a higher debug level (fo
instance to use debug level 4 use ’debug=4’ instead of just ’debug’). If
debug level 4 is used if so, all calls to external TCP:IP socket servers
are displayed (that is all calls to the serial servers, gpib-server etc. are
displayed). This is useful for debugging a malfunctioning configuration
or if some data suddenly looks strange, then it is possible to manually
repeat all external calls and directly inspect the results. To do so use
the programs gpibclient and serial-socket-client-1.2.pl in /usr/local/bin

106 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

(the mentioned programs are simple wrappers around the library socket
communication functions).

• mail errors.pl : This program is intended to be run by crontab once a
day. It scans the error file (/home/celltest/error.txt) and emails any
entries for the last day to the recipients defined in the errormails key in
the global section of the global configuration file (refer section 6)

• load test data db.pl $rig $test : This program processes a specific test,
and if the make iv curves.pl program has been run, it uploads key in-
formations regarding the test, any i-V curves as well as any impedance
spectra which has been aquired to an external database. The database
loacation and name is specified in the database section in the global con-
figuration file (refer section 4). This program is only configured to access
a database running on a Risoe Fuel cells and solid state chemistry divi-
sion Labsystem database version 2.1.10 or above with installed celltest
datamining database!

• test cluster.pl : This program can be used to test if all servers in a cluster
is responding.

• get max gas.pl $rig $test : This script gets the maximum gas flows logged
for a specified rig and test. Normally used only for reporting purposes.

• format jdata.pl $rig $test : This script reformats the jdata file for a spec-
ified rig and test making sure that the number and order of allignment of
the diferent columns are constant throughout the file. This may some-
times be nescesarry to do before post test reporting is performed (for
instance if additional channels have been configured durring a test, then
the number of collumns will not be constant throughout the jdata file as
most of the reporting scripts depend on).

• history-plot $rig $test : This program creates all the plots for the whole
test history for a given rig and test.

• PID fast control.pl $rig : This program handels PID control loop exe-
cution for PID devices configured as ’fast’. The meaning of fast is that
the system will run the PID cotnrol once / second. Notice however
that if multiple PID devices are configred as fast, the response time for
each loop may be significantly longer than 1 second as hardware com-
munication overhead may delay execution as only one PID device can
be serviced at a time. Should normally only be called from the crontab
interface.

• PID slow control.pl $rig : This program handles PID control loop exe-
cution for PID devices configured as ’slow’. The meaning of slow in this
case is one iteration each minute. Should normally only be called from
the crontab interface.

107 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

• Check alert.pl $rig : This program handels watchdog survaliance and
checks all defined alert devices for the rig in question. Should normally
only be called from the crontab interface.

• custom prog.pl $rig $filename [opt $username] : This program executes
the sequential programs set up as shown in section 2.3. Usually it is
called from the GUI by the CGI-server, but it is possible to exwecute
it directly from the command line. The filename is the name of the file
containing the commands to be executed, and the optional username
is used to get the email address for sending an email in case program
execution stops unexpcted (if the process gets a SIG-INT or kill -2).

• fastlog type.pl $rig [–option...] [device names] : This program can be
run from the command line to do fast data logging of devices of the same
type. The default device type is simplechannels. The recognised options
for this program are:

– –type=type : sets the device type.

– –intervel=interval : Sets the interval between measuremnts in sec-
onds.

• fastlog type rig.pl $rig [–option...] [device names] : This program can
be run from the command line to do fast data logging of devices of the
same type. The default device type is simplechannels. The recognised
options for this program are:

– –type=type : sets the device type.

– –duration=duration : sets the total time the program should run
(default is 120 minutes).

– –intervel=interval : Sets the interval in seconds between measurem-
nts (default is 1 second).

It works similarly to fastlog type.pl except it does not output to standard
out, but instead outputs to a file in the current test. The filename will
be in the format fastlog.¡timestamp¿.txt. As opposed to fastlog type.pl
this program does NOT run untill explicitly killed, but stops after the
specified duration has expired.

• sync ssl server.pl $host : This program will test the ssl communication
(used by the password client and report client and server) with the spec-
ified host (or IP address). If no public key exists for the host specified,
the program will try to get the public key. If the public key is not found,
or the poblic key of the host is different from the local cached copy (as
would be the case in a man in the middle attack or server reinstallation),
a warning is issued. This program is usefull for debugging password and
report client communication.

108 of 433 Implemented by Søren Koch

Chapter 11

Module specifications

This chapter contains the module specification for the perl modules supplied
as part of the RFCcontrol software suite. It includes function descriptions
including number and type of any function arguments. Some of the modules
are object oriented (with only a publicly accessable constructor) and in other
cases the modues are function orientated.

In the case of function orientated modules, any functions exported by the
module are described, both for what it does, as well as number and types of
arguments.

In the case of the object oriented modules, any inheritance is also described
(usually in the beginning of the module description). For the object instances,
usually only the member functions intended to be public is described (as perl
does not have a true private function decleration). Note that some of the
opject orientated modules define more than one class type, but as all the
class types in this case behave similarly (polymorphic), only the main class
is described as the subsequent clas definitions imlements the main class type
behaviour.

Each module is described in it’s own section.

11.1 Debug

Use: my $id = Debug→new();

This class is intended to be a base class for other classes to derive from so
that easy debug functionality can be included.

Utility class for debugging. It contains the following member functions:

109

DTU energy RFCcontrol 6.3.2

$id→debug() Sets or gets the debug level: level 0 is no de-
bug, level 5 is complete debug including stack
backtrace. This class only uses level 0 (no de-
bug), level 1-4 (debug iformation displayed)
and 5 , debug info displayed with complete
stack backtrace. The levels 1-4 lets other mod-
ules define debug levels inbetween the ones
used here.

$id→writedebug($,[$]) Writes the string to standard error if debu-
glevel is 1 or higher. If overide is specified
(second argument which is optional), debug
level 5 is assumed for this debug.

$id→die($) Appends stack backtrace to argument string
and calls CORE::die

$id→print setup() Prints out the complete current setup includ-
ing all member functions and data fields (uses
Class::Inspector).

11.2 SemaforeFile

Inherits from Debug (refer section 11.1).

This package makes file inout/output on multiprocess systems more easy by
encapsulating file locking. To define a new semaforefile use the new method:

my $id = SemaforeFile→new($filename,$lockfile);

my $id = SemaforeFile→new($filename);

If the lockfile is not specified, the default (/var/lock/SemaforeFile/SemaforeFile.lock
or /tmp/SemaforeFile.lock) is used instead. This form should generally notbe
used however, as in some cases /var/lock/SemaforeFile/SemaforeFile.lock can
not be used and files in /tmp/ will from time to time be deleted...

The package includes the following simple public methods on semafore files:

$id→readonly() Returns true if the file is readonly for the cur-
rent user

$id→exist() Returns false if the file does not exists;
$id→chmod($) Sets the file permissions according to

CORE::chmod
$id→filename() Returns the filename of the semafore file
$id→readlines() Returns the content of the file as an array with

one line in each element Note thet it removes
any trailing newline from the read lines!

$id→writeline(@) Writes the arguments to the file (NB: Over-
writes file and add a newline to each argument
if they do not already have it).

110 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

$id→append(@) Appends the arguments to the file (Also adds
newlines if nescesarry).

It is not nescesarry to check for file esistence in readlines as an empty array
is returned if the file does note exist Note that the readlines function should
only be used on small files as it globs the entire content to memory! For
large files, use the more advanced member functions (see below). Also note
that trailing newlines are removed from the individual lines. If this are not
desired, use the readline() method described below.

The module also includes the following methods for advanced use: Note none
of these functions check if the file exist before trying to open! The unsafe
versions of open and close does not lock or unlock (assumes the user does this
explicitly!)

$id→lock ex() Locks file for exclusive use (Read, Write or
Anppend)

$id→lock sh() Locks file for shared access (Read only)
$id→lock ex nb() Locks file for exclusive use non blocking

(Check return status!)
$id→lock sh nb() Locks file for shared access non blocking

(Check return status!)
$id→unlock() Unlocks file
$id→open read() Opens the file for reading (locks file shared if

not already locked)
$id→open readback() Opens the file for reading backwards (locks file

shared if not already locked)
$id→open write() Opens the file for writing (locks file exclusive

if not already locked exclusive)
$id→open append() Opens the file for appending (locks file exclu-

sive if not already locked exclusive)
$id→close() Closes the file and unlocks it
$id→open read unsafe()
$id→open readback unsafe()
$id→open write unsafe()
$id→open append unsafe()
$id→close unsafe()
$id→mtime() Returns the time of modification of the file as

reported by File::stat→mtime, returns 0 if the
file does not exist.

$id→readline() Reads and returns the next line from the file,
assumes an open file Raises an excpeption
(die) if not.

$id→fh() Returns the underlying file handle for direct
IO (Use with care!)

111 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Additionally the $id→debug($) member function (inherited from Debug.pm)
can turn debug information on and off $id→debug($level) turns debug on and
$id→debug(0) turns debug off ($level is the debug level, 1 - 5) This may be
usefull if deadlock is encountered (so that the individual file locking operations
can be monitored! If $id→debug() is called without arguments it returns the
status (i-e if debug in on 1 is returned else 0.

11.3 ElchemeaConfig

Inherits from Debug (refer section 11.1).

Use:

my $id = ElchemeaConfig→new($filename);

my $id = ElchemeaConfig→new(SemaforeFile instance);

Or

my $id = ElchemeaConfig→new($filename,$lockfilename);

This class is intended to be used for accessing a file where the data is stored
in the way of key = value pairs inside sections delimited by SECTION $name
- ENDSECTION pairs (example below)

SECTION testsection
key1 = value1
key2 = value2
ENDSECTION

In the example above any leading ’#’ should be removed as they indicate
comments and the ElchemeaConfig package honors this convention making it
possible to include comments in the data file (configuration file).

The ElchemeaConfig module incorporates the possibility to use transactions.

All ElchemeaConfig instances honors the following member functions:

$id→debug() Sets or gets the debug level (inherited from
Debug.pm).

$id→die($) Terminates current process with supplied
string (with stacktrace) as errorcode (Inher-
ited from debug.pm).

$id→filename() Returns the filename of the configuration file.
$id→readlines() Returns the content of the file, only allowed

outside a transaction
$id→writeline(@) Write the supplied strings to the file (note ow-

erwrites file!), Only works outside a transac-
tion.

112 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

$id→modtime() Returns the last time of modification for the
file. Note that when a transaction is initiated
the time reported will be the last time before
transaction initiation!

$id→get config value($$) Returns the value associated with the specified
key in the specified section (arguments: $sec-
tion, $key). If called in a list context, returns a
list of values based on the value of the specified
key (value split along commas, ignores spaces
around commas)

$id→get sections() Returns a list of the section names in the file.
$id→get keys($) Returns a list of key names for the specified

section name.
$id→is readonly() Returns true if the file is read only, false if the

file is writable.
$id→section exists($) Returns true if the specified section exists in

the file.
$id→exists($$) Returns true if the specified key exists in the

specified section. Arguments: section, key
$id→change config value($$$[opt @values]) Changes the value associated with

the specified section - key pair to the speci-
fied value. If inside a transaction, the change
is stored in an internal data structure and the
file itself is not changed. subsequent calls to
get config value() with this pair as argument
will return the new (not yet commited) value
instead of the value stored in the file. Re-
quired arguments: $section,$key,$newvalue.
If additional arguments all the additional
values as well as the first are stored as a
comma separated list (thus conforming with
get config value called in a list context)

$id→error() Returns the errorstring (returns an empty
string if no error).

$id→begin() Initiates a transaction.
$id→commit() Commits any changes (through calls to

change config value()) to the file. If the file it-
self has changed between the initiation of the
transaction and the commit, a warning is is-
sued and no changes is written, thus always
check the return status of commit (1 for suc-
ces, 0 otherwise). If an error or warning orc-
cours the error string is set.

$id→rollback() Discards any changes not yet committed.

Note that if a transaction is initiated and no commit is issued, aotumatic

113 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

rollback occours uppon instance destruction and/or program termination.

11.4 SocketClient

This module defines a number of communication functions used for accessing
tcp:IP sockets on local and/or remote systems. The functions defined are
listed below:

socket client raw($$@) Base function used by all subsequent functions,
handles the raw tcp:IP cummunication. Ar-
guemnts: server, port, [additional args to server].
The server can either be a ip-address or a host-
name. Any additional arguments gets serialised
with tab characters and 2 newlines are appended
to the resulting string before transmission.

socket client($$@) Same as above, but catches any communication
errors in an eval guard.

socket client nocr($$@) Same as above, but do not append any newlines
to the transmitted string.

socket client raw nocr($$@) same as socket client raw() but do not append
newlines.

serial client($@) communicates with a local serial server (which
handles hardware communication on the serial
port. Arguments: tty, args to server. The server
is assumed to be the local server (either localhost
or the public IP address of the server) and the
port number is the tty number added to 202020
(Note wraparound!).

GPIB client() Communicates with the GPIB-server. Argu-
ments are passed to the GPIB-server serialised
with tab characters using socket client nocr().
The server is assumed to be the local server (ei-
ther localhost or the public IP address of the
server) and the port number is 12345.

serial client raw($@) Same as serial client() but without eval guard.
GPIB client raw() Same as GPIB client() but without eval guard.
timeout([$]) Sets or gets the timeout value (default is 2 sec-

onds).

11.5 RFC::Header

This module contains site wide file locations and similar global variables used
by the other modules supplied as part of RFCcontrol.

114 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

11.6 RFC::Main

This module exports a number of utility functions used by both the user
interface, but also by some of the other modules supplied by RFCcontrol.

The functions exported by default are

CGI client($@) Client program for communication with the different CGI-
servers for the rigs attatched to the system. The first ar-
gument must be a rig name, and any additional arguments
are passed to the CGI-server.

errorlog() Writes any arguments to the errorlog (usually
/home/celltest/errorlog.txt)

get cv($$) returns a configuration value obtained
from the global configuration file (usually
/home/celltest/conf/celltest global.conf). Arguments:
section and key. If called in a list context it returns the
value as an array split along any commas (ignres spaces
before and after the commas).

get uicfg($$) returns a configuration value obtained from
the user interface configuration file (usually
/home/celltest/conf/UI.cfg). Arguments: section
and key.

print error() Prints any error information incapsulated in appropriate
html tags. If an argument is specified, that is displayed, if
not, the last string appended to the error file is displayed
instead.

get error() Returns the last string appended to the error file.

Additionally, the following functions are also avaliable through explicit func-
tion call.

config() Returns a ElchemeaConfig instance of the global con-
figuration file

get rigs() Returns a list of valid rigs on the server
get servers() Returns a list of known servers (obtained form global

configuration file).
get user name($) Returns the user name from a given userid (note only

usable from local password server).
check rig nr($) Returns 1 if the rig specified is a valid rig 0 otherwise.
spline($$) Returns the splineinterpolated value based on file-

name specifying a file containing the interpoation ta-
ble and the value to interpolate. Arguments: filename
and value.

115 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

spline user files() Returns a list of valie filenames for spline in-
terpolation. The list is defined as the files
found in the splineinterpolation directory (usually
/home/celltest/convert-table/userfiles/)

passwd client(@) Returns the response from the password server when
queried with the specified arguments.

passwd client raw($$@) Same as password client, but the hostname and port
number must be specified as the first 2 arguments
(before the real arguments passed on to the password
server).

mail($$[$]) Sends an email to the specified email address with the
specified message. An optional third argument will
be used as subject. Arguments: address, message,
[subject].

get gasses() Returns a list of gasses for for which the gas factor is
known.

get soap() Returns the soap interface object (if a SOAP interface
is used for the password subsystem)

remote system log($) Appends the supplied string to the remote logbook.
The call is made by calling the url specified in the ’log-
book url’ key in the global section of the main config-
uration file appended with the supplied string (which
will be url-encoded). Thus if the logbook url con-
tains ’https://foo.bar/cgi-bin/log.cgi?id=342&msg=’
and the function is called woth the string ’test msg’
the resulting url called will be: https://foo.bar/cgi-
bin/log.cgi?id=342&msg=Test msg

11.7 RFC::RFCCGI

This module contains a number of utility functions for outputting properly
formatted html code for user interface generation. Thus it mainly extends
the CGI.pm module by Lincoln D. Stein. The module exports these functions
in two groups.

The :html group exports these functions:

print header($[
print end() Prints the help button and ends the html output

with the proper tag.
not auth() Prints the information supplied to the user if the

user is nor authorised. Also prints a link to the
log in page.

xss($) Wrapper for CGI::excapeHTML.

116 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

print hidden() Prints a number of hidden fields used to main-
tain state. This includes user name and a cryp-
tographic hash of the users password.

print hidden rig() Same as print hidden(), but with the additional
information abut the active rig.

logout() Printys a logout button.
action($) Prints a hidden field with an action parameter

with the specified value which can be used for
program control flow.

RFC start html() A wrapper for CGI::start html. Any argu-
ments (in the form of a hash) are passed to
CGI::start html. Automatically appends a ref-
erence to the javascript source file on the server.

js back() Prints the javascript for gping backwards (uses
the browser.back() fjavascrpt call).

get CGI value($) Retrieves the value of the specified CGI param-
eter (supplied by the web browser.

get CGI value clean($) Same as get CGI value, but does pattern match
on the retrieved value and only returns the part
that matches. The pattern match is [\w\s\.\,\-
]*. This has the benefit of untainting the re-
turned parameter value (For taint checks in perl
and web access, refer Lincoln D. Steins book Of-
ficial Guide to Programming with CGI.pm)

rig auth() This function returns 1 if the user is certified for
the rig in question. It only checks if the rig in
question is mentioned in the ’safety task access’
section in the global configuration Where each
rig is supposed to define which taskid(s) are con-
nected with which rig. If more than one taskid
is connected with the rig (specified by a list of
id numbers), the user has to be authentificated
for all taskids in the list for authentification to
occour. The definition is in the form: rig1 =
45,1 where 45 and 1 are the taskids to check
against. Usage is either with named rig argu-
ment or without any argument, if used with-
out argument, the current rig number is used
as default. Usage: rig auth(), rig auth($rig)
or rig auth($rig,$taskidstring). If the last call
method is used the taskidstring must be a string
of integers seperated by comma.

117 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

rig cert() This function returns 1 if the user is certified for
the rig in question. It only checks if the rig in
question is mentioned in the ’safety task access’
section in the global configuration Where each
rig is supposed to define which taskid(s) are con-
nected with which rig. If more than one taskid
is connected with the rig (specified by a list of
id numbers), the user has to be certified for the
first in the list for certification to occour. The
definition is in the form: rig1 = 45,1 where 45
is the taskid to check against. Usage is either
with named rig argument or without any argu-
ment, if used without argument, the current rig
number is used as default. Usage: rig cert() or
rig cert($rig).

rig auth nocgi($$) Similar to rig auth(), but the rig number and
username must be specified.

rig cert nocgi($$) Similar to rig cert(), but the rig number and
username must be specified.

The :cgi group of functions include the following:

get CGI value($) See above.
get CGI value clean($) See above.
rig cert() See above
rig auth() See above
action($) See above
not auth() See above
xss($) See above
login ok() Checks if the user supplied login credentials are

ok. This can be either against a small local
database, or against a full RDBMS.

menu button(@) Prints a menu button. Arguments: name, value,
style. The name will be the CGI parameter
name, the value vill be the text on the button
and the style is a style class name to use for dis-
playing.

top nav bar start() Prints the html tags to start the top navigation
bar (table specifications etc.)

top no button() Prints a no action button (goes nowhere) in the
top navigation bar.

118 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

top nav bar button() prints a top navigation button. Arguments: File,
name, value, style, [optional additional name,
value and force triplets]. The file is the cgi-script
to be called upon button press, the name,value
and style arguments are passed to menu button()
and the additional optional arguments are used
to initialise and print hidden html fields in the
form of name-value pairs and a force argument
(1 for force value, 0 for allow reuse of value).

tab newrow() Prints a new row in the top navigation bar.
top js return() Prints a top navigation return button (uses the

javascript printed by js back(), see above)
end top bar() Prints the end of the top navigation bar.
is logout time() Returns 1 or 0 depending on time since last ac-

tion by the current user (used for authentifica-
tion purposes). Deprecated from version 4.6.2
onwrads!

is admin() Return 1 if the current user is an administrator
(gets explicit access)

user auth() Returns 1 if the user is authorised for the rig
in question. Some of the authentification is for-
warded to rig auth()

get user() Returns the username of current user.
get pass() Returns the cryptographic hash of the current

users password.
logout delay() returns the number of minutes a user can remain

inactive before automatic logout occours.

An additional function which is often used (but which is not exported by
default) is the print js validate() function. This function prints a javascript
function for client side input validation. The function can check any number
of fields (names specified in the arguments list) and can either check if a field
is filled out, OR check that if a field value is ’NEW’ then an other field must
not be empty The syntax for this case is: ’name 1#name 2’ where name 1 is
the name of the field which can be ’NEW’ and name 2 is the name of field
2 which must not be empty. Another form of check is where a number of
fields exists and where not all fields can be empty to use this option use the
’:’ separator in the string: ’$field group name:$field1:$field2:...’.

Usage: print js validate($form name,[$field names...]) It is also possible to
include regular expression tests in the validation. To do this use the format:
’name;”regexp”;[opt $]Error message’. If the $ is the value of the input field
is placed in front of the errormessage!

119 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

11.8 RFC::Device

This module contains two types of functions: one set (prefixed list) returns
a list of possible device types of the specified master type. For instance,
list GAS retrns a list of possible gasses whereas list PSU returns a list of
possible PSU classes. The list functions never require any arguments except
the list device types function which takes a type argument and returns a list
of possible sub types for the device type in question.

The other group of functions are factory functions createing and returning
instances of the specified type. For instance new GAS($name,$rig) returns a
new RFC::Gas object.

The individual factory functions require a varying number of arguments, how-
ever common is the first two (rig and name) which are compulsory. Most of
the factory functions only require the first 2 arguemnts.

The rig argument must be an instance of the RFC::Rig class or an object of
a similar type that at least honors the get cv() member function. (Some de-
vices requires additional memberfunctions to be honored by the rig instance,
however all these memeber functions are included in a RFC::Rig instance).

The name arguments is the name of the object to be created. Note that the
name must correspond to the name in the section in the configuration file
where the device instance data is defined!

Below is a complete list of the functions defined in RFC::Device.pm:

list device types($) returns a list of the possible subtypes of the spec-
ified master type.

new($@) Returns a class instance of the specified type.
Arguments: type, rig, name, [optional subtype],
where rig is an instance of the RFC::Rig class.

new GasGroup($$) Returns a gas group instance, arguments: rig,
name.

list GasGroup() Returns a list of possible gas group subtypes.
new GAS($$) Returns a gas instance, arguments: rig, name.
list GAS() Returns a list of possible gas names (that is, the

names of gasses where the gas factor is defined
in the global configuration file).

new TEMP($$) Returns a temperature controler instance, argu-
ments: rig, name, [opt. subtype]

list TEMP() Returns a list of possible temperature controler
subtypes.

new Multiplexer($$) Returns a gas multiplexer instance, arguments:
rig, name, subtype

list Multiplexer() Returns a list of possible gas multiplexer sub-
types.

new MFC($$) Returns a gas flow controler instance, arguments:
rig, name, [opt subtype]

120 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

list MFC() Returns a list of possible gas flow controler sub-
types.

new RELAY($$) Returns a relay instance, arguments: rig, name,
[opt. subtype]

list RELAY() Returns a list of possible relay subtypes.
new SimpleChannel($$) Returns a simple data aquisition instance, argu-

ments: rig, name, [opt. subtype]
list SimpleChannel() Returns a list of possible simple data aquisition

subtypes.
new Water($$) Returns a gas humidifier instance, arguments:

rig, name, [opt subtype]
list Water() Returns a list of possible gas humidifier device

subtypes.
new Templog($$) Returns a temperature aquisition instance, argu-

ments: rig, name, [opt. subtype]
list Templog() Returns a list of possible temperature aquisition

subtypes.
new PSU($$) Returns a DC power supply device instance, ar-

guments: rig, name, subtype
list PSU() Returns a list of possible DC power supply sub-

types.
new AnalogOut($$) Returns an analog DC output device instance,

arguments: rig, name, subtype
list AnalogOut() Returns a list of possible analog DC output de-

vice subtypes.
new filter($$) Returns an filter device instance, arguments: rig,

name, subtype
list filter() Returns a list of possible filter device subtypes.
new PID($$) Returns an PID device instance, arguments: rig,

name
list PID() Returns a list of possible PID device subtypes.
new logic($$) Returns an logic device instance, arguments: rig,

name, [opt subtype]
list logic() Returns a list of possible logic device subtypes.
new Math($$) Returns an arithmetic device instance, argu-

ments: rig, name, [opt subtype]
list Math() Returns a list of possible arithmetic device sub-

types.
new Alert($$) Returns an Alert device instance, arguments:

rig, name, [opt subtype]
list Alert() Returns a list of possible Alert device subtypes.

121 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

11.9 RFC::Observer

Inherits from Debug (refer section 11.1).

This module implements the observer pattern and defines the member func-
tions nescesarry for this.

To obtain a device instancee call the constructor: my $id = RFC::Observer→new();

$id→attatch observer($[$]) Attatches a new object to the list of observers.
The first argument must be a reference to an
object. The second (optional) argument can
be a reference to a function to be called. In
absence of this second argument, the default
function to call is the observe() member func-
tion of the observer. If a custom function is
specified it must accept at least 1 argument
which is a string describing which action trig-
gered the notify. Please note that only one
reference to each object is allowed (the same
device can not attatch itself to an other device
more than once, any new invocations of at-
tatch observer to the same device will merely
overide the notify function name). This makes
sure that any notify of an object will only trig-
ger once for each action trigger (for instance
a call to setflow on a master device will only
trigger one setflow command on each slave).
Usually a slave can only be slaved to one de-
vice when the GUI is used, however it is pos-
sible to slave to more than one master device
using attatch obsever directly.

$id→list observers() Returns a list of observer devices (object ref-
erences!)

$id→detatch observer($) Removes an object from the list of observers.
The argument must be an object reference.

$id→notify($[@]) This function notifies all observers of the ac-
tion in question (the first argument is a string
describing the action triggering the notify),
any additional arguments can be passed, how-
ever only the first is guarenteed to be passed to
the observe functions. The function returns a
list of response values / messages (if any) from
the called functions.

122 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

$id→observe($[@]) Default function for callback in case of notifi-
cation. This function is intended to be over-
ridden in those cases where devices by design
depends on the observer pattern. Corresponds
the the Update() function according to GoF.

11.10 RFC::Rig

Inherits from RFC::Observer (refer section 11.9).

This class manages the complete setup ofr a RFCcontroll rig To obtain an
instance call the constructor:

$id = RFC::Rig→new($rignr)

Where $rignr is an integer.

RFC::Rig implements a type of singleton pattern in the way that only a single
instance of each rig number can exist at any given time. Thus two successive
calls of new() with the same argument will return the same object. However
two calls to new() with different arguments will return two different individual
objects.

11.10.1 Public member functions

Each Rig instance has the following public member functions:

$id→lock control() Locks the semafore file asociated with the rig
instance control.

$id→unlock control() Unlocks the semafore for rig control.
$id→die($) Wraper for CORE::die, but dumps instance

setup.
$id→config() Returns the configuration object of the cur-

rent test (An ElchemeaConfig instance).
$id→begin() Initiates a transaction.
$id→commit() Commits a transaction.
$id→rollback() Roll back a transaction.
$id→error() Returns the errorstring (if any).
$id→riglock() Returns the SemaforeFile object for the rig

instance
$id→set warning($) Sets the specified string in the mailwarinig file

used to make sure that only one errormail is
sent for each warning condition.

$id→check warning($) Checks if the specified type is already in the
warning mail file.

123 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

$id→unset warning([$]) Removes the specified type from the warn-
ingmail file. If called without argument, all
warnigns are removed.

$id→disable warning mails([$]) Sets or gets the setting which allows for su-
pressing sending warning emails to users

$id→is iv() Returns true if the iv in progress file exists
$id→iv start() Retruns 1 (true) if the iv in progress file does

not exist, and creates it in the process.
$id→iv stop() Removes the iv in progress file (effectively

stopping any programs / iv’s locked to the ex-
istence of this file).

$id→iv in progress() Returns the SemaforeFile object representing
the iv in progress file. Can be used for using
the file for storing and retrieving process pa-
rameters.

$id→warning mail($type,$s,[$subj],[opt emaillist]) Sends a mail with content $s of
type $type to the recipients defined in the
’warning mail’ key in the ’main’ section of the
rig configuration. If no recipients are found
the list defined in the ’errormails’ key in the
’global’ section of the global configuration is
used instead. Note that the mail is only sent
if the $type is nor already defined in the warn-
ingmail file. If a third argument is supplied,
this becomes the subject of the mail, otherwise
a default subject is used. If a fourth argument
is given it is assumed to be a comma sepa-
rated list of email addresses which are to be
used instead of the global list.

$id→kanaldata() Sets and gets the logged data (in conjnction
with data logging. If arguments are passed,
they are assumed to be in the form returned by
the readstring member function of a BaseDe-
vice class instance.

124 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

$id→readstring([$]) Does a complete data logging by callng the
readstring member function on all asociated
BaseDevice instances (This includes derived
classes). This function handles gracefully if a
device instance dies while measuring, in which
case an error is logged and a dummy value
is returned for that device instead of the real
value. This is to ensure that datalogging will
proceed as much as possible. If an argument
is passed to readstring, it must be an instance
of RFC::Cache. Notice, that readstring does
NOT write any data to file, it only returns a
text string containing all the data. (Saving
data to file can be handled by the normal Perl
file handling functions).

$id→readstring furnace() Same as readstring, except it only logs temper-
ature controlers, temperature loging devices
and simplechannels. Used by RFCfurnace.

$id→list sections() Returns a list of configuration sections
(names). If a argument is specified, only sec-
tion names matching the specified string are
returned.

$id→config section exists($) Returns true if the specified section exists in
the current confiuration.

$id→config key exists($$) Returns true if the specified section and key
exists.

$id→get cv($$) Returns the value asociated with the speci-
fied section and key (returns undef if no no
matching section is found or if no matching
key is found in the specified section (Argu-
ments: section,key). If called in a list context,
it returns an array which is the result of split-
ting the configuration value along any commas
(Notice that the split ignores any spaces before
and after commas).

$id→get cv test($$$) Same as above, but for specified test number
(defaults to current test if no is specified). If
called in a list context, it returns an array
which is the result of splitting the configura-
tion value along any commas (Notice that the
split ignores any spaces before and after com-
mas).

125 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

$id→get cv list($$) Same as get cv($$) except it returns a list
of elements, the list is the return value of
get cv($$) split up along any commas. If the
configuration value does not exist or is empty
get cv list($$) returns an empty list. Note
that this function is deprecated from version
5.3.5 and onwards, Users should switch to us-
ing get cv in a list context as this will now
behave as get cv list

$id→change config value($$$) Sets the value asociated with the specified sec-
tion and key to the specified value (arguments:
section,key,newvalue)

$id→modtime() Returns the modification time for the config-
uration file fore the test specified (default is
curent test).

$id→set debug($) Sets the debug level for the Rig instance as
well as all. device instances attatched to the
rig instance. Implemented using the Visitor
pattern.

$id→debug() Sets or gets the debug level for the rig instance
itself (that is without setting it for all the de-
vice instances). If called without arguments
returns the current debug level.

$id→init() Initialises (or reinitialises) the rig instance.
This member function loads all device in-
stances which according to the configuration
file needs to be attatched. On succes any call
to error() returns an empty string, otherwise
the string returned contains the name of the
offending device which could not be initialised
and caused init to fail / die. If the init() func-
tion is not called within an eval guard, it sim-
ply dies with an error indicating what went
wrong. The init() function is automatically
called by the constructor (within an eval gu-
rad).

$id→test() Returns 1 (true) if init returned no errors, 0
otherwise.

$id→webdir([$testnr]) Returns the current web directory path if
called without argument. If an argument is
specified (and it is a valid test number) the
directory path for that directory is returned
instead.

$id→homedir() Returns the home directory path for the rig.
$id→hometest() Returns the home test directory path for the

rig.

126 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

$id→get sessionlog($) Returns the testlog for the specified test (de-
fault is the current test if no test is specified).

$id→get errorlog($) Returns the errorlog for the specified test (de-
fault is the current test if no test is specified).

$id→name() Returns the Rig name (the integer passed to
the RFC::Rig constructor).

$id→type() Returns the string ’Rig’;
$id→session() Returns the current test number.
$id→proglog($[$]) Appends the specified string to the rig proglog

for the currnet test. If an atdditional argu-
ment is specified it is assumed to be the user-
name of the originating user and the string
is appended with this information, if not a
generic user identification is appended in-
cluding terminal of origin (usually ’rigX’ on
/dev/pts/N). In addition an entry is logged in
the tracelog in this case.

$id→disable proglog([$]) Sets or gets the proglog disabled attribute.
if proglog disabled is set to true, all calls to
proglog simply return s withoug appending to
the proglog. Default is 0 (flase, logging en-
abled), and this setting should only be care-
fully used.

$id→errorlog($[$]) Appends the specified string to the rig errorlog
for the currnet test similar to proglog. Note
that all logged errors are automatically ap-
pended to the proglog.

$id→tracelog($) Appends the specified string to the rig tracelog
for the currnet test. The logged string includes
complete stack backtrace

$id→print setup() Prints out the complete current setup includ-
ing all member functions and data fields (uses
Class::Inspector). Overloads the print setup()
function in Debug.pm.

$id→test list() Returns a list of all devices. The returnes list
is a array of hashes (with each hash containing
id and name of a specific device).

$id→print config() Prints out the rig configuration
$id→check run() Forces an error if the current user number does

not match the rig number (as determined by
RFC::Main::get user number)

$id→check group() Forces an error if the current user is not part
of the RFCcontrol base group (the group the
apache web server is also part of).

127 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

$id→inc test($$) Increases the test number and reinitialises the
rig instance. The aruments are the additional
test information and the name of the user ini-
tialising a net test.

$id→remote log($) Appends the supplied string to the re-
mote logbook. The call is made by call-
ing the url specified in the ’logbook url’
key in the main section of the main con-
figuration file appended with the supplied
string (which will be url-encoded). Thus if
the logbook url contains ’https://foo.bar/cgi-
bin/log.cgi?msg=’ and the function is called
with the string ’test msg’ the resulting
url called will be: ’https://foo.bar/cgi-
bin/log.cgi?msg=Test msg’ Please note that
additional (fixed) parameters may be specified
in the url string, they just have to be before
the appended string using normal URL encod-
ing (ampersands etc).

$id→DESTROY() Object destructor.

A special function is the DESTROY() member function. In most object
oriented programming languages, the implementatiion ensures that the de-
structor is called in reverse order on an object and it’s internal objects. Un-
fortunately the Perl GC does not guarantee this, as a result (and the often
deeply nested object tree for a RFC:Rig instance), if the rig’s destructor is
not called explicitly before program termination, the default object cleanup
may result in attempts to de-refer already destroyed objects durring global
cleanup. In most cases this is a harmless error, but for some objects (PID’s
in particular), this will result in internal state not beeing saved (as the file
object for saving the state is already gone)

RFC::Rig also implements the Visitor pattern by suppliying the Accept()
method.

$id→Accept($) Runs the Accept() function for all devices with
the supplied visitor as argument (behaves as a
CompositeElement (GoF)). Also calls the Vis-
itComplex() function on the visitor.

$id→ClearVisitor() Special function which clears the list of already
seen visitors

Rhe RFC::Rig class also implements the Gof Composite pattern (together
with the RFC::BaseDevice derived classes) with RFC::Rig acting as a Gof
Component class as will as the Gof Composite class.

Device management. Any RFC::Rig instance has a number of device instances

128 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

asociated. Some of these devices are read only devices (datalogging) while
others may be control devices.

The types avaliable are:

simplechannel
relay
gas (the plural of this is gasses)
gasgroup
MFC (Mass flow controler)
multiplex (plural multiplexers), used for gas multiplexing.
water (water bublers)
PSU (Power supplies, including electronic loads)
templog (Temperature logging only, not control)
tempcontrol (Temperature controller)
analog (Analog output devices)
filter (virtual device)
logic (virtual device)
math (virtual device)
Alert (virtual device)
Adapter (virtual device)
PID (Virtual control device for PID control systems)

and a list of device types can be obtained by calling:

$id→list types();

Each of these device types has different member functions, but common for
all of them is that they must be derived from BaseDevice.pm (which defines
the base. member functions on which RFC::Rig relies on). To get a device
instance of a particular type, call

$id→get device($type,$name);

The type must match one of the above defined types (otherwise the function
merely return undef). If no device exist of the type and name specified,
undefined is returned instead of a device instance, note that this function
does NOT initialise or load new device instances, it merely returns references
to already initialised / loaded devices (This is usually handles by the class
constructor/init function).

It is also possible to use the init device function:

$id→init device($type,$name);

This function tries to initialise/load the device if it does not already exist.

It is possible to get lists of devices and avaliable devices (that is all possible

129 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

devices of a type, irrespectively of it is loaded or not) as well as supported
device types by using the following functions:

$id→list types() Returns a list of supported device types.
$id→list types nofilter() Returns a list of supported device types but

excludes filter types.
$id→get uiname($) Returns a human readable string describing

the specified device type (intended for use on
the UI).

$id→list devices($) Lists the devices of the specified type.
$id→list devices control($) Lists the enabled devices of the specified type

which is not readonly.
$id→list names($) Lists the devices of the specified type which

will be explicitly initialised during rig initial-
isation. Note that this list does not include
implicit devices or devices initialised as part
of other devices!

$id→list names tag($) Returns the tag name used for controling the
enabled status for the devices of the speci-
fied type (an enabled device gets explicitly ini-
tialised).

$id→avaliable devices($) Lists the possible devices of the specified type.
$id→avaliable devices nofilter($) Lists the possible devices of the specified type

but excludes filter devices which may mas-
querade.

$id→device sectionname($) Returns the cofiguration section base name
(identifier) for the device type in question.
returns ’channel ’ if called with the ’sim-
plechannnel’ argument for instance as the sim-
ple channel ’cell voltage’ is configured in the
’channel cell voltage’ section.

$id→get devce($$) Returns a device instance of the specified type
and name.

$id→delete device($$) Removes a device instance of the specified
type and name. Use with extreme caution
as used wrongly may cause perl’s version of
a NULL-pointer exception lateron!

$id→register device($$) Attatches the specified device instance to the
rig instance. Note duplicate names not al-
lowed. (results in an error). Argu,ents are:
type,name.

$id→set cache($$$[$]) Saves a value for the specified device type and
name. Arguments: Device type, Device name,
Value [opt timestamp]. If no timestamp is sup-
plied the current time is used instead.

130 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

$id→get cache($$) Gets the cached value for the specified device
type and name. Returns undef if caching is
not allowed or if no value was found for the
type and name specified.

$id→get cache time($$) Gets the cache time for the specified device
type and name. Returns undef if caching is
not allowed or if no value was found for the
type and name specified.

$id→store cache() Stores the cached values in a file. Is called
automatically by the RFC::Rig destructor.

$id→load cache() Loads the stored cache values.
$id→clear cache([$$]) Clears the persistent cache. If optional pa-

rameters are passed, only the cache for that
composite key (type and name) is cleared.

$id→allow cache([$]) Sets or gets if persistent caching is to be al-
lowed. Default is to not allow caching. If
caching is disallowed All calls to get cache()
will return undef; Notice that only if the ’al-
low caching’ key in the ’IV control’ is set to
’Yes’ is caching allowed to be turned on (That
is, bu setting ’allow caching’ to no disables all
persistent caching durring iV curves irrespec-
tive of device configuration).

$id→list caching() Returns a list of devices for which caching is
enabled. Notice that filter devicec can never
be caching.

For all of the above functions the specified type must match one of the types
returned by $id→list types() or the functions returns undef.

A number of control functions are also defined. They each operate on one of
the device instances (depending on type).

$id→set temp($) Sets the specified temperature setpoint for the
specified device name (if no device name is
specified and only one. temperatue control de-
vice is initialised, that device is used).

$id→set ramp($) Same as above, but for temperature ramprate
(C/hour).

$id→current($) Sets the specified DC curent for the specified
PSU (If no PSU name is specified and only
one PSU devce is initialised, that one is used).

$id→voltage($) Same as above, but for the DC voltage.

131 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

11.10.2 Private member functions

Each RFC::Rig instance also has the following private member functions.

Perl does not enforce public / private declerations however, so the functions
are avaliable. The private member functions is not intended for normal use,
only for advanced use by system maintainers!

$id→load session nr() Loads the session number from the session
number file.

$id→create dirs() Checks the current session and creates the di-
rectories asociated with the test if nescesarry.

$id→last read() Dummy function returning current time

Each device type has four handling functins described for the simplechannel
class below. The four types of handling functions for device type TYPE are:

$id→TYPEs();
$id→TYPE();
$id→init TYPE();
$id→avaliable TYPEs();
$id→register TYPE($);

$id→simplechannels() Returns a list of the current simplechannels.
$id→simplechannel($) Returns the Simplechannel class instance with

the specified name (if it exists, undef other-
wise).

$id→init simplechannel($) Attempts to initialise a new simplechannel de-
vice with the specified name, returns the de-
vice instance created. Forces an error if the
nescesarry configuration section is not found
in the configuration file.

$id→avaliable simplechannels() Returns a list of possible simplechannels (in-
cluding disabled simplechannels).

$id→register simplechannel($) Attatches the specified Simplechanel device
instance to the rig instance. Note duplicate
names not allowed. (results in an error).

Eeach type also has a constructor wraper function asociated with it which is
a member function of the rig instance:

$id→new AnalogOut($)
$id→new RELAY($)
$id→new SimpleChannel($)
$id→new PSU($)
$id→new Multiplexer($)
$id→new MFC($)

132 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

$id→new TEMP($)
$id→new GAS($)
$id→new Water($)
$id→new Templog($)
$id→new GasGroup($)
$id→new filter($)
$id→new Logic($)
$id→new Math($)
$id→new PID($)
$id→new Alert($)
$id→new Adapter($)

The new device functions are wrapper functions for the various Device.pm
factory functions. They are used by $rig→init() as well as to obtain an device
node for a not enabled device (For testing purposes when installing a ned
hwardware/logical device)

11.11 RFC::Visitor

Inherits from Debug (refer section 11.1).

The RFC::Visitor module defines the base behaviour for visitors used together
with RFC::Rig and RFC::BaseDevice instances. The RFC::Visitor class is
the base class, and the RFC::VisitorClear class isused to clear the internal
references to already seen visitors

The DummyVisitor class can be used to test the Visitor pattern on a RFC::Rig
instance (it merely count the number of devices).

To obtain an instance call the constructors:

my $v = RFC::VisitorClear→new(); - Clears the list of seen visitors

my $v = RFC::TestVisitor→new(); - Tests the devices it is called on

my $v = RFC::ConfigVisitor→new(); - Prints the device configuration.

my $v = RFC::DebugVisitor→new($debuglevel); - sets the debug level

my $v = RFC::MeasuretimeVisitor→new(); - Gets the last time measure-
ments were done for each device

my $v = RFC::DummyVisitor→new(); - Runs through the devices and counts
instances

my $v = RFC::DisableProglogVisitor→new(); - Disables appending to proglog.

my $v = RFC::EnableProglogVisitor→new(); - Enables appending to proglog
if this is disabled.

All RFC::Visitor derived classes must implement the follwoing member func-
tions:

133 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

$id→VisitSimple($) Must handle access to simple devices (such as
simplechannels)

$id→VisitComplex($) Must handle access to complex devices (such
as Temolog devices).

$id→result() Return the calcualted value or string for the
visitor in question

When designing new visitors it is advisable to make the visitor class name
descriptive of what the visitor in question actually does.

11.12 RFC::Cache

Inherits from Debug (refer section 11.1).

this module defines the RFC::Cache class. the RFC::Cache class is intended
to be used for caching device data in conjunction with objects derived from
RFC::BaseDevice.

A RFC::Cache object can be obtained by calling the constructor:

my $id = RFC::Cache→new();

All RFC::Cache objects has the following public member functions:

$id→clear() Clears all data content in the data cache.
$id→dump() Returns a data dump of the cached data (using

Data::Dumper).
$id→stat() Returns some statistics for the cache (number

of hits as well and tries as well as a dump of
the cache).

$id→set(@) Sets a data value to be cached. The first n
arguments must be key names and the last ar-
gument must be the value to be set. Example:
set(’ttyS0’,’icp’,’1’,453.56) Note that all keys
are converted to lower case to minimise typ-
ing errors!

$id→get(@) Returns the value asociated with the
specified keys (using the example above,
get(’ttyS0’,’icp’,’1’) would return 453.56 If
a value is not found or the keys are not
encountered in the correct order, it returns
undef. Thus remember to check if the return
value of get(@) is defined before it is used!

134 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

$id→get time(@) Returns the time the data was set asociated
with the specified keys (using the example
above, get(’ttyS0’,’icp’,’1’) would return some-
thing like 1444130488.2388 If a value is not
found or the keys are not encountered in the
correct order, it returns undef. Thus remem-
ber to check if the return value of get time(@)
is defined before it is used!

11.13 RFC::Spline

Inherits from Debug (refer section 11.1).

This module defined the behaviour of a spline interpolation.

The intended use of RFC::Spline instances is to correct measured values ac-
cording to a callibration table and/or to convert a measured value to an
other format (for instance given a conversion table linking measured voltages
to pressures a splineinterpolation can be used to obtain the pressure given a
measured voltage).

To obtain a RFC::Spline instance call the constructor:

$id = RFC::Spline→new($data);

where $data is a string containing a list of spline data. the list must be
formatted in the form of a number of lines with a single x and y cordinate on
each line. The data must represent a continious, single valued function (that
is for each x there is one and only one y and the function is without ’jumps’
like seen in the function 1/x). The x and y values must be separated by space
and/or tabs and lines must be separated by newlines. Note that if more than
2 values are found on a line only the two first are used and only valid lines
are used (lines with less than 2 detected numbers are discarded!).

An RFC::Spline instance allows numbers to be converted according to the
spline table. Thus to convert a given value simply call the ’value’ public
member function.

$newval = $id→value($oldval);

The following public member functions exists:

$id→value($) Returns the interpolated value based on sup-
plied argument which must be a number!

$id→data() Returns the spline table used in the calcula-
tions.

If only 2 sets of numbers are given in the spline table, the relation is assumed
to be a linear one and no spline interpolation is performed. Instead a spmple

135 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

linear interpolation is used.

The same is the case for input values outside the defined data range. In those
cases the first or last 2 data points are used in a linear interpolation. Notice
that in general it is poor form to interpolate values outside the defined range!

Below is an exaple of how a spline table may look:

-0.5 -0.1

0 0.1

1 3

1.5 5.7

11.14 RFC::BaseDevice

Inherits from RFC::Observer (refer section 11.9).

This module defines a number of common functions for all RFC devices. Most
of these functions are virtual in that respect that they are overwritten by the
individual class definitions.

To obtain a device instancee call the constructor (in this case BaseDevice):
my $id = BaseDevice→new($name,$rig); Where $name is an identifier string
(preferably unique) and $rig is an instance of the RFC::Rig class. This second
argument is required for callback functionality used in a number of the device
operations (mainly $id→read, but in some cases also by the derived device
constructors and/or init functions). Some device constructors may require
additional arguments (refer the individual class files for details). The rig
object must at least honor the following member functions (refer RFC::Rig
for details about the individual member functions):

get cv(section,key)

change config value(section,key,newval)

list types()

list types nofilter()

list devices(type)

list devices control(type)

avaliable devices(type)

avaliable devices nofilter(type)

get device(type,name)

init device(type,name)

register device(object)

disable warning mails([opt set]);

136 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

warning mail(type,msg,[opt subj])

unset warning(type)

proglog(string)

errorlog(string)

get cache time(type,name)

get cache(type,name)

set cache(type,name,value)

clear cache(type,name)

All devices inheriting from RFC::Basedevice honors the folliwing member
functions:

$id→type() Returns the type of the instance (usually the
class name)

$id→name() Rreturns the name of the instance.
$id→UIname() Rreturns the name of the instance to be used

for user interface purposes. Note that unlike
names returned by the name() function, names
returned by UIname() are NOT guaranteed to
be unique even within device types! The de-
fault is that name() and UIname() return the
same string.

$id→mode() Returns the mode of the device (usually one of
the follwing Readonly, Automatic or Manual).

$id→sectionname() Returns the section name from which the de-
vice was initialised.

$id→init() Initialises the device (not all devices require
this).

$id→print config() Returns a string containing the setup informa-
tion.

$id→print setup() Prints the contents of the current device data
(software only).

$id→title() Returns the title string for the device (if de-
fined) or an empty string.

$id→rig() Returns a reference to the attatched rig in-
stance.#

$id→proglog($[$$]) Appends the supplied string to the attatched
rig’s program log If a second argument is spec-
ified that is asumed to be the user name of the
user originating the action/logentry. If a third
argument is specified or disable proglog is set,
no logging is performed (usefull for i-V curves
where lots of commands are given during the
i-V curve and logging all of them would polute
the program log.

137 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

$id→disable proglog([$]) Returns 1 if appending to the attatched rig’s
proglog is disabled. If an argument is supplied,
sets the status instead. Default is 0 (proglog
enabled).

$id→errorlog($) Appends the suplied string to the attatched
rig’s errorlog.

$id→get conf($) Returns the configuration value for the spec-
ifiec key Uses the rig instance for the actual
configuration manipulation If called in a list
context,returns a list of values based on the
raw configruation value split along commas
(ignores spaces arrounds commas).

$id→load conf() Loads all confifguration values from the
rig instance. Uses the list supplied by
setup tags legacy() to get the keys for which
values to inport.

$id→change cv($$) Changes the configuration value for the spec-
ifiec key to the new value (second argument)
Uses the rig instance for the actual configura-
tion manipulation

$id→get default($) Returns the default setting for the specified
configuration tag.

$id→change reload($) Returns 1 if changing the specified configura-
tion tag should result in a page leload (due to
changes in the number and/or operation mode
of other tags as a result of a change of the
current tag value). Default return value is 0;
Only intended to be used for user interface
programming.

$id→hide tag($) Returns 1 if the specified tag is disabled by the
current configuration of the device and thus
should not be visible to the user. Default re-
turn value is 0;

$id→setup tags() Returns a list of setup tags which the divice
understands. setup tags() adds the common
element ’comments’ to the list defined by the
individual device classes, and this element is
intended to be used for a string containing
commetns for the device.

$id→setup tags legacy() Same as setup tags() except it includes poten-
tial deprecated setup tags for the device.

138 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

$id→tag description($) Returns the description string asociated with
the specified tag. Hardcoded to return the
string ”Description for this device, not used
for other purpose. Do not use ’,’ in text as
that character is used as newline substitute.”
if the supplied tag is equal to ’comments’.

$id→tag type($) Returns the type of the specified tag (Read-
only or read-write) Default is read-write.

$id→radonly value($) Returns the value of a specified (readonly) tag.
Returns undef if the tag is not readonly. Note
to developers: This function needs to be de-
fined for all readonly tags for a given device
type!

$id→get tag values($) Returns a list of possible values for a specific
setup key.

$id→ui fn names() Returns a list of function names which can
be called from the device configuration page
in the user interface Default is to return the
empty list as most device types vould usually
not have nay functions which it would make
sense to call from the device setup user inter-
face as the interface only allows maximum one
argument to any function called from there (by
using the prompt() javascript function). If the
last line of the returned string from this func-
tion is the string ’RELOAD’, then the setup
page will be refreshed (as it is assumed that
running this particular function will change
the internal variables of the device in ques-
tion).

$id→ui fn args($) Returns the number of arguments which must
be supplied fo the function with the specified
name. Is intended to be sued in conjunction
with ui fn names() and only function names
mentioned in that list will be valid arguments
(returns undef if no match). Default value is 0,
so if the function does not have any arguments
it is not nescesary to specify a value in the
’ ui fn args’ hash

$id→ui fn description($) Returns the description string asociated with
the specified function name. All functions
listed by ui fn names() must have a corre-
sponding description in the ’ ui fn desc’ hash

139 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

$id→list set functions() Returns a list of possible function names which
could trigger a notify event (such as setflow
for a gas or set voltage for a PSU) Returns an
empty list for pure input devices (default)

$id→readonly() Returns true (1) if the device is a readonly
device false (0) othervise. The default is for a
device to be controlable, thus false (0) is the
default response.

$id→set readonly() Sets a device readonly (only use with caution
as can not be reversed).

$id→info string() Returns a string (potentially empty) contain-
ing information which the user may need for
device configuration.

$id→persistent() Returns 1 if the persistent settings key is de-
fined and is set to ’Yes’. Returns 0 otherwise.
Some device types allow querying the physic-
cal device for some settings. This can be done
each time at device initialisation (default) or
stored on file. The advantage of storing those
settings in the configuration file is that device
communication overhead is minimised. The
disadvantage is that if those settings change,
the RFCcontrol system will not know this and
use the old (and now wrong) settings. If the
persistent settings key is set to yes, the set-
tings are read from the configruation file (and
have to be specified there).

$id→query settings() This function queries the device for the set-
tings which can be aquired directly from the
physical device and stores them in the config-
uration file. For most device types this is a
NOP. If defined for a device type, it should be
executable from the device configuration user
interface.

All devices also has the following special functions for data access:

140 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

$id→read([$]) Returns the value of the instance, this is de-
pendent on the type of device. If an ar-
gument is specified it must be an object of
type RFC::Cache. If the device allows us-
ing cached values, the cache is first checked
and if a value is found this is returned in-
stead of the raw value. Notice that if improp-
erly used, values too far in the past can be
returned! The caching is done through the
attatched RFC::Rig instance For some device
types caching is not possible and a raw read is
always returned.

$id→bool([$]) Returns the boolean value of the device. For
devices which already returns a boolean value
from read(), the the bool() function is merely
an alias for read() whereas for devices return-
ing non-bool values the default is to return 0
(false) if the value of read() is 0 or undefined
and 1 (true) otherwise.

$id→value() Returns the value of the device. This is ob-
tained from the read() function if the value()
function is called for the first time. Any sub-
sequent calls to value() will return the inter-
nally stored value. unless clear cache() has
been called in which case the read() function
is called again. This function is intended to be
used when arithmetic opeartor overloading is
used in orer to speed up calculations.

$id→setpoint() Alias for read(). Can be overloaded for contro-
lable devices to return the last given setpoint.

$id→has ramp() Returns 1 (true) if the deivce has a ’set ramp’
function (and thus is capable of ramping to a
new setpoint). Default is to return 0 (false).

$id→read nocache([$]) Returns the value of the instance, this is de-
pendent on the type of device. If an argu-
ment is specified it must be an object of type
RFC::Cache. Unlike read() this function does
not check persistent cache even if caching is
allowed.

$id→last read() Returns the last time read nocache was called.
$id→read cache([$]) Returns the last read value. If an argument

(time in seconds) is specified, this forces a
new call to read() if the time since last call of
read nocache is larger than the specified dif-
ference. Any additional arguments is passed
on to read().

141 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

$id→is caching() Returns true if caching is configured to be en-
abled for this device. Returns false otherwise.

$id→set cache($) Sets the specified value in the persistent cache
(this is done through the attatched RFC::Rig
instance, see specification there).

$id→clear cache() Resest the persistent cache (this is done
through the attatched RFC::Rig instance. It
also clears the local cache used by the value()
function

$id→read names() Returns a list of valid read functions (most de-
vices only returns a list with the ’read’ func-
tion).

$id→set names() Returns a list of valid functions which can be
called on the deivce and which changes the in-
ternal state of the device. For instance a relay
device only has the ’set’ function and a gas
device has the setflow function as well as the
set command (which is an alias for setflow in
that case). Some devices (such as simplechan-
nel devices) do not have any and will return
the empty list.

$id→read named([$]) Returns the value of the specified function. If
no function name is specifiecd, the read func-
tion is returned(). Only function names listed
in the response from read names() are valid

$id→readstring([$]) Returns the value of the device, but with ad-
ditional time information. If an argument
is specified it must be an object of type
RFC::Cache.

$id→readstring ignore() Sets or gets the variable determining if the
readstring function simply returns undef or
the real return string. This is useful if cal-
culations require a lot of simple data values to
calculate the desired variable and one whishes
to awoid ’poluting’ the data logging with the
raw data values of the intermediate variables.
If called without arguments, returns the value
of the ignore variable. 1 disables readstring
returning a string, 0 enables it again. Default
is 0 (readstring enabled).

$id→readstring furnace() Special version of readstring used by the RFC-
furnace adon. If the readstring furnace key is
set, it returns the readstring value.

$id→get time() Returns the current time in format YYYY
MM DD HH MM SS Output is in the form
of an array.

142 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

$id→test() Returns 1 or 0 depending on device status.
BaseDevice always returns 0 as it is meant to
be overridden by the derived classes.

$id→test string([$]) Returns the device status as a string (in some
cases the status of devices used by the device
is included). Intended to be overridden by de-
rived classes. If the optional argument is spec-
ified it should be an instance of RFC::Cache
(in some cases this will speed up execution as
cached data can be used instead of having to
read new values from hardware).

$id→monitor() Returns the value(s) of the device. In most
cases this function is just a wrapper for the
read() member function, however in the case
of devices with more than one interesting value
to read (for instance for temperature control-
ers where one wants both the setpoint and the
active setpoint) a string containing the values
as well as descriptions are returned instead.

$id→monitor rows() Returns a string identifying how many data
rows moitor() returns and which row num-
bers contain data (as opposed to identifier
strings) Default is the string ’2’ for a normal
device which only returns a single value and
a time. For devices returning multiple values
the string returned could be ’3,5’ for instance
(as rows 2 and 4 contain the strings describing
the values in row 3 and 5 respectively).

Both read and readstring accepts and additional argument. This argument
must be an object of type RFC::Cache (or any other object which has the
the get() and set() interface specified the way RFC::Cache does) and if this
is specified, the read and readstring functions first looks in this cache to see
if they can find the requested data there. If so, the already existing data is
returned and if not the data is measured and stored in the cache as well as
returned. The advantage of this is that multiple relay instances can share a
read operation if they are on the same relay board (and the device has a bulk
read option as the ICP-Das modules all does).

To use this option the template below can be used:

my $data = RFC::Cache→new(); my $string = $id→readstring($data);

In this case a new empty cache is defined and it will then be populated by the
readstring function. any later calls to id→readstring($data) will thus reuse
the stored data (only for the same device or other devices using the same
setup keys, refer the documentation for RFC::Cache).

143 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

In order to test if the reference passed to readstring is of the correct type the
following function can be used:

$id→check cache($) Checks that the supplied argument is of type
RFC::Cache and if not, logs a warning and re-
places it with an object of the correct type.

It is also possible to use the observer pattern whith objects which derives from
this base class. To facilitate this, BaseDevice inherits from RFC::Observer.

RFC::BaseDevice also inplements the following member function which can
be used when overloading the observe() member function in derived classes:

$id→master() Returns the master device for a slave device.
This can be used to ensure that a master can
not at the samae time be a slave (which to
some degree protects against infinite recur-
sions).

All device classes inheriting from BaseDevice also implements the Visitor
pattern. Thus all devices implements the Accept(RFC::Visitor) function.

$id→Accept($) Runs the VisitSimple or VisitComplex mem-
ber function of the supplied visitor instance.

$id→Clear visitors() Special function which clears the list of already
seen visitors

the default Accept method derived from BaseDevise is to call the VisitSimple
function. All complex devices (containing internal devices) should implement
their own Accept method. As a RFC::Basedevice derived device may be
used in more than one other device, the Accept method keeps track of which
visitors has already visited it and only calls the VisitSimple/ VisitComplex
function once for each visitor. For long runing programs which may continue
to create visitors, it may be nescesarry to call Clear visitor() on all devices
to clear the list (The special RFC::VisitorClear visitor will do this if passed
to the Accept function of a RFC::Rig instance)

As it is possible (and indeed recommended) that device classes inheriting
from
RFC::BaseDevice conains other RFC::BaseDevice derived class instances, the
BaseDevice and inherited classes implements the Composite pattern as this
works well with the Visitor patern for traversing parts or the whole device
structure.

144 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

11.14.1 Operator overloading

RFC::BaseDevice overloads the following arithmetic operators: + - * / and
** (exponentiation) as well as unary minus and the string operator ”” and
the concatanation (dot) operator. Thus it is possible to do:

$dev = RFC::BaseDevice→new(@ARGS);

$val = $dev + 6.5;

and get the expected result.

Similarly it is possible to do:

print ”Device: $dev is active”

Note however, that simple assignment is NOT overloaded, thus using $val =
$dev will NOT set $val to have the value of $dev→read(). To get the value
of a device use the read function directly or the slightly cumbersome $val =
$dev + 0 (not to mention the truly ugly $val = -(-$dev) which uses unary
minus, which IS overloaded). The advantage of the read function (apart from
beeing easier to understand) is that it can be passed a cache argument which
the overloaded arithmetic functions can not and which in many cases can
speed up runtime as the device can re-use already measured values (refer the
definition of the read function).

11.15 RFC::Simple

Inherits from RFC::BaseDevice (refer section 11.14).

This class defines simple dataloging (readonly) channel setup To obtain an
instance of this class call one of the constructors like:

$id = RFC::Simple→new($name,$rig)

In case of an RFC::keithley or RFC::SimpleICP instance, it can also be ob-
tained by

$id = RFC::Keithley→new($name,$rig,$channel)

or similarly for a RFC::SimpleICP instance.

The reason for the last option is to allow the instantiation of a device without
a separate setup section.

The RFC::Simple module defines no new member functions. However all
simplechannel devices have the configuration option of using a scaling factor
(effectively a number which is multiplied with the raw physical value). For
instance this enables a value to be reported in mV even though it is measured
in Volt by setting the scaling factor to 1000.

The avaliable devices are:

$id = RFC::SimpleExternal→new($name,$rig)

145 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

$id = RFC::SimpleSocket→new($name,$rig)

$id = RFC::SimpleSOAP→new($name,$rig)

$id = RFC::Keithley→new($name,$rig)

$id = RFC::KeithleyMOM→new($name,$rig)

$id = RFC::SimpleICP→new($name,$rig)

$id = RFC::SimpleICP7017→new($name,$rig)

$id = RFC::SimpleICP7019→new($name,$rig)

$id = RFC::SimpleModbus→new($name,$rig)

$id = RFC::ModbusTCP→new($name,$rig)

The SimpleExternal deivce is a vrapper device for a call to an external pro-
gram. This allows access to read and log non-RFCcontrol programs providing
a wrapper program or link to the program is placed in /usr/local/bin/celltest/external
Any call to programs in this directory must print a number when executed.
Additionally, programs in this directory may only contain letters and ’.’ in
the filename (this is to prevent the possibility for code injection).

Note however that any program placed in this directory can be called from
any user who can log in to any of the rigs on the server, so take care that
programs placed in this directory can not do anything that could damage
anything (imagine what a wrapper for ’rm -rf .*’ could do.....)

The SimpleExternal and SimpleSocket classes has a special option for reading
the timestamp form the external program or system. If the returned value
has a hash-mark in it, then the string after the hash mark is evaluated to see
if it can be parsed to a timestamp. If so, the timestamp fo the measurement
is set to this value instead of the local time the call was made (as is normal
for most other devices).

11.16 RFC::BaseRelay

Inherits from RFC::BaseDevice (refer section 11.14).

This class defines the behaviour of simple relays To obtain a relay instance
use one of the constructors like shown below:

my $id = BaseRelay→new($name,$rig);

The rig argument must be a RFC::Rig instance or a similar object honoring
the get conf() member function. The constructior can also be called with
additional arguments:

my $id = BaseRelay→new($name,$rig,$tty,$address,$channel);

where the last 3 argmeutns specify the serial device, the module address and
the channel number of the relay (as most relay modules contains more than
one relay.

146 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

All relay objects have the following member functions (excluding those de-
rived from RFC::BaseDevce and Debug.pm):

$id→set($[$][$]) Sets the status of the relay to the specified ar-
guemnt one indicates closed relay, 0 open. If
an additional argument is specified, it is as-
sumed to be the username of the controlling
user and that name is appended to the string
appended to the rigs proglog. an exception
to this is if a further argument is specified in
which case no proglog entry is appended!

$id→set noinfo($) Similar to set() except no proglog info is appended.

If no data can be read from the device attatched to the object, the read()
function returns -1 to indicate the error.

Notice that the bool() function returns 0 (false) in case the status of the relay
can not be determined!

11.17 RFC::Monostable

Inherits from RFC::BaseRelay (refer section 11.16).

This class defines the behaviour of monostable relays To obtain a relay in-
stance use one of the constructors like shown below:

my $id = Monostable→new($name,$rig);

my $id = PWM Mono→new($name,$rig);

The rig argument must be a RFC::Rig instance or a similar object honoring
the get conf() member function. The constructior can also be called with
additional arguments:

my $id = Monostable→new($name,$rig,$device);

where the 3’rd argmument is the relay device instance to be used for the
control. This device must be an instance of RFC::BaseRelay or a derived
class.

The difference between the two types of monostable relays is that the PWM
version has varialbe on time which is determined at runtime by using the
read value from an other device whereas the normal one has a fixed on time
(determined by the configuration).

Notice that it is possible to create a circular list of Monostable relays as
RFC::Monostable is polymorphic with RFC::BaseRelay! Do not attempt this
as the whole system will be inoperable due to infinite recursion!

The RFC::Monostable class derives from and emulates RFC::BaseRelay but
overloads the $id→set function.

147 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

$id→set($[$][$]) Triggers the the relay to shortly send a close
command followed by a wait duration and then
a open command irrespective of the first argu-
ment If an additional argument is specified,
it is assumed to be the username of the con-
trolling user and that name is appended to the
string appended to the rigs proglog. an excep-
tion to this is if a further argument is specified
in which case no proglog entry is appended!

If no data can be read from the device attatched to the object, the read()
function returns -1 to indicate the error.

11.18 RFC::AnalogOut

Inherits from RFC::BaseDevice (refer section 11.14).

This class defines simple analog output devices (D-A converters, not power
supplies) To obtain a analog output instance call onw of the constructors:

$id = RFC::AnalogOut→new($name,$rig);

$id = RFC::AnalogICP87024→new($name,$rig);

$id = RFC::AnalogICP87028→new($name,$rig);

$id = RFC::ManualAnalogOut→new($name,$rig); (A virtual, software only,
device)

The rig argument must be a RFC::Rig instance or a similar object honoring
the get conf() member function. The constructiors can also be called with
additional arguments like shown below:

$id = RFC::AnalogICP87024→new($name,$rig,$tty,$address,$channel);

where the last 3 argmeutns specify the serial device, the module address and
the channel number of the output module (as most modules contains more
than one output channel).

All analog output objects have the following member functions (excluding
those derived from RFC::BaseDevce and Debug.pm):

$id→set($) Sets the output voltage/current of the de-
vice to the specified argument. the for-
mat for sending numbers to the devices sup-
ported (i87022/24/26) is the engineering unit
DD.DDD according to the manual. The driver
uses sprintf to make sure that the supplied
number is in this format.

148 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

$id→current($) Sets the output (for current control modules)
in A. this functio is usually just a wrapper for
set().

$id→mode() Returns the control mode of the deivce
(mA,A,mV or Volt). This overloads the nor-
mal mode() function.

$id→min() Returns the minimum possible value.
$id→max() Returns the maximum possible value.

11.19 RFC::PSU

Inherits from RFC::BaseDevice (refer section 11.14).

The PSU class (and the derived classes) defines the behaviour of DC power
supplies for the RFC control system. To obtain a PSU instance, call one of
the constructors like shown below:

$id = RFC::PSU→new($name,$rig);

$id = RFC::DefaultDelta→new($name,$rig);

$id = RFC::SM 15 100→new($name,$rig);

$id = RFC::SM 18 50→new($name,$rig);

$id = RFC::SM 60 100→new($name,$rig);

$id = RFC::SM 35 45→new($name,$rig);

$id = RFC::SM 52 30→new($name,$rig);

$id = RFC::SM 70 22→new($name,$rig);

$id = RFC::SM 120 13→new($name,$rig);

$id = RFC::SM 300 5→new($name,$rig);

$id = RFC::SM 30 200→new($name,$rig);

$id = RFC::ES015 10→new($name,$rig);

$id = RFC::ES030 5→new($name,$rig);

$id = RFC::ES075 2→new($name,$rig);

$id = RFC::ES0300 045→new($name,$rig);

$id = RFC::ManualPSU→new($name,$rig);

$id = RFC::BKPrecision→new($name,$rig);

The PSU class defines the follwing new functions.

$id→voltage($) Sets or returns the applied DC voltage If no
argument is supplied, it simply returns the last
set value.

149 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

$id→current($) Sets or returns the applied DC current If no
argument is supplied, it simply returns the last
set value.

$id→RSD($) Enables or disables DC output if such a device
(relay) is attatched to the system.

$id→minvoltage() Returns the minimum voltage.
$id→maxvoltage() Returns the maximum voltage.
$id→mincurrent() Returns the minimum current.
$id→maxcurrent() Returns the maximum current.
$id→idn() Returns a hardware specific identifier string
$id→measure U() Returns the measured voltage output (if the

device implements this).
$id→measure I() Returns the measured current output (if the

device implements this).
$id→get I() Returns the current setpoint (some devices re-

turns the result of measure I() instead).
$id→get U() Returns the voltage setpoint (some devices re-

turns the result of measure U() instead).
$id→set($) Alias for set voltage($) or set current($) de-

pending on the setting of the ’control mode’
variable.

$id→read Alias for measure I. Any arguments to read is
passed to measure I.

11.20 RFC::Elektro

Inherits from RFC::PSU (refer section 11.19).

This module implements RFC::PSU for electronic loads.

To obtain an instance call one of the constructors as shown below:

$id = RFC::EL 9080 200 HP→new($name,$rig);

$id = RFC::EL 9160 100 HP→new($name,$rig);

$id = RFC::EL 9400 50 HP→new($name,$rig);

$id = RFC::EL 9750 50 HP→new($name,$rig);

$id = RFC::EL 9080 200 HP→new($name,$rig);

$id = RFC::EL 9160 100 HP→new($name,$rig);

$id = RFC::EL 9400 50→new($name,$rig);

$id = RFC::EL 9750 50→new($name,$rig);

$id = RFC::EL 9080 600 HP→new($name,$rig);

$id = RFC::EL 9160 300 HP→new($name,$rig);

$id = RFC::EL 9400 150 HP→new($name,$rig);

150 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

$id = RFC::EL 9080 600 HP→new($name,$rig);

$id = RFC::EL 9160 300 HP→new($name,$rig);

$id = RFC::EL 9400 150 HP→new($name,$rig);

$id = RFC::EL 9750 75→new($name,$rig);

$id = RFC::EL 9750 75 HP→new($name,$rig);

$id = RFC::EL 3160 60A→new($name,$rig);

$id = RFC::EL 3400 25A→new($name,$rig);

$id = RFC::EL 9080 200→new($name,$rig);

$id = RFC::EL 9160 100→new($name,$rig);

$id = RFC::EL 9400 50 S01→new($name,$rig);

$id = RFC::EL 9750 25→new($name,$rig);

$id = RFC::EL 9080 400→new($name,$rig);

$id = RFC::EL 9400 100→new($name,$rig);

$id = RFC::EL 9160 200→new($name,$rig);

$id = RFC::EL 9400 100 S01→new($name,$rig);

$id = RFC::EL 9750 50→new($name,$rig);

$id = RFC::Hocherl ZS→new($name,$rig);

11.21 RFC::Kepco

Inherits from RFC::PSU (refer section 11.19).

This module implements RFC::PSU for Kepco biploar power supplies.

To obtain an instance call one of the constructors as shown below:

$id = RFC::Kepco BOP 50 200MG→new($name,$rig);

Where $name is the name of the device and $rig is a RFC::Rig instance.

The Kepco class defines the following extra member functions besides those
derived from the RFC::PSU class:

$id→send raw($) Sends a raw command string to the device and
returns any output returned by the device.

$id→writecmd($) Sends a raw command string to the device,
does not expect any return value from the de-
vice.

$id→idn() Returns the identifier strign from teh device.
$id→get error() Returns any error. An empty return value in-

dicates no error. Note that the error register
in the device is automatically cleared after this
command.

151 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

$id→device mode([$]) Gets or sets the device mode (0 is constant
voltage, 1 is constant current).

$id→sine($$$[$]) Setup a sine wave output. argumentws
are: device mode, frequency (Hz), amplitude
(V/A) and optional offset (V/A), where device
mode is 0 for voltage control and 1 for current
control.

$id→square($$$[$]) Setup a square wave output. argumentws
are: device mode, frequency (Hz), amplitude
(V/A) and optional offset (V/A), where device
mode is 0 for voltage control and 1 for current
control.

$id→reset() Resets the device. Remember to use this af-
ter a sine or square command has been pro-
cessed before any normal current and/or volt-
age commands

11.22 RFC::Keithley2400

Inherits from RFC::PSU (refer section 11.19).

RFC::Keithley2400 mpelments the RFC::PSU class for Keithley400 source
meters.

To obtain an instance of RFC::Keithley2400 use the constructor:

$id = RFC::Keithley2400→new($name,$rig);

The class defines the following new member functions:

$id→PSU mode([$]) Sets or gets wether the PSU is a constant
current source (default) or a constant voltage
source. Argument: ’CC’ for constant current
and ’CV’ vor constant voltage. Note that it
may be nescesarry to run reset() on the de-
vice after changing the PSU mode

$id→reset() Resets the keithley2400 to a known state.

As a Keithley2400 source meter is a true bipolar power supply, it is usually
convenient to use a RFC::PSU B2N device on top of the RFC::Keintley2400
device

Additionally in order to confirm with the basic operation of RFCcontrol, the
positive current direction is when the device under test is acting as a fuel
cell (that is a positive current acts as a current sink), therefore the current
direction is reversed so specifying a positive current actually sets a negative
output!

152 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

11.23 RFC::PSU Bipolar

Inherits from RFC::BaseDevice (refer section 11.14).

This class defines the behaviour of container PSU modules. A PSU Bipolar
instance emulates a true bipolar power supply/eload by combining two power
supplies or a power supply and an electronic load. A power supply can be
used as an electronic load if it is fitted with DC offset diodes which offset the
inherent DC bias of the device under test. In the case of a single fuel cell,
this is usually below 2 volt, and a series of 2 to 3 silicon diodes can handle the
DC bias. However beware that the diodes must be able to handle the full DC
current load (which potentially could be several hundred amps in case of big
PSU units) and thus the diodes likely have to be extensively cooled to awoid
thermal damage!

A PSU Bipolar instance behaves exactly as a normal PSU instance, however
the minvoltage and mincurrent values are defined by the device acting as the
PSU and the maxcurrent and maxcurrent values are defined by the eload
device.

The voltage() function is also overloaded so that if an additional argument is
specified besides the voltage to set, only the psu device is set if the second
(optional) argument matches the string ’psu’ and the eload device if it does
not match. The rationale for this is that both devices may need different
voltage settings for true bipolar constant current operation to work.

The benefit of using the container class is that it makes it possible to use two
normal power supplies as a single true bipolar power supply.

Beware, however, that you do not inadvertedly create an infinite recursion if
more than one container device is used!

The RFC::PSU Bipolar class defines whe following extra member functions:

$id→read volt psu() Returns the result of measure U() for the psu
device

$id→read volt eload() Returns the result of measure U() for the
eload device

$id→read curr psu() Returns the result of measure I() for the psu
device

$id→read curr eload() Returns the result of measure I() for the eload
device

$id→get volt psu() Returns the result of get U() for the psu de-
vice

$id→get volt eload() Returns the result of get U() for the eload de-
vice

$id→get curr psu() Returns the result of get I() for the psu device
$id→get curr eload() Returns the result of get I() for the eload de-

vice

153 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

These four functions are neeeded for accesing the voltage and current of the
individual devices.

11.24 RFC::PSU B2N

Inherits from RFC::BaseDevice (refer section 11.14).

The RFC::PSU B2N module defines a wrapper class which makes it possible
to use bipolar power supplies with the RFC control system. It works by
vivifying a virtual relay which from the system and UI is indistinguishable
from the normal physical relays.

The only difference is that when switching polarity by using the virtual relay,
the current is switched by using callback through the the observer pattern.
By using this, the device behaves as a normal relay system. Thus this module
overrides the observe() function and attaches this device to the virtual relay
instance created during device initialization (bootstrapping).

A PSU B2N instance behaves exactly as a normal PSU instance in combi-
nation with a normal electrolysis relay device. However, the minvoltage and
mincurrent values are defined by the device acting as the PSU, thus the min-
current would likely be negative as opposed to a normal unipolar PSU which
would be unable to give negative current.

The benefit of using the container class is that it makes it possible to use a
bipolar power supply instead of a normal power supply fitted with electrolysis
switching relays.

The TFC::PSU B2N module also defines the reverse wrapper (called RFC::PSU N2B)
which can be used to convert a normal unipolar PSU with a switching relay
for polarization control into a pseudo bipolar PSU (it will behave as a bipolar
PSU as far as RFCcontrol is concerned).

Although RFCcontrol assumes a normal PSU and a switching relay for con-
trol, in some cases this is a disadvantage. Especially in the case where PID
devices are used to control the current of a PSU, then the inability of the
normal PSU device to natively set a negative current is a problem. This will
be alleviated by using a RFC::PSU N2B wrapper between the PID controller
and the normal PSU.

11.25 RFC::PSUMulti

Inherits from RFC::PSU (refer section 11.19).

This class defines the behaviour of parallel connected PSU devices with difer-
ent ranges. This is intended to be used in the case where both high currents
and high presision at low currents are needed (and which rarely is possible
with a single PSU). A RFC::PSUMulti class instance behaves as a normal

154 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

PSU device with the only exception that it is not possible to use parallel
or serial connections of RFC::PSUMulti devices (this has to be done to the
individual RFC::PSU devices).

As the API of RFC::PSUMulti is identical to RFC::PSU, it is possible to have
more than 2 PSU devices controlled in this way (as a RFC::PSUMulti. device
can contain RFC::PSUMulti as well as RFC::PSU device instances).

Beware that you do not inadvertedly create an infinite recursion if more than
one container device is used!

It is assumed that the individual PSU devices used handle ’OCV’ commands
correctly (that is that the PSU is placed in a high impedance output state
either by PSU design or by an external relay device, refer RFC::PSU for
details).

11.26 RFC::MFC

Inherits from RFC::BaseDevice (refer section 11.14).

This class defines the behaviour of mass flow controlers for gas control. To
obtain a MFC instance call one of the constructors as shown below:

$id = RFC::MFC→new($name,$rig);

$id = RFC::Analog→new($name,$rig);

$id = RFC::AnalogReadonly→new($name,$rig);

$id = RFC::Brooks→new($name,$rig);

$id = RFC::BrooksReadonly→new($name,$rig);

All MFC objects have the following member functions in addition to those
derived from RFC::BaseDevce and Debug.pm:

$id→gasses() Returns a list of possible gasses used if more
than one gas can be selected, usually in con-
junction with a RFC::Multiplexer device.

$id→selected gas() Returns the name of the selected gas.
$id→maxflow() Returns the maximum possible flow for the

selected gas.
$id→setflow($[$][$]) Sets the gas flow for the mass flow controler

to the specified value. If an additional argu-
ment is specified, it is assumed to be the user-
name of the controlling user and that name is
appended to the string appended to the rigs
proglog. an exception to this is if a further
argument is specified in which case no proglog
entry is appended!

$id→gas change() Returns the gas change mode (either manual
or automatic).

155 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

$id→controler mode() Returns the controler mode (either ’Flowrate’
or ’Pressure Dependiong on if the MFC is a
flow controler or a pressure controler)

$id→change gas($) Changes the gas of the controler to the speci-
fied type.

$id→gasses() Returns a list of possible gasses for the de-
vice This is to be used in conjunction with a
RFC::Multiplex device.

$id→multiplexer() Returns the multiplexer deivce if it exists.
$id→accuracy() Returns the expected accuracy of the device

(For Brooks MFC’s this is usually 1 percent of
fullscale).

$id→read raw() Returns the flow rate reported by the con-
troler. As opposed to the normal read() func-
tion the read raw() does not check for mul-
tiplexer operation. Thus use of this function
directly can result in inconsistently reported
flow rates if the caller does not explicitly check
for multiplexer status.

11.27 RFC::MKS

Inherits from RFC::MFC (refer section 11.26).

This class implements RFC::MFC for MKS mass flow controlers. To obtain
a MKS instance call one of the constructors as shown below:

$id = RFC::MKS→new($name,$rig);

$id = RFC::MKSReadonly→new($name,$rig);

The RFC::MKS class does not define any new public member functions

11.28 RFC::Pcontrol

Inherits from RFC::BaseDevice (refer section 11.14).

This class defines the behaviour of pressure controlers for gas control. To
obtain a Pcontrol instance call one of the constructors as shown below:

$id = RFC::Pcontrol→new($name,$rig);

$id = RFC::Pcontrol Analog→new($name,$rig);

$id = RFC::Pcontrol AnalogReadonly→new($name,$rig);

$id = RFC::Pcontrol ER3000→new($name,$rig);

The RFC::Pcontrol device is the default manual device.

156 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

All RFC::Pcontrol devices emulates the RFC::MFC interface (refer the RFC::MFC.pm
module for further documentation of the special member functions for RFC::MFC
devices). This makes it possible to use a pressure control device as was it a
MFC device and thus a gas device can be used to control gas flow or gas
pressure. In order to distinguish, Pcontrol devices allow only the selection
of gas device names where the name contains the string ’pres’. This forces
a more intuitive user interface where a clear distinction between normal gas
devices and gas pressure devices.

RFC::Pcontrol devices does not support the addition of gas multiplexers, how-
ever to conform with the RFC::MFC interface, the functions to manipulate
gas multiplexers are defined (but usually simply return undef).

All calculations for pressures using Pcontrol devices are performed in bar
absolut (barA, 1 barA coresponds roughly to atmospheric pressure and 0
barA is a perfect vaccum).

The RFC::Pcontrol class defines the following membeer functions:

$id→minP Returns the minimum pressure for the con-
troler in barA

$id→maxP Returns the maximum pressure for the con-
troler in barA

$id→setP($[$][$]) Sets the gas pressure to the specified value If
an additional argument is specified, it is as-
sumed to be the username of the controlling
user and that name is appended to the string
appended to the rigs proglog. an exception
to this is if a further argument is specified in
which case no proglog entry is appended!

$id→set Alias for $id→setP.

The following RFC::MFC member function has been remapped:

$id→setflow Alias for $id→setP.
$id→maxflow Alias for $id→maxP.
$id→gasses Returns a single element ($id→selected gas).

11.29 RFC::Templog

Inherits from RFC::BaseDevice (refer section 11.14).

This class manages temperature logging as usually more than one measuremnt
is needed to correctly measure temperatures using thermocouples and/or PT-
type resistance measurements

To obtain a Templog instance call the constructor as shown below:

$id = RFC::Templog→new($name,$rig)

157 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

The Templog class defines no new functions.

11.30 RFC::Gas

Inherits from RFC::BaseDevice (refer section 11.14).

This calss defines the behaviour of gas flow logging. To obtain a gas instance
call the constructor as described below: my $id = RFC::Gas→new($name,$rig)
The rig argument must be a RFC::Rig instance or a similar object honoring
the get cv() member function.

All Gas objects have the following member functions (excluding those derived
from RFC::BaseDevce and Debug.pm):

$id→setflow($[$][$]) Sets the gas flow for the gas to the speci-
fied value (note all gas flows for RFC devices
must be specified in nL/hour). If an addi-
tional argument is specified, it is assumed to
be the username of the controlling user and
that name is appended to the string appended
to the rigs proglog. an exception to this is if a
further argument is specified in which case no
proglog entry is appended!

$id→cutoff set() Returns the minimum flow for the gas below
which the gas flow is defined to be 0. Somne
controlers require special commands for com-
pletely closing which is the reason for this to
be implemented.

$id→cutoff report() Returns the minimum flow for the gas below
which the gas flow is defined to be 0 even if the
controler may report a positive value. In case
of a manual gas, this value can be set freely,
however in case of a gas controlled by a MFC
or similar, the default mimimum value is 0.75
times the accuracy of of the control device (it
can be manually overridden to a higher value).

$id→maxflow() Returns the maximum flow rate possible.
$id→maxflow set() Returns the maximum allowable flow rate.
$id→accuracy() Returns the device accuracy (usually for-

warded from the controling device e.g MFC).
$id→control device() Returns the device instance of the control re-

lay (if any).

158 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

$id→control value() Returns the control value. this is to be com-
pared to the read response from the control
device to determine if the gas is engaged or
not (used in fast switching applications where
a cross-over valve determines if gas is supplied
to the device under test or not).

$id→controler() Returns the device instance used for control-
ing the gas flow rate. Usually an instance of
the RFC::MFC class.

$id→attatch multiplex($) Attatches a multiplexer device (of type
RFC::Multiplex) to the gas device. The mul-
tiplex device is used for determining if the gas
flow reported by teh controler is for this gas.

$id→gas() Returns the name of the gas controlled by this
device.

$id→read cutoff([]$) Returns the gas flow similar to read(), but if
the flow is below the cutoff report value, it
returns 0.

$id→set($[$][$]) Alias for the setflow function.
$id→setpoint() Returns the last set setpoint for the gas (in

case of manual gasses this will be the same as
a normal read).

$id→is pressure() Returns 1 if the gas device is configured to
be automatically controlled by a pressure con-
troler. Returns 0 otherwise.

$id→include tally() Returns true if the gas line can be used to
totalise gas usage

The RFC::Gas module overloads the bool() function to return 1 (ture) only if
the actual flow is above the cutoff report() value (the bool() returns 0 (false)
otherwise.

The RFC::Gas module also allows slaving of one gas to an other. A slaved
gas is in the setup specicfied to have a flow which is proportional to the flow
rate of the master gas with the proportionality facter defined in the setup. To
facility this, the RFC::Gas slave device attatches itself to the master device
durring initialisation and uses the observer interface derived from BaseDevice
to set the flow to the correct value whenever the flow of the master device is
changed. This is achieved by overloading the observe() function.

As a safety precaution, a gas can not be a slave of an other slaveed gas. This
is to ensure that no infinite loops are created. To facilitate this, the following
member function is alos defined:

$id→master() Returns the device instance of the master gas
device. returns undef if the gas device is a
master, thus is only true for slave devices.

159 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

11.31 RFC::CGas

Inherits from RFC::BaseDevice (refer section 11.14).

This class defines the behaviour of container gas modules. A container gas
instance is a virtual device containing two RFC::Gas or compatible devices.
The API for RFC::CGas instances is identical to RFC::Gas instances with
the sole exception of the controler() member function which returns a list of
devices instead of a single device. The benefit of having an almost identical
API to RFC::Gas devices is tha an CGas instance can contain RFC::CGas
instances as well as normal RFC::Gas instances.

The reason for RFC::CGas devices is that they are intended for cases where
a single gas line contains more than one gas controler for handling vastly
differing flow ranges as most MFC’s can only give an accuracy of 1 percent of
fullscale value. By using a RFC::Cgas container, the possiblele range of flow
values can be extended beyond this.

Beware that you do not inadvertedly create an infinite recursion if more than
one container device is used!

Note that in order for the container module to work properly, remember
to set correct values for ’cutoff report’ for the individual gas names in the
container as this setting isused to determine if the gas is shut off! Incorrect
setting of this may cause wrong flow values to be logged!

11.32 RFC::Multiplex

Inherits from RFC::BaseDevice (refer section 11.14).

This class defines the control of multiple gasses to the same MFC. To obtain
a Multiplexer instance call the constructor:

$id = RFC::Multiplex→new($name,$rig)

$id = RFC::Multiplex slave→new($name,$rig)

The slave version is intended to be used in case a single multiplexer feeds more
than one control device (MFC) and as a multiplexer device can only handle
a single control device, a slave multiplexer can be used on all but the first.
the slave multiplexers should then reference the sigle normal multiplexer and
will mirror the settings of the master device.

The constructor can also be called with an additional argument which must
then be a RFC::MFC (or derived) device instance:

$mfc = RFC::MFC→new($name,$rig);

$id = RFC::Multiplex→new($name,$rig,$mfc);

All Multiplex objects have the following member functions (excluding those
derived from RFC::BaseDevce and Debug.pm):

160 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

$id→attatch controler($) Attatches an RFC::MFC instance to the mul-
tiplexer (if not included in the call of the con-
structor).

$id→set($) Sets the multiplexer to select the specified gas
name.

$id→gasses() Returns a list of possible gasses.
$id→gas() Returns the name of the selected gas (NB

NOT device name). If supplied with an op-
tional argument this is used as a data struc-
ture to access if the device had already been
read (similar to the read() and readstring())
member functions inherited rom BaseDevice.

$id→gas name() Returns the device name of the selected gas.
If supplied with an optional argument this is
used as a data structure to access if the device
had already been read (similar to the read()
and readstring()) member functions inherited
rom BaseDevice.

Prior to version 4.2.5, the implementation of the RFC::Multiplex class as-
sumed that all gasses were controled from the same relay board (usually a
ICP-con relay module) Thus all gas relays shared the same device tty and
address, but differed only in the channel number. As of version 5.0 this
is deprecated and will only be avaliable for configuration if legacy mode is
enabled (it will still work for already configured systems).

As of version 4.2.5 and onwards, it is possible to use arbitrary relay de-
vices to control a gas multiplexer. To do so, simply configure the relays
as normal RFC::Relay instances and select the proper names (defined in the
’$gasname’ device name key in the configuration section ($gasname being the
name of the gas line in question).

11.33 RFC::GasGroup

Inherits from RFC::BaseDevice (refer section 11.14).

This module defines the virtual concept of a gas group and is only used for
data logging for lumping gas flows for differenc controlers into a single data
value based on flow values and on a control flag (usually a relay). It is mainly
used for cross-over systems where fast gas changes is desired and multiple gas
lines with identical control systems are switched after gas flows has stabilised.

To obtain a gas group instance use the constructor:

$id = RFC::GasGroup→new($name,$rig)

The class does not define any new functions

161 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Note that the read and readstring functions only add the gas flows for the
gasses where the flow is above the cutoff report value defined in the configu-
ration for that gas (Thus remember to set a sensible value for this setting)!

Similarly for the setpoint() function which only add the setpoints for the
gasses which are selected.

11.34 RFC::TempControl

Inherits from RFC::BaseDevice (refer section 11.14).

This class defines the behaviour of temperature controlers for furnace con-
trol. To obtain aTempControl instance call one o fthe constructors like shown
below:

$id = RFC::TempControl→new($name,$rig)

All TempControl objects have the following member functions in addition to
those derived from RFC::BaseDevce and Debug.pm:

$id→get atemp() returns the active (measured) temperature.
$id→get output() returns the output power.
$id→get temp() Returns the temperature setpoint.
$id→get ramp() Returns the temperature ramp rate (C/hour).
$id→get offset() Returns the offset between the temperature

setpoint and the actual measured tempera-
ture. For a functiioning controler this should
be close to 0 but if the furnace can not heat
suficiently (due to broken heating coils or sim-
ilar) it will be positive.

$id→set temp($[$][$]) Sets the temperature setpoint. If an addi-
tional argument is specified, it is assumed to
be the username of the controlling user and
that name is appended to the string appended
to the rigs proglog. an exception to this is if a
further argument is specified in which case no
proglog entry is appended!

$id→set ramp($[$][$]) Sets the temperature ramp rate (C/hour). If
an additional argument is specified, it is as-
sumed to be the username of the controlling
user and that name is appended to the string
appended to the rigs proglog. an exception
to this is if a further argument is specified in
which case no proglog entry is appended!

$id→set($[$][$]) Alias for set temp.
$id→minramp() Returns the minimum possible ramprate.
$id→maxramp() Returns the maximum allowed ramprate.
$id→mintemp() Returns the minimum allowed temperature.

162 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

$id→maxtemp() Returns the maximum allowed temperature.
$id→check ramp($[$][$]) Checks if the specified ramprate is within the

allowed. range. If not it returns the minimum
or maximum value allowed based on what is
closest to the specified value. If a second (op-
tional) argument is specified, it is assumed to
be the username of the user wanting to set the
ramprate and a warning is issued to the log ex-
cept if a third (optional) argument is specified
(similar to set ramp())

11.35 RFC::Honeywell

Inherits from RFC::BaseDevice (refer section 11.14).

This class implements the RFC::TempControl class for Honeywell tempera-
ture controlers.

The RFC::Honeywell module defines the following extra public member func-
tions

$id→P([$]) Sets or gets the proportional gain (Gain)
$id→I([$]) Sets or gets the integration gain (Reset)
$id→D([$]) Sets or gets the diffential gain (Rate)
$id→I min([$]) Sets or gets the minimum integration limit
$id→I max([$]) Sets or gets the maximum integration limit
$id→stop() Forces the controler to ’Hold’ (if in a program)
$id→start() Starts the default program. Used toghethre

with stop() when setting new temperature set-
point in order to properly use the ’hot start’
option thus awoiding local setpoint ’stickiness’
(basically to make the Honeywell behave as a
Eurotherm)

11.36 RFC::Julabo

Inherits from RFC::BaseDevice (refer section 11.14).

This class defines the behaviour of Julabo thermal heat bath control. To
obtain aTempControl instance call one of the constructors like shown below:

$id = RFC::TempControl→new($name,$rig)

Julabo objects have the following member functions in addition to those de-
rived from RFC::BaseDevce and Debug.pm:

163 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

$id→readstring() returns string with SetP Temp, active Temp,
Output Power

$id→get atemp() returns the active (measured) temperature.
$id→get output() returns the output power.

$id→get offset() Returns the offset between the temperature setpoint and
the actual measured temperature. For a functiioning controler this should be
close to 0 but if the furnace can not heat suficiently (due to broken heating
coils or similar) it will be positive. $id→set temp($[$][$]) Sets the tempera-
ture setpoint. If an additional argument is specified, it is assumed to be the
username of the controlling user and that name is appended to the string
appended to the rigs proglog. an exception to this is if a further argument is
specified in which case no proglog entry is appended! $id→set($[$][$]) Alias
for set temp.

””private member functions”” $id→get transaction($cmd) send read’s com-
mands to the Julabo controller and return the answer $id→get transaction($cmd,
$arg) send set’s commands to the julabo controller and return the answer

11.37 RFC::Filter

Inherits from RFC::BaseDevice (refer section 11.14).

This class defines a special virtual device which can be used as a sort of filter
on top of a normal device. An input Filter device type operates on an other
device and converts all read operations on the underlying device

An output filter device operates on all set() function calls and filters the
supplied argument before passing it on to the underlying device.

An input-output filter device does conversion on both read and set operations.

All control commands are passed on to the underlying device and the resulting
filter device can be operated on as if it were the underlying device.

The Filter device class defines no new member functions and classes derived
from Filter should not normally define any new functions either.

The filter class is not intended to be instantiated directly, only the derived
classes.

Notice that the class instance created by the constructors of deviced derived
by Filter must NOT call init() as part of the constructor. This must first be
done as part of any of the handling functions. This is to allow the underlying
device to be autovivified before it is used.

A special type of Filter is the Schmidt Trigger device. This device class
contains a nomral device (simple input device usually) which is masqueraded
as a read only relay device (that is, read returns either 0 or 1). The exact
output value depends on the value of the contained device as well as the

164 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

settings of the trigger device.

To obtain an instance of the schmid trigger device call the constructer:

my $id = RFC::Strigger→new($name,$rig);

A number of other filter classes are also directly avaliable from RFC:Filter.
These are the Lowpass, Integer, MovingAverage, Integrator and Derivative as
well as the Truncate classes. They can be obtained by calling the constructors:

my $id = RFC::Integer→new($name,$rig);

my $id = RFC::Lowpass→new($name,$rig);

my $id = RFC::MovingAverage→new($name,$rig);

my $id = RFC::CircularAverage→new($name,$rig);

my $id = RFC::Integrator→new($name,$rig);

my $id = RFC::Derivative→new($name,$rig);

The Derivative filter class contains an extra public member funciton which is
the get confidence()

This function will return difference between the returned derivative value
and the positive 95% confidence interval limit. Thus the full interval is:
read() - get confidence() to read() + get confidence(). Note that each call
to read nocache will make a nex measurement and thus calculate a new con-
fidence value!

The Integrator class also defines a special member function, which is the
set int() function which allows programs to specifically set the integrated
value to a specific value. If no argument is supplied to set int() the value is
assuemd to be 0.

The CircularAverage filter works on circular data (such as directions) and
will do a moving average using vector calculations on the data represented as
complex numbers: avg = sum(cpl(xi(1→n)))/n

The Truncate device is a special device which returns the measured value
some time in the past truncated to last whole hour or day etc. Default is to
truncate to last whole hour. The truncate device can also be used to retain
values in the past by specifying an offset. Note however that only integer
values can be used for the offset and that the offset is in units of the interval.
Thus if the interval is in 2 hours and the offset is 3, the device will return a
value logged between 6 and 8 hours hours ago (as data will be truncated to
the specified interval)

11.38 RFC::Redundancy

Inherits from RFC::BaseDevice (refer section 11.14).

This class defines a special filter deivce which can be used to evaluate a

165 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

number of inputs and if they agree in value the average of the input values
are returned. If one or more inputs have values which lie outside the defined
range, the average is only calculated based on the ’good’ values

If the number of inputs whihc is considered ’bad’ is larger than the maximum
allowed, the status of the filter will be set to false and the value will again be
based on the average of all inputs.

The maximum allowed number of bad inputs has to be less than half the
number of inputs (rounded down).

The bool() function returns true if the number of inputs with ’bad’ values is
not larger than the maximum allowed bad inputs

To determine if an input is ’bad’, the value is compared to the average of
the other inputs, and if the value is further away from that average than the
’limit’ value, the input is considered ’bad’.

Note that input values can have such a distribution that none of the individual
inputs can be considered ’good’ although all are within the limit from the
average of all the inputs, but none of the inoputs are within the limit of the
average defined by the remaining inputs!

be avare that setting the limit to 0 effectively disabeles the test for ’badness’
of an input (and in which case the bool() funciton will always return true and
the read value will be the average of all inputs.

This class also extends the test() member function so that in order for an
instance of this class to test true, the bool() function must return true as well
as the test() function on each input.

To obtain an instance of this class call the costructor:

my $id = RFC::Redundancy→new($name,$rig);

The RFC::Reduncancy class defines an additional member function which is
the $id→badness() function which returns the number of inputs considred to
be ’bad’

11.39 RFC::SPDEV

Inherits from RFC::Filter (refer section 11.37).

This module defines a number of filter device classes. All the device classes
operates with spline filters on either input and/or output. Notice that for
all splines, if only two lines are detected, the relation is a linear relation and
are handled accordingly (that is without calls to the external splineinterpol
program).

166 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

11.39.1 SPDEV: Input spline filter

This SPDEV class defines a filter device which can be used on top of a normal
device. The SPDEV device type operates on an other device and converts
all read operations on the underlying device according to the specified spline
interpolation table.

The SPDEV device class defines no new member functions.

To obtain an instance of this class call the constructor:

$id = RFC::SPDEV→new($name,$rig)

11.39.2 SPOutDEV: Output spline filter

The SPOutDEV device type operates on an other device and converts all
set/setflow operations on the underlying device according to the specified
spline interpolation table.

To obtain an instance of this class call the constructor:

$id = RFC::SPOutDEV→new($name,$rig)

11.39.3 SPIODEV: Input-output spline filter

The SPOutDEV device type operates on an other device and converts all
set/setflow and read operations on the underlying device according to the
specified spline interpolation tables.

To obtain an instance of this class call the constructor:

$id = RFC::SPIODEV→new($name,$rig)

11.40 RFC::Ysplit

Inherits from RFC::BaseDevice (refer section 11.14).

This module defins the behaviour of a special filter device An instance of
RFC::Ysplit behaves as a selector switch and sends commands to one of two
underlying devices based on the status of the control device (which must be
of type RFC::BaseRelay or a class derived from RFC::BaseRelay).

The underlying devices to be controlled can be of any type derived from
RFC::BaseDevice.

To obtain a RFC::Ysplit instance call the constructor:

$id = RFC::Ysplit→new($name,$rig)

RFC::Ysplit does not export any new member functions besides those derived
from BaseDevice. However if a member function is called which is not derived

167 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

directly from baseDevice the the RFC::Ysplit instance refers the function call
to the underlying selected device thourgh autoloading.

11.41 RFC::Sum

Inherits from RFC::BaseDevice (refer section 11.14).

This class defines several special virtual devices which can be used as a sort
of filter on top of a normal devices.

The following description is for a RFC::Sum device, but the other device types
(RFC::Min and RFC::Max) behaves similarly when considering the input and
output devices

A RFC::Sum device operates on other devices and when the Sum device is
read (that is it’s read function is called), the device retruns the arithmetic
sum of the input devices read functions.

Additionally the RFC::Sum device registers itself on all the input devices
resulting in that if a set or setflow or similar control comand is called on one
of the inputs, then the same control function on the output device (if any) is
called (This is achieved using the observer pattern).

In the case of gas devices, if the setflow command is callen on any of the inputs,
the setflow command is called with the sum of the inputs as argument.

When a read command is called on a RFC::Sum device, the device first reads
the values of all the inputs, and if the input devices supports the cutoff set
command, it checks if the values are below the value of the cutoff. If so, the
value for that device is then set to 0. After this check all the input values are
summed together (with the respecive input factors multiplied on the values
before summing).

To obtain an instance of the RFC::Sum device call the constructor:

my $id = RFC::Sum→new($name,$rig);

Instances of the other device classes (RFC::Min and RFC::Max which uppon
a read request returns either the minimum or maximum value of the inputs)
can be obtained as:

my $id = RFC::Min→new($name,$rig);

my $id = RFC::Max→new($name,$rig);

For RFC::Min and RFC::Max devices any commands passed from any of the
inputs is forwarded to the output device (if any) with the minimum or max-
imum value (instead of the sum) as for a RFC::Sum device.

The Sum device can be used as a simple offsetting filter by only specifying
a single input. If this is configured for tempcntrol devices both the setpoint
and the ramprate is transferred. Please note, however, that this functionality
has been superceeded by the Output spline filters and is thus deprecated in

168 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

version 5.6.4 and onwards.

11.42 RFC::PLC

This class is a modbus communication interface class thats read and write
from a modbus device the class do not implement any of the RFC classes and
can therefore be used as a stand alone interface for TCP modbus communi-
cation. the class is constructed as a singleton class with the IP as the key to
the singleton meaning when instantiate an instance of this class the IP will
be checked for already exist and if not a new object will be obtained.

this means that all interfacing to a specific modbus device with that IP address
will go through the same object

the PLC class is constructed as a interface/data object containing a data
structure of of Modbus addresses and the data associated with this address
is saved if a read() cmd as been executed the data structure is dynamic
and new addresses to read can be added by running the member function
addDataAdr() with augments, if successful the address will now be read with
the read() CMD to get data from the structure just run getSingleReading()
with the adrName key as argument

Design criterium for the modbus stack: in order for this class to work properly
with the modbus stack server the stack should be build in sets of 16 bit words,
for example a byte should always come in pairs of 2 bytes after each other
so the offset address grow with 2, datatype BOOL is also considered as a
byte/single element always avoid to place a 16bit datatype or longer at an
odd offset address

To obtain an instance of this class call the constructors like:

$id = RFC::PLC→new(%)

where the argument hash must have at least the ’IP address’ key defined (with
the PLC’s IP address) Additional possible hash keys are: port (TCP-IP port),
readStartAddress, dataQuantity and subNAME

Example of use:

$id = RFC::PLC→new(IP address =¿ ’10.0.1.216’);
$id→addDataAdr(”PLC Date and time”, 28, 72,’UDINT’);
$id→read();
print scalar(localtime($id→getSingleReading(”PLC Date and time”)));

The RFC::PLC module member functions is definedd below:

169 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

$id→addDataAdr($$$$) Adds a data item to the data list. Arguments
(in roder of alignment): $adrName = hash key
name of the modbus adrress ! should be an
unique name as it is used as the key in the
datastructure. $adr = the modbus stack ad-
dress number of the variable to read starting
from 1 = first data element of the stack $Offset
= the modbus stack offset number $dataType
which must be one of the following types:
’BOOL’, ’BYTE’, ’DINT’, ’DWORD’, ’INT’,
’LREAL’, ’REAL’, ’SINT’, ’TIME’, ’UDINT’,
’UINT’, ’USINT’, ’WORD’

Example call. $testPLC→addDataAdr(”DI24 Analog”,
125, 384,’INT’);

$id→print() use for debugging, print out obejct configura-
tion (datastruct, name, modbus adr, etc.) to
stdout

$id→getName() get the subName of the obejct
$id→getIP() get the Ip address of the modbus server
$id→checkAdrNameExists() return 1 if name exists in the data structure
$id→read() execute a modbus stack read of the full data

structure, return 1 if succesfully with out any
errors

$id→getSingleReading($) returns the last read value of the address key
name specified if exist remember to run read()
before to get a new data set

$id→getReadings() get the whole data structure remember to run
read() before

$id→getRawBytes() return the last read byte string
$id→getLastModbusMsg() return last status msg of the modbus
$id→getlastModbusException() return last Modbus exception

———-WRITE section————————————- modbus writing supports
up to 16 bit(2byte) register and coil(BOOL) writing, in the case of 1 byte
writing this can only be done by writing to the whole 16 bit word and therefore
the value of the second byte in the word will be overwritten with zero value
if not known else the last know set value will be set but only if added to the
@adrstructOut where the last written value is stored, its planed to update
the modbus driver to support writing to multiple registers at once by adding
the write registers function code, but for now we see if this will be of any
needs in the future. plese note that reading and writing at the same modbus
adr. may not give the same value as this is controlled by the modbus slave
ex. the PLC and if the same variable point at the same IN and Out register
address in the modbus device. writing member functions

170 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

$id→addDataAdrWrite($$$$) add a modbus stack writing address, after
adding a an adr. the modbus adr can be write
to by calling the write() with the address
name and a set value. arg: $adrName,
$adr ,$Offset,$dataTybe valid data types:
BOOL,BYTE,UDINT,SINT,INT,UINT
WORD,

$id→setNewValue($$) arg: ”adr name” ”new value” followed by a
writeAllAdr() cmd or Write()

$id→write raw($$$) write to a none specified modbus stack ad-
dress by raw address arg: $address = stack-
Adr, $type = BOOL or 16 bit INT data type,
$value = num

$id→write($$) arg: $dataAdrName , $value
$id→convToOutputFormat($$) Privat member function that converts input

numbers of different type to the modbus data
format ex. a signed INT will be converted to
its corresponding unsigned decimal value arg:
$dataType, $value

$id→getOutStructData($$) get adrstruct data by address name and hash
key name Arg: $dataAdrName = name of an
existing data adr in the @adrstructOut $hash-
Name = key name in the @adrstructOut

$id→getOutStructDataKeyElement($$$) function that search in the @adrstructOut by
a $keyValue in any of the hash struct column
selected by the $HashKeyName, and if found
returns the value of the $hashName, else re-
turns undef arg: $HashKeyName , $keyValue,
$hashName

11.43 RFC::PLCRead

Inherits from RFC::BaseDevice (refer section 11.14).

This class implements (readonly) dataloging through the TCP modbus RFC::PLC.pm
device class note PLC.pm is a singleton class that takes care of all commu-
nication to and from a modbus server given by the IP adrress meaning all
instance of PLCRead.pm with the same IP goes through the same PLC.pm
object

To obtain an instance of this class call the constructors like:

$id = RFC::PLCRead→new($name,$rig)

The RFC::PLCRead module defines no new member functions.

171 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

11.44 RFC::PID

Inherits from Debug (refer section 11.1).

This module defines a PID controller and can be used together with the other
RFCcontroll modules for process control systems.

To obtain an instance of this class call one of the constructors like:

$pid = RFC::PID→new($name,$filename,[opt lock filename]);

Notice that unlike most other RFC devices the PID device class does not
require a RFC::Rig instance as an argument to the constructor. The name
argument is the instance name (useful if operating with more than one in-
stance of the PID class).

The filename is the name of the file in which to store process error and inte-
gration error information. This is used so that the PID device can maintain
state across processes (for instance if the control program is started once a
minute from crontab).

The RFC::PID class implements a standard IPD controller (refer wikipedia
for a more detailed description of a PID controller)

All RFC::PID objects has the following public member functions besides those
derived from the Debug class.

$pid→reset() Resets the internal data including integrated
error.

$pid→name() Returns the name given as first argument to
the constructor.

$pid→intwindup([$]) Sets or gets the maximum integration error
possible (default is 0.2) To disable integrtion
windup protection set the value to 0.

$pid→data($[$]) Adds a new error value to the device. Argu-
ments must be current error and optionally
time. If no time argument is specified, the lo-
cal system time is used instead (utime).

$pid→P([$]) Sets or gets the proportional gain (default is
0.9)

$pid→I([$]) Sets or gets the integration gain (default is 0.2)
$pid→D([$]) Sets or gets the differential gain (default is 0.1)
$pid→get P() Returns the proportional error multiplied with

proportional gain
$pid→get I() Returns the integrated error multiplied with

integration gain
$pid→get D() Returns the differential error multiplied with

differential gain
$pid→get int() Returns the integrated error.
$pid→reset int() Resets the integrated error.
$pid→set int($) Sets the integrated error to the specified value.

172 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

$pid→deadband([$]) Sets ot gets the deadband (if the error is below
this calls to Out() returns undef); Remember
to check for defined status of out if deadband
is used (default is no deadband).

$pid→cutoff([$]) Sets or gets the cutoff vqlue. The cutoff be-
haves similar to deadband, but only for large
error values making the PID more robust with
respect to erroneous values of the measured
process variable.

$pid→min([$]) Sets or gets the minimum output value (de-
fault is -1)

$pid→max([$]) Sets or gets the maximum output value (efault
is 1)

$pid→Out([$]) Returns the output to be set to the system.
The output value will be between min and max
If an argument is specified to Out() it is as-
sumed to be a gain which is then multiplied to
the raw output value and the result returned
instead. Notice that if the error is within the
deadband, Out() returns undef, so remember
to check the return value of Out() before using
it to set a device!

$pid→remove() This function works like DESTROY() except
it does NOT run a store() command before
removing the file object.

Additionally the RFC::PID instances has the following private functions (al-
though Perl does not protect private member functions from being called
from outside an instance...)

$pid→load() Loads the data stored in the data file. Called
automatically by the constructor.

$pid→store() Saves the internal data to file. Called auto-
matically by the destructor. Returns 1 on suc-
ces, 0 if the modification time of the file has
changed since last read/write Note that store
will only save state if it has

changed, that is that $pid→out() has been run resulting
in an output change. This means that if the
nescesarry change is below the deadband or
above the cutoff, changes will NOT be saved!

The RFC::PID object also implements integration windup protection by the
following method (in addition to the posibility to set a maximum value for
the integrated error): If the sum of the proportional gain and the previous
integrated error is enough for the output to reach the maximum or minimum

173 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

value, the integrated error is NOT updated but is maintained at the previous
value.

11.45 RFC::RFCPID

Inherits from RFC::BaseDevice (refer section 11.14).

This class defines a virtual PID control device as well as a more simplified
control loop. for controling complex systems.

To obtain an indtance of this class, use one of the constructors:

$id = RFC::RFCPID→new($name,$rig)

$id = RFC::LApproach→new($name,$rig)

All RFCPID and derived objects have the following member functions (in
addition to those derived from RFC::BaseDevce and Debug.pm):

$id→fast() Returns yes if the device is to run continiously
and as fast as possible. If no is returned it is
only run once a minute (by crontab).

$id→store() Stores the current values and integrated error
for Returns 1 (true) for succes, 0 in case of
errors.

$id→remove() This function removes the underlying PID de-
vice from the Current device. Is only to be
used when it is certian that the current device
is not to be used and no changes in the accu-
mulated error for the device is wanted before
device goes out of scope (nescesarry for the
PID fase control.pl script for excluding slow
PID’s)

$id→reset int() Resets the integrated error.
$id→set int($) Sets the integrated error to the specified value.
$id→find int($) Calculates and sets the required integrated

error nescesarry to get the specified output
value.

$id→set([$]) Sets or gets the target setpoint.
$id→data([$]) Reads the current value and computes the er-

ror which is stored internally as well as re-
turned. If an argument is specified, this is
assumed to be the current value and is used
instead.

$id→out() Sets the output device to the calculated set-
point based on the PID settings.

$id→control() Reads the current value and sets the output
(combination of data and out.

174 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

$id→output enabled() Returns 1 if commands eill be passed to the
output device 0 otherwise.

$id→show gain() Returns an array with information about the
P, I, D and combined output for the device

Note however, that some of the functions are only dummy functions for the
linear approach device (reset int, set int, find int, show gain).

The difference between LinearApproach (RFC::LApproach) and a true PID
is that the linear approach device has a simpler configuration allowing for
easier setup as tuning a true PID is notoriously tricky. The linear approach
device also offers more stable operation in some cases. The disadvantages
of the linear approach device is that it has a fixed regulation rate, and if
the process value changes faster than the stepsize can account for, no stable
tracking will be observed. An other disadvantage is that the linear approach
device is prone to ’hunting’ if the stepsize is set too high (this is similar to
the PID device’s tendency to oscilate if the P or I gains are set too high).

11.46 RFC::Logic

Inherits from RFC::BaseDevice (refer section 11.14).

The RFC::Logic module defines a list of virtual logical devices Each of the
devices implements one of the logical operators AND, OR, XOR etc.

A logic device operates on logical inputs from RFC::BaseDevice derived de-
vices where the boolean value can be sensibly derived (by using the bool()
member function). The device classes where this is the case are: logical
devices, relay devices, gas devices and the special filter device ’Schmidt trig-
ger’ which converts a floating point value to a logical value based on specific
threshold values.

A RFC::Logic derived device can have from 1 to 9 inputs and an optional
single output device. The output device must be a relay device type and is
intended to convey the result of one or more logical operations to the actual
control system.

As RFC::Logic devices are virtual, they are not included in the normal dat-
alogging (and accordingly readstring ignore(1) is set uppon device instan-
tiation). However they must be enabled in the rig configuration to work
properly.

Interdevice control flow is implemented by the obsever pattern. This ensures
that input devices does not need to know that they are used as inputs to
logic devices ad any set() or set noinfo() command exeuted on a relay device
automatically forces ay logic device using this as an input to get updated
(and potentially forcing updates on logic devices further ’down the chain’ to
be updated).

175 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Notice however that great care must be taken when including logic devices
as it is easy to configure a situation where circular references will occour
(essentially causing Perl’s version of a stack overflow).

Thus it is recommended that if logic devices is to be included in a rig’s control
system, make a detailed schematic of the control flow diagram with unique
names of each individual logic gate thus ensuring that the correct inputs and
gate names are chosen when configuring the rig.

A special Logic device is the RFC::Modulus device which returns the result
of the modulus operation:

0 mod 2 = 0

1 mod 2 = 1

2 mod 2 = 0

This device can be used to turn a single integer value into logical values
for controling several relays (each with a different modulus device in the
command chain) Thus a single manual gas or manual relay (which also can
be set to values other than 0 and 1) can be used to set logical internal or
external states.

11.47 RFC::Math

Inherits from RFC::BaseDevice (refer section 11.14).

The RFC::Math module defines a number of arithmetic devices which all ac-
cepts one or more RFC devices as inputs and performs the arithmetic function
on the values obtained from the input devices read funstions.

The RFC::Math devices are purely intended to be used in rare cases where
control logic / feedback loops require calculations of measured device values,
and NOT intended to be used for data logging purposes.

As RFC::Math devices are virtual, they are not included in the normal dat-
alogging (and accordingly readstring ignore(1) is set uppon device instan-
tiation). However they must be enabled in the rig configuration to work
properly.

Interdevice control flow is implemented by the obsever pattern. This ensures
that input devices does not need to know that they are used as inputs to
math devices and any command executed on a RFC::Math input device au-
tomatically forces the RFC::Math to get updated although this has no direct
effect (other than potentially forcing devices further ’down the chain’ to be
updated).

Notice however that great care must be taken when including math devices
as it is easy to configure a situation where circular references will occour
(essentially causing Perl’s version of a stack overflow).

176 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Thus it is recommended that if math devices is to be included in a rig’s
control system, make a detailed schematic of the control flow diagram with
unique names of each individual math device as well as all other normal
devices thus ensuring that the correct inputs and device names are chosen
when configuring the rig.

To obtain an instance of a RFC::Math object call one of the constructors:

my $id = RFC::Math add→new($name,$rig);

my $id = RFC::Math sub→new($name,$rig);

my $id = RFC::Math multily→new($name,$rig);

my $id = RFC::Math divide→new($name,$rig);

my $id = RFC::Math log→new($name,$rig);

my $id = RFC::Math exp→new($name,$rig);

my $id = RFC::Math root→new($name,$rig);

my $id = RFC::Math abs→new($name,$rig);

my $id = RFC::Math inv→new($name,$rig);

RFC::Math devices does not allow caching, however the underlying (input)
devices may do so by themselves.

Notice that some of the RFC::Math devices behaves slightly different than
the normal arithmetic functions they implement. This difference is due to
the potential consequences of division by zero or similar errors.

Thus RFC::Math::divide returns 0 if the divisor is 0, RFC::Math::log and
RFC::Math::root returns 0 for all non-positive inputs (including 0) and RFC::Math::inv
returns 0 if the input is 0.

11.48 RFC::Typecast

Inherits from RFC::Filter (refer section 11.37).

The RFC::Typecast is a special filter device. It can convert one underlying
device to an other type.

Typcast devices should not normally be nescesarry, but in specific cases it
may be nescesarry to do a typecast.

Typecast devices have a simplified interface as they only implement the
BaseDevice classes.

An exception to this is the notify function which allows the conversion of
the originating command to the one specified by the ’notify function’ value.
Default is the ’set’ command.

The possible values for this variable is determined by inspecting any devices
attatched to the Typecast device. If (one or more) attatched devices are

177 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

found, the first device is asked for potential notify functions by calling the
list set functions() on it.

As opposed to most other devices, the readstring function simply returns
the empty string as the value of the typecast device will be equal to the
unederlying device.

A special Typecast device is the RFC::TypecastFaraday (accessed as
Typecast PSU to gas), which only accepts RFC::PSU devices as inputs and
always masquerade as a RFC::gas device. This device class only forwards
’current’ commands but not ’voltage’ commands as it only makes sense to
convert a current to a gas flow according to Faraday’s law of elecrolysis.

To obtain a RFC::Typecast instance, call one of the constructiors as shown
below:

$id = RFC::TypeCastDefault→new($name,$rig);

$id = RFC::TypeCastDefault→new($name,$rig,$input device,$output type,[opt
$read function]);

$id = RFC::TypecastFaraday→new($name,$rig);

$id = RFC::Constant→new($name,$rig);

In case the input device and output type is specified, a RFC::Typecast device
can be instantiated without it having a soresponding section in a RFC::Rig
instances configuration. This enables other RFC::BaseDevice derived classes
to instantiate RFC::Typecast devices explicitly as part of their own instanti-
ation.

The Constant device is a special typecast device which does not ahve an
input or ouptut device, but will register as a device of the output type. This
device can then be used as an input to an other device (such as a filter,
logic or math device) Where a constant value is needed (for instance, if a
Math::Divide device is used and one needs to make sure that the divisor is
alway positvie, the input could be passed through a Max device where one
input is a constant value device with the value 0.1 and the other is the real
input. In this case, the value supplied to divicion will never be below 0.1.

11.49 RFC::Alert

Inherits from RFC::BaseDevice (refer section 11.14).

The RFC::Alert is a device intended to be used for automatic monitoring of
process parameters.

Each instance of RFC::Alert can monitor a single parameter (other RFC de-
vice) and if a given setpoint is passed, a single alert mail is sent to recipients
defined by either the alert mail key for the RFC::Rig instance or the global
system administrators if the alert mail key is not defined.

178 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

If an alert has occoured, the Alert device can be set up to stop any running
sequential programs for the rig and / or execute a sequence of commands
which potentially could rectify the situation leading up to the alert.

The alert vill be canceled whenever the parameter beeing monitored passes
the reset threshold.

The alarm level and the reset level determines if the process parameter have
to be either above or below the alarm threshold for an alarm to trigger. If
the reset level is below the alarm threshold, an alarm is triggered whenever
the process paramater gets above the alarm threshold. If the alarm trheshold
is below the reset level, the reverse is the case.

RFC::Alert instances are not included in normal data logging, as the values
of the monitored device will be logged by that device iteself.

Complex trigger alarms are possible by combining several individual devices
through Math devices, schmidt trigger devices and / or logic devices. How-
ever care should be observed as the more complex the system becomes the
bigger the risk of misconfiguration resulting in loss of experimental results
(by premature shutdown of key devices for instance).

To obtaina RFC::Alert instance, call the constructor as shown below:

$id = RFC::Alert→new($name,$rig);

The RFC::Alert class defines the following extra public member function:

$id→check([opt cache]) This function tests if the value of the
underlying device is within the range defined
as OK or not. If the value is outside the ac-
cepted range, it measures a few times more (up
to the retries value) And if the returned value
is consistently outside the accepted range,
an alert is raised (potentially stopping run-
ing programs and/or executing additional co-
mands which could correct the situation). If
an instance of type RFC::Cache is supplied,
this is passed on to the underlying device po-
tentially speeding up operation. Note that the
retry measurements do NOT pass on the cache
(which woulod be pointless)! The function
returns 0 if the value is within the accepted
range and 1 if the alert has been raised al-
ready. If this call of ckeck() results in the alert
beeing raised, the return value is a text string
describing the alert and any potential actions
taken.

the RFC::Trigger class is derived from RFC::Alert. The only difference is
that instances of RFC::Trigger do NOT have the option to terminate running

179 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

programs or to send mail as they are instended for normal process control
and should thus not influence normal program execution. They are thus only
usefull if they do in fact include trigger commands.

Notice however that if RFC::Trigger devices are used the content of the actual
trigger commands may render running programs invalid or wrong, so care
must be observed when using RFC::Trigger devices in control systems!

11.50 RFC::Adapter

Inherits from RFC::BaseDevice (refer section 11.14).

The RFC::Adapter class defines the behaviour of a group of special virtual
devices. These devices all operator on top of normal RFC::BaseDevice derived
devices and operate according to the Adapter pattern (as defined by GoF).

The adapter devices are intended to supply functionality which the native
RFC devies do not themselves suppport. For instance most power supplies
do not support slowly ramping voltage or current up to a fixed setpoint.

By using a RamprateAdapter this can be facilitated by letting the adapter
device supply a steadialy changing setpoint to the power supply device.

The rationale for using the Adapter pattern is the it makes it possible to use
multiple different adapters on any single object (if the application of those
adapters make any sense that is).

All RFC::Adapter derived classes has two distinct constructors. One with the
normal 2 arguments as for normal RFC::BaseDevice instances:

my $id = RFC::Adapter→new($name,$rig);

And one with an additional argument which must be the RFC::BaseDevice
derived instance to wrap:

my $id = RFC::Adapter→new($name,$rig,$dev);

If the second constructor is used, the adapter device does not need to have
it’s own configurationsection in the rig’s configuration file as it already knows
the device it is to wrap (for some adapter instances the configuration may
still be nescesarry for full functionality).

All RFC::Adapter objects has the following member functions (in addition to
those inherited from RFC::BaseDevice).

$id→update() Performs the internal state change nescesarry
for the added functionality.

$id→load state() Loads any state information which must be
persistent between device invocations

$id→store() Saves persistent information.

Common to the functions described above is that the default adapter does

180 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

not define any functionality for the functions (in effct they are pure vir-
tual), and any nescesarry actions must be defined in the classes derived from
RFC::Adapter

To obtain one of the operational adapters call one of the constructors as shown
below:

my $id = RFC::RamprateAdapter→new($name,$rig);

my $id = RFC::RamprateAdapter→new($name,$rig,$dev);

my $id = RFC::ExponentialDecayAdapter→new($name,$rig);

my $id = RFC::ExponentialDecayAdapter→new($name,$rig,$dev);

Notice that due to the way the RamprateAdapter is implemented, only slow
ramprates will be possible (changes taking minutes or hours to complete).

A special ramprate adapeter is the TempControlAdapter This adapter fully
emulates a RFC::TempControl device completely with the special TempCon-
trol functions like get atemp() etc (see TempControl.pm for details). This en-
ables virtual temperature controlers and also the possibility to use RFCPID
devices as normal (physical) temperature controlers.

11.51 RFC::VacuumControl

Inherits from RFC::BaseDevice (refer section 11.14).

This class implements RFC::VacuumControl for pfeiffer-vacuum PID con-
troller RVC 300 To obtain a VacuumControl instance call one of the con-
structors as shown below:

$id = RFC::VacuumControl→new($name,$rig);

The RFC::VacuumControl class

The following RFC::MFC member function has been remapped:

$id→setflow Alias for $id→setP.
$id→maxflow Alias for $id→maxP.
$id→gasses Returns a single element ($id→selected gas).

181 of 433 Implemented by Søren Koch

Chapter 12

Device configuration

This section describes how the different devices are configured and which
configuration parameters are used for each device class and type. Each device
class contains a number of device types which behaves similarly. For instance,
all Simplechannel devices can be used to measure a physical parameter (this
beeing a voltage, resistance, current or similar).

All devices contains a number of common functions, these include read and
readstring, which allows the application to read the value of the device (read-
string is used for data logging, as it includes the device name and a times-
tamp). The individual devices themselves decides what the ’value’ of the
device means.

All devices also contains two common tags, a title tag (used for an optional
title on the data plots) and a show plot tag used for determining if the data
from the device is to be shown in the data plots. Notice however that the
value of this tag only determines if a graph is shown! If the device is enabled
(that is included in the data logging), the data will be written in the data file
irrespectively of the value of the show plot tag.

Notice however that the show plot tag should noly ever be used for enabled
devices as otherwise a name overlap may result in plots not beeing shown
correctly. Specifically if two devices of different types but identical names
exists and one is enabled and the other not, then setting the show plot tag
to no for the not enabled device would result in the plot generating program
reading this value instead as device type information is not stored in the
stored data byt only the name and thus the plotting program has to check all
device types for a device with the specific data collumn name before it can
query the value of the show plot tag.

Note that or all devices described in this chapter, the legacy tags (if any) is
included in the list of configurable tags for the device type in quiestion. Thus
for some devices the actual number of tags displayed on the setup page may
be les than the list described here.

182

DTU energy RFCcontrol 6.3.2

12.1 Simplechannel

Simplechannels are used for measuring a single parameter, this could be for
instance a voltage. Often simplechannels are used internally by some of the
more complex devices (refer sectios 12.3, 12.6 or 12.5). The use by other de-
vices of simplechannels are either explicitly (by referencing an already defined
simplehcannel by name) or implicitly by creating one based on configuration
parameters from the domplex device itself.

12.1.1 Keithley

Tag Description Values Default
mode Device control mode Readonly Readonly

communication Connunication mode
GPIB
Serial

GPIB

channel Channel number of input device,
format: X:YZZ, X gpib address, Y
board number, ZZ channel num-
ber on board

1:101

measure type Measure configuration string send
to the keithley to set up mea-
surement, fres being 4-point resis-
tance measruements. NB: Values
other than Default is only valid for
gpibserver version 2.13 or later or
Linux gpib server version 1.2.1 or
later!

Default - g-
pibserver
volt:dc
volt:ac
res
fres

Default - gpibserver

use gpib spline Convert data using gpibserver
spline table.

Yes
No

Yes

factor Scaling factor 1
title Optional title

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

use cache Determines if persisten caching of
read values is allowed

Yes
No

No

Continued on next page

183 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.1 – continued from previous page
Tag Description Values Default
comments Description for this device. Do

not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.1: Configuration tags for simplechannel
device type ’Keithley’. An empty value field gen-
erally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

12.1.2 Keithley580

Tag Description Values Default
mode Device control mode Readonly Readonly
communication Connunication mode GPIB
address GPIB address 1

range Measurement range

Auto
200m
2
20
200
2k
20k
200k

0

dry circuit Use dry circuit measurement
mode

None
Enabled

0

relative Use relative measruement mode
Off
On

0

polarity
Pol+
Pol-

0

drive Measurement drive mode
Pulsed
DC

1

factor Scaling factor 1
title Optional title

Continued on next page

184 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.2 – continued from previous page
Tag Description Values Default

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

use cache Determines if persisten caching of
read values is allowed

Yes
No

No

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.2: Configuration tags for simplechannel
device type ’KeithleyMicroohmmeter’. An empty
value field generally indicates that the tag value
can be either a free text string or a number (in-
teger or floating point).

12.1.3 ICP

Tag Description Values Default
mode Device control mode Readonly Readonly
tty Serial device for controling device

(eg ttyS0)
ttyS0

address Device address 1
channel Channel number on device (Note

0-based)
0

range Input type and range
factor Scaling factor 1
title Optional title

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

Continued on next page

185 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.3 – continued from previous page
Tag Description Values Default

use cache Determines if persisten caching of
read values is allowed

Yes
No

No

CRC Determines if checksum is to be
used for serial communication

No
Yes

No

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.3: Configuration tags for simplechannel
device type ’SimpleICP’. An empty value field
generally indicates that the tag value can be ei-
ther a free text string or a number (integer or
floating point).

12.1.4 ICP7017/18

Tag Description Values Default
mode Device control mode Readonly Readonly
tty Serial device for controling device

(eg ttyS0)
ttyS0

address Device address 1
channel Channel number on device (Note

0-based)
0

range Input type and range
factor Scaling factor 1
title Optional title

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

use cache Determines if persisten caching of
read values is allowed

Yes
No

No

Continued on next page

186 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.4 – continued from previous page
Tag Description Values Default

CRC Determines if checksum is to be
used for serial communication

No
Yes

No

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.4: Configuration tags for simplechannel
device type ’SimpleICP7017/18’. An empty value
field generally indicates that the tag value can be
either a free text string or a number (integer or
floating point).

12.1.5 ICP7017ZW

Tag Description Values Default
mode Device control mode Readonly Readonly
tty Serial device for controling device

(eg ttyS0)
ttyS0

address Device address 1
channel Channel number on device (Note

0-based)
0

range Input type and range
factor Scaling factor 1
title Optional title

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

use cache Determines if persisten caching of
read values is allowed

Yes
No

No

CRC Determines if checksum is to be
used for serial communication

No
Yes

No

Continued on next page

187 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.5 – continued from previous page
Tag Description Values Default
comments Description for this device. Do

not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.5: Configuration tags for simplechannel
device type ’SimpleICP7017ZW’. An empty value
field generally indicates that the tag value can be
either a free text string or a number (integer or
floating point).

12.1.6 ICP7019

Tag Description Values Default
mode Device control mode Readonly Readonly
tty Serial device for controling device

(eg ttyS0)
ttyS0

address Device address 1
channel Channel number on device (Note

0-based)
0

range Input type and range
factor Scaling factor 1
title Optional title

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

use cache Determines if persisten caching of
read values is allowed

Yes
No

No

CRC Determines if checksum is to be
used for serial communication

No
Yes

No

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

Continued on next page

188 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.6 – continued from previous page
Tag Description Values Default

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.6: Configuration tags for simplechannel
device type ’SimpleICP7019/87019’. An empty
value field generally indicates that the tag value
can be either a free text string or a number (in-
teger or floating point).

12.1.7 ModbusTCP

Tag Description Values Default
mode Device control mode Readonly Readonly
IP IP address of module 127.0.0.1
register Modbus holding register for read-

ing value
0

factor Scaling factor 1
title Optional title

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

use cache Determines if persisten caching of
read values is allowed

Yes
No

No

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.7: Configuration tags for simplechannel
device type ’ModbusTCP’. An empty value field
generally indicates that the tag value can be ei-
ther a free text string or a number (integer or
floating point).

189 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

12.1.8 Modbus

Tag Description Values Default
mode Device control mode Readonly Readonly
tty Serial device for controling device

(eg ttyS0)
ttyS0

address Device address 1
channel Modbus tag number for reading

value
0

range Input type and range
factor Scaling factor 1
title Optional title

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

use cache Determines if persisten caching of
read values is allowed

Yes
No

No

CRC Determines if checksum is to be
used for serial communication

No
Yes

No

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.8: Configuration tags for simplechan-
nel device type ’SimpleModbus’. An empty value
field generally indicates that the tag value can be
either a free text string or a number (integer or
floating point).

12.1.9 PLCRead

190 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Tag Description Values Default
mode Device read mode Readonly Readonly
IP PLC IP address 10.0.03.216
port modbus port number 502
stackAddress modbus stack address index num

of the variable to read
1

offset modbus stack offset value of the
variable to read

0

dataType data type of the variable to read

BOOL
BYTE
DINT
DWORD
INT
LREAL
REAL
SINT
TIME
UDINT
UINT
USINT
WORD

WORD

title Optional title

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.9: Configuration tags for simplechannel
device type ’PLCRead’. An empty value field
generally indicates that the tag value can be ei-
ther a free text string or a number (integer or
floating point).

12.1.10 External

191 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Tag Description Values Default
mode Device control mode Readonly Readonly
program External program to call

when a read request on
this device is called. The
program must recide in
/usr/local/bin/celltest/external/
and must return a number when
executed. The filename must also
contain only digits, letters and
’.’ (this restriction is in order
to prevent code injection). The
program is called with a single
argument: the rig number (’15’ in
case of rig15) which can either be
ignored or used by the program
to distinguish between different
rigs when called.

time.pl time.pl

factor Scaling factor 1
title Optional title

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

use cache Determines if persisten caching of
read values is allowed

Yes
No

No

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.10: Configuration tags for simplechannel
device type ’External’. An empty value field gen-
erally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

192 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

12.1.11 Socket

Tag Description Values Default
mode Device control mode Readonly Readonly
host IP or hostname of server to con-

tact
localhost

port Port number 2020
command Command to execute by host read
arguments Optional arguments passed to

server, separate by comma
factor Scaling factor 1
title Optional title

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

use cache Determines if persisten caching of
read values is allowed

Yes
No

No

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.11: Configuration tags for simplechannel
device type ’Socket’. An empty value field gener-
ally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

12.1.12 SOAP

Tag Description Values Default
mode Device control mode Readonly Readonly
wsdl URL of the WSDL file describing

the service
command Command to execute by host read

Continued on next page

193 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.12 – continued from previous page
Tag Description Values Default
arguments Optional arguments passed to

server, separate by comma
factor Scaling factor 1
title Optional title

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

use cache Determines if persisten caching of
read values is allowed

Yes
No

No

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.12: Configuration tags for simplechannel
device type ’SOAP’. An empty value field gener-
ally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

194 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

12.2 Relay

Relay devices are used for control of relay modules for controling other ex-
ternal functions. This could for instance be magnetic valves for gasses or
similar device control. As with simplechannels, relay devices are often used
internally in more complex devices (refer sections 12.5, 12.6 or 12.7). These
devices are used either explisitly (by referentinc the realy device by name) ro
implictly by creating a relay device from internal parameters in the complex
device).

Relay devices supports the set command to set the status of the relay (1 for
closed relay, 0 for open)

12.2.1 ICP

Tag Description Values Default
mode Device control mode Automatic Automatic
tty Serial device for communication ttyS0
address Device address 0
channel Channel number on device (Note

is 0 based)
0

title Optional title

show plot Determines if the current device
data is to be shown in the daily
data plots

Yes
No

Yes

use cache Determines if persisten caching of
read values is allowed

Yes
No

No

CRC Determines if checksum is to be
used for serial communication

No
Yes

No

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.13: Configuration tags for relay device
type ’ICPRelay’. An empty value field generally
indicates that the tag value can be either a free
text string or a number (integer or floating point).

195 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

12.2.2 ICPDI

Tag Description Values Default
mode Device control mode Readonly Readonly
tty Serial device for communication ttyS0
address Device address 0
channel Channel number on device (Note

is 0 based)
0

title Optional title

show plot Determines if the current device
data is to be shown in the daily
data plots

Yes
No

Yes

use cache Determines if persisten caching of
read values is allowed

Yes
No

No

CRC Determines if checksum is to be
used for serial communication

No
Yes

No

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.14: Configuration tags for relay device
type ’ICPDI’. An empty value field generally in-
dicates that the tag value can be either a free text
string or a number (integer or floating point).

12.2.3 ManualRelay

Tag Description Values Default
output device Relay device for output (optional,

can be used to control a physical
realy or logic device)

title Optional title

show plot Determines if the current device
data is to be shown in the daily
data plots

Yes
No

Yes

Continued on next page

196 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.15 – continued from previous page
Tag Description Values Default
comments Description for this device. Do

not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.15: Configuration tags for relay device
type ’ManualRelay’. An empty value field gener-
ally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

12.2.4 Monostable

Tag Description Values Default
mode Device control mode Automatic Automatic
device Relay device name used for ac-

tual control (a BaseRelay device
instance)

duration Duration of the on pulse in sec-
onds

1

title Optional title

show plot Determines if the current device
data is to be shown in the daily
data plots

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.16: Configuration tags for relay device
type ’Monostable’. An empty value field gener-
ally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

197 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

12.2.5 Monostable-PWM

Tag Description Values Default
mode Device control mode Automatic Automatic
device Relay device name used for ac-

tual control (a BaseRelay device
instance)

timing device type Device type of the timing device

simplechann-
el
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

timing device Device determining length of on
state. The read value of this de-
vice uppon a recieved set com-
mand is used for the duration of
the pulse. If no timing device can
be loaded, the duration is fixed to
1 second. If the read value is neg-
ative, the duration is set to 0.

title Optional title

show plot Determines if the current device
data is to be shown in the daily
data plots

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Continued on next page

198 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.17 – continued from previous page
Tag Description Values Default

Table 12.17: Configuration tags for relay device
type ’Monostable-PWM’. An empty value field
generally indicates that the tag value can be ei-
ther a free text string or a number (integer or
floating point).

199 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

12.3 Templog

Temperature log devices are used for measuring temperatures by thermocou-
ples or similar sensor types. Usually the temperature devices uses simplechan-
nel devices internally to do the actual measurements, thus the temperature
device can be visualised as simply a computational device.

12.3.1 Analog

Tag Description Values Default
mode Device control mode Readonly Readonly
channel name Input device name
channel Input device channel, only

used if no channel name.
Note that the measure
channel must report the
value in either mV (for
thermocouples) or Ohm
(for resistive elements such
as pt1000 or similar

0

channel input type Input device type , only
used if no channel name

Keithley
Keithley580
ICP
ICP7017/18
ICP7017ZW
ICP7019
ModbusTCP
Modbus
PLCRead
External
Socket
SOAP

Keithley

channel tty Input device communica-
tion device, only used if no
device name and device in-
put type is not Keithley

ttyS0

channel address Input device address, only
used if no device name and
device input type is not
Keithley

0

Continued on next page

200 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.18 – continued from previous page
Tag Description Values Default

type Sensor type

K
N
S
R
B
pt100
pt1000
MCP9700
MCP9701
Thermistor -
NTCLE100E31-
03 B0

S

internal compensation Switch for controling if the
input device reports raw
voltage or does internal
compensation, thus report-
ing temperatures directly

Yes
No

No

callibration file File name of callibration file
if custom callibration file is
to be used for calculations
(Default is NIST tables)

DEFAULT DEFAULT

cold junction name Name of cold junction in-
put device if using raw in-
put (in conjuction with re-
sistance input device)

cold junction device Name of temperature log
device for determining cold
junction temperature

cj channel Cold junction device chan-
nel, only used if no cold
junction name

0

Continued on next page

201 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.18 – continued from previous page
Tag Description Values Default

cj channel input type Cold junction input type,
only used if no cold junction
name

Keithley
Keithley580
ICP
ICP7017/18
ICP7017ZW
ICP7019
ModbusTCP
Modbus
PLCRead
External
Socket
SOAP

Keithley

cj channel tty Cold junction communica-
tion device, only used if
no cold junction name and
cond junction input type is
not Keithley)

ttyS0

cj channel address Cold junction device ad-
dress, only used if no cold
junction name and cond
junction input type is not
Keithley)

0

cj type Cold junction sensor type

fixed
pt100
pt1000
templog dev-
ice

pt1000

cj temp Cold junction temperature
(if fixed)

25

lead res name Lead resistance input de-
vice

lead res Lead ressistance if fixed
value or lead resistance
channel if not fixed value

0

Continued on next page

202 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.18 – continued from previous page
Tag Description Values Default

lead res input type Lead resistance input de-
vice type

fixed value
Keithley
Keithley580
ICP
ICP7017/18
ICP7017ZW
ICP7019
ModbusTCP
Modbus
PLCRead
External
Socket
SOAP

fixed value

lead res tty Lead resistance input de-
vice communication device,
only used if no lead ressis-
tance name and lead re-
sistance input type is not
Keithley

ttyS0

lead res address Lead resistance input de-
vice device address, only
used if no lead ressistance
name and lead resistance
input type is not Keithley

0

title Optional device title

show plot Determines if the current
device data is to be shown
in the normal daily data
plots (graph will be shown
in the ’all data’ page). Only
relevant for enabled devices

Yes
No

Yes

use cache Determines if persisten
caching of read values is
allowed

Yes
No

No

comments Description for this device.
Do not use ’,’ in text as that
character is used as newline
substitute.

Continued on next page

203 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.18 – continued from previous page
Tag Description Values Default

disable readstring Determines if readstring
should always return the
empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.18: Configuration tags for templog de-
vice type ’S’. An empty value field generally indi-
cates that the tag value can be either a free text
string or a number (integer or floating point).

12.3.2 E3216

Tag Description Values Default
channel Controler address 0
tty Communication device (ex.

ttyS0)
ttyS0

controller mode Number format
integer
decimal

integer

factor Multiplication factor 1

communication Communication type
modbus
bisynch

modbus

title Optional device title

show plot Determines if the current
device data is to be shown
in the daily data plots

Yes
No

Yes

use cache Determines if persisten
caching of read values is
allowed

Yes
No

No

comments Description for this device.
Do not use ’,’ in text as that
character is used as newline
substitute.

disable readstring Determines if readstring
should always return the
empty string (only relevant
for enabled devices)

No
Yes

No

Continued on next page

204 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.19 – continued from previous page
Tag Description Values Default

Table 12.19: Configuration tags for templog de-
vice type ’3216e’. An empty value field generally
indicates that the tag value can be either a free
text string or a number (integer or floating point).

12.3.3 E2216

Tag Description Values Default
channel Controler address 0
tty Communication device (ex.

ttyS0)
ttyS0

controller mode Number format
integer
decimal

integer

factor Multiplication factor 1

communication Communication type
modbus
bisynch

modbus

title Optional device title

show plot Determines if the current
device data is to be shown
in the daily data plots

Yes
No

Yes

use cache Determines if persisten
caching of read values is
allowed

Yes
No

No

comments Description for this device.
Do not use ’,’ in text as that
character is used as newline
substitute.

disable readstring Determines if readstring
should always return the
empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.20: Configuration tags for templog de-
vice type ’2216e’. An empty value field generally
indicates that the tag value can be either a free
text string or a number (integer or floating point).

205 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

12.3.4 E2208

Tag Description Values Default
channel Controler address 0
tty Communication device (ex.

ttyS0)
ttyS0

controller mode Number format
integer
decimal

integer

factor Multiplication factor 1

communication Communication type
modbus
bisynch

modbus

title Optional device title

show plot Determines if the current
device data is to be shown
in the daily data plots

Yes
No

Yes

use cache Determines if persisten
caching of read values is
allowed

Yes
No

No

comments Description for this device.
Do not use ’,’ in text as that
character is used as newline
substitute.

disable readstring Determines if readstring
should always return the
empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.21: Configuration tags for templog de-
vice type ’2208e’. An empty value field generally
indicates that the tag value can be either a free
text string or a number (integer or floating point).

12.3.5 E2404

Tag Description Values Default
channel Controler address 0
tty Communication device (ex.

ttyS0)
ttyS0

controller mode Number format
integer
decimal

integer

Continued on next page

206 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.22 – continued from previous page
Tag Description Values Default
factor Multiplication factor 1

communication Communication type
modbus
bisynch

modbus

title Optional device title

show plot Determines if the current
device data is to be shown
in the daily data plots

Yes
No

Yes

use cache Determines if persisten
caching of read values is
allowed

Yes
No

No

comments Description for this device.
Do not use ’,’ in text as that
character is used as newline
substitute.

disable readstring Determines if readstring
should always return the
empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.22: Configuration tags for templog de-
vice type ’2404e’. An empty value field generally
indicates that the tag value can be either a free
text string or a number (integer or floating point).

12.3.6 E2408

Tag Description Values Default
channel Controler address 0
tty Communication device (ex.

ttyS0)
ttyS0

controller mode Number format
integer
decimal

integer

factor Multiplication factor 1

communication Communication type
modbus
bisynch

modbus

title Optional device title

Continued on next page

207 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.23 – continued from previous page
Tag Description Values Default

show plot Determines if the current
device data is to be shown
in the daily data plots

Yes
No

Yes

use cache Determines if persisten
caching of read values is
allowed

Yes
No

No

comments Description for this device.
Do not use ’,’ in text as that
character is used as newline
substitute.

disable readstring Determines if readstring
should always return the
empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.23: Configuration tags for templog de-
vice type ’2408e’. An empty value field generally
indicates that the tag value can be either a free
text string or a number (integer or floating point).

12.3.7 E2416

Tag Description Values Default
channel Controler address 0
tty Communication device (ex.

ttyS0)
ttyS0

controller mode Number format
integer
decimal

integer

factor Multiplication factor 1

communication Communication type
modbus
bisynch

modbus

title Optional device title

show plot Determines if the current
device data is to be shown
in the daily data plots

Yes
No

Yes

Continued on next page

208 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.24 – continued from previous page
Tag Description Values Default

use cache Determines if persisten
caching of read values is
allowed

Yes
No

No

comments Description for this device.
Do not use ’,’ in text as that
character is used as newline
substitute.

disable readstring Determines if readstring
should always return the
empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.24: Configuration tags for templog de-
vice type ’2416e’. An empty value field generally
indicates that the tag value can be either a free
text string or a number (integer or floating point).

12.3.8 W6100

Tag Description Values Default
channel Controler address 0
tty Communication device (ex.

ttyS0)
ttyS0

factor Multiplication factor 1
title Optional device title
comments Description for this device.

Do not use ’,’ in text as that
character is used as newline
substitute.

disable readstring Determines if readstring
should always return the
empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.25: Configuration tags for templog de-
vice type ’West6100’. An empty value field gen-
erally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

209 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

12.3.9 Linkam

Tag Description Values Default
channel Controler address 0
tty Communication device (ex.

ttyS0)
ttyS0

factor Multiplication factor 1
title Optional device title
comments Description for this device.

Do not use ’,’ in text as that
character is used as newline
substitute.

disable readstring Determines if readstring
should always return the
empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.26: Configuration tags for templog de-
vice type ’Linkam’. An empty value field gener-
ally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

210 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

12.4 Tempcontrol

Temperature control devices are used to control and monitor furnaces con-
trolers (including cryogenic controlers as they work similarly)

Temperature control devices supports the set temp and set ramp commands
to set the temperature setpoint and temperature ramprate.

A special tag is the ’controler type’. This tag is not used for internal config-
uration of the device, but is instead used for device selection. The reason for
this is historic as version 4.x had to be backwards compatible on a configura-
tion file level with version 3.x. Thus for instance for a Honeywell device, it is
possible to select a value corresponding to a Eurotherm® controler, this will
however convert the device to the appropriate Eurotherm® device!.

12.4.1 Honeywell

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

tty Communication device ttyS0
address Device address 1
minramp Minimum allowable ramprate in

C/hour
0

maxramp Maximum allowable ramprate in
C/hour (no value means no limit)

maxtemp maximum allowed setpoint, not
enforced if not set

mintemp Minimum allowed setpoint, not
enforced if not set

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

use cache Determines if persisten caching of
read values is allowed

Yes
No

No

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Continued on next page

211 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.27 – continued from previous page
Tag Description Values Default

Table 12.27: Configuration tags for tempcontrol
device type ’Honeywell’. An empty value field
generally indicates that the tag value can be ei-
ther a free text string or a number (integer or
floating point).

12.4.2 Julabo

Tag Description Values Default

mode Device control mode
Manual
Automatic
Readonly

Automatic

tty Communication device ttyS0

baudrate baudrate

1200
2400
4800
9600

4800

parity parity
even
none
odd

even

handshake handshake type
rts
xoff
none

rts

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

use cache Determines if persisten caching of
read values is allowed

Yes
No

No

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Continued on next page

212 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.28 – continued from previous page
Tag Description Values Default

Table 12.28: Configuration tags for tempcontrol
device type ’Julabo’. An empty value field gen-
erally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

12.4.3 E3216

Tag Description Values Default

mode Device control mode
Manual
Automatic
Readonly

Automatic

tty Communication device ttyS0
address Device address 1

controler mode Number format
integer
decimal

integer

type Communication mode
modbus
bisynch

modbus

maxramp Maximum allowable ramprate in
C/hour (no value means no limit)

minramp Minimum allowable ramprate in
C/hour (Default 6 C/hour for Eu-
rotherm)

6

maxtemp maximum allowed setpoint, not
enforced if not set

mintemp Minimum allowed setpoint, not
enforced if not set

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

use cache Determines if persisten caching of
read values is allowed

Yes
No

No

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

Continued on next page

213 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.29 – continued from previous page
Tag Description Values Default

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.29: Configuration tags for tempcontrol
device type ’E3216’. An empty value field gener-
ally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

12.4.4 E2216

Tag Description Values Default

mode Device control mode
Manual
Automatic
Readonly

Automatic

tty Communication device ttyS0
address Device address 1

controler mode Number format
integer
decimal

integer

type Communication mode
modbus
bisynch

modbus

maxramp Maximum allowable ramprate in
C/hour (no value means no limit)

minramp Minimum allowable ramprate in
C/hour (Default 6 C/hour for Eu-
rotherm)

6

maxtemp maximum allowed setpoint, not
enforced if not set

mintemp Minimum allowed setpoint, not
enforced if not set

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

use cache Determines if persisten caching of
read values is allowed

Yes
No

No

Continued on next page

214 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.30 – continued from previous page
Tag Description Values Default
comments Description for this device. Do

not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.30: Configuration tags for tempcontrol
device type ’E2216’. An empty value field gener-
ally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

12.4.5 E2208

Tag Description Values Default

mode Device control mode
Manual
Automatic
Readonly

Automatic

tty Communication device ttyS0
address Device address 1

controler mode Number format
integer
decimal

integer

type Communication mode
modbus
bisynch

modbus

maxramp Maximum allowable ramprate in
C/hour (no value means no limit)

minramp Minimum allowable ramprate in
C/hour (Default 6 C/hour for Eu-
rotherm)

6

maxtemp maximum allowed setpoint, not
enforced if not set

mintemp Minimum allowed setpoint, not
enforced if not set

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

Continued on next page

215 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.31 – continued from previous page
Tag Description Values Default

use cache Determines if persisten caching of
read values is allowed

Yes
No

No

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.31: Configuration tags for tempcontrol
device type ’E2208’. An empty value field gener-
ally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

12.4.6 E2404

Tag Description Values Default

mode Device control mode
Manual
Automatic
Readonly

Automatic

tty Communication device ttyS0
address Device address 1

controler mode Number format
integer
decimal

integer

type Communication mode
modbus
bisynch

modbus

maxramp Maximum allowable ramprate in
C/hour (no value means no limit)

minramp Minimum allowable ramprate in
C/hour (Default 6 C/hour for Eu-
rotherm)

6

maxtemp maximum allowed setpoint, not
enforced if not set

mintemp Minimum allowed setpoint, not
enforced if not set

Continued on next page

216 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.32 – continued from previous page
Tag Description Values Default

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

use cache Determines if persisten caching of
read values is allowed

Yes
No

No

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.32: Configuration tags for tempcontrol
device type ’E2404’. An empty value field gener-
ally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

12.4.7 E2408

Tag Description Values Default

mode Device control mode
Manual
Automatic
Readonly

Automatic

tty Communication device ttyS0
address Device address 1

controler mode Number format
integer
decimal

integer

type Communication mode
modbus
bisynch

modbus

maxramp Maximum allowable ramprate in
C/hour (no value means no limit)

minramp Minimum allowable ramprate in
C/hour (Default 6 C/hour for Eu-
rotherm)

6

Continued on next page

217 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.33 – continued from previous page
Tag Description Values Default
maxtemp maximum allowed setpoint, not

enforced if not set
mintemp Minimum allowed setpoint, not

enforced if not set

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

use cache Determines if persisten caching of
read values is allowed

Yes
No

No

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.33: Configuration tags for tempcontrol
device type ’E2408’. An empty value field gener-
ally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

12.4.8 E2416

Tag Description Values Default

mode Device control mode
Manual
Automatic
Readonly

Automatic

tty Communication device ttyS0
address Device address 1

controler mode Number format
integer
decimal

integer

type Communication mode
modbus
bisynch

modbus

maxramp Maximum allowable ramprate in
C/hour (no value means no limit)

Continued on next page

218 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.34 – continued from previous page
Tag Description Values Default
minramp Minimum allowable ramprate in

C/hour (Default 6 C/hour for Eu-
rotherm)

6

maxtemp maximum allowed setpoint, not
enforced if not set

mintemp Minimum allowed setpoint, not
enforced if not set

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

use cache Determines if persisten caching of
read values is allowed

Yes
No

No

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.34: Configuration tags for tempcontrol
device type ’E2416’. An empty value field gener-
ally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

12.4.9 W6100

Tag Description Values Default

mode Device control mode
Manual
Automatic
Readonly

Automatic

tty Communication device ttyS0
address Device address 1
comments Description for this device. Do

not use ’,’ in text as that character
is used as newline substitute.

Continued on next page

219 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.35 – continued from previous page
Tag Description Values Default

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.35: Configuration tags for tempcontrol
device type ’W6100’. An empty value field gen-
erally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

12.4.10 Linkam

Tag Description Values Default

mode Device control mode
Manual
Automatic
Readonly

Automatic

tty Communication device ttyS0
address Device address 1

controler mode Number format
integer
decimal

integer

type Communication mode
modbus
bisynch

modbus

maxramp Maximum allowable ramprate in
C/hour (no value means no limit)

minramp Minimum allowable ramprate in
C/hour (Default 6 C/hour for Eu-
rotherm)

6

maxtemp maximum allowed setpoint, not
enforced if not set

mintemp Minimum allowed setpoint, not
enforced if not set

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

use cache Determines if persisten caching of
read values is allowed

Yes
No

No

Continued on next page

220 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.36 – continued from previous page
Tag Description Values Default
comments Description for this device. Do

not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.36: Configuration tags for tempcontrol
device type ’Linkam’. An empty value field gen-
erally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

221 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

12.4.11 Omron-E5CC

Tag Description Values Default

mode Device control mode
Manual
Automatic
Readonly

Automatic

type Communication mode modbus modbus
tty Communication device ttyS0
address Device address 1
comments Description for this device. Do

not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.37: Configuration tags for tempcontrol
device type ’Omron-E5CC’. An empty value field
generally indicates that the tag value can be ei-
ther a free text string or a number (integer or
floating point).

222 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

12.5 MFC

A mass flow controler device is used for the actual control of the gas flow
controler. This makes it possible for multiple gasses to use the same physical
flow controler device by multiplexing (refer sections 12.7 and 12.11).

All MFC devices supports the setflow command to set the actual gas flow.

Notice, that MFC-devices only rarely is used explicitly to measure gas flows.
Usually this is done implicitly through a gas device (refer section 12.7) which
refers the measurement to the MFC device. Thus to create a new gas flow
line, first create a gas device (a manual one), then create the MFC-device
(that uses the gas device i question), and at last change the mode of the
gas device from manual to automatic (once the gas device has registered the
correct MFC device, which happens automatically as long as only one MFC
device references the gas device). It is not allowed to have more than one
MFC device reference each gas device!

Some MFC devices contains a special setting variable called ’spline’. This is
intended to be used in the case a callibration curve/list has been supplied
with the controler and can be used to correct the MFC output according to
the callibration sheet. The format of the setting is a list of values which can
be used in by a spline interpoaltion routine as shown below:

0 0

1 1.2

2 2.1

3 3

4 3.9

The first column is the flow reported by the controler, and the second is
the actual flow (note that flows are in L/hour irrespective of which unit the
controler reports the flow in!). If the field is left blank, no correction is
atempted and the reported flow is used as is.

A related control device is the pressure controler. Unlike mass flow controler
devices it does not support multiplexers but it is used just like a MFC device.
The reason for this is that it is possible to control the flow of a gas or the
pressure, but not both at the same time.

The data unit for pressure controlers is bar absolute (barA). 0 barA corre-
sponds to a vaccum and 1 barA corresponds roughly to atmospheric pressure.

12.5.1 Manual

Tag Description Values Default
mode Device control mode Manual Manual

Continued on next page

223 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.38 – continued from previous page
Tag Description Values Default

calibrated gas The gas for which the
maxflow is specified on the
controler (usually nitrogen)

ne
co2
o2
d2
n2
no
kr
backup
co
o2 cathode
ch4
he
ext anode
n2o3
no2
h2
ar
xe
n2 cathode
ext cathode
air
chx
n20

n2

calibrated maxflow Maximum flowrate for the
callibrated gas (Note in
L/hour!)

100

gas selected gas n2

gas change Gas change mode
Manual
Automatic

Manual

gas multiplexer Name of gas multiplexer de-
vice if any

gasses Avaliable gasses, Must con-
tain a comma separated list
of gas names (device name!)
that the MFC can be used
to control (in case of no
multiplexer, just the single
gas connected).

n2

spline
setflow factor 1
read factor 1

Continued on next page

224 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.38 – continued from previous page
Tag Description Values Default
title Optional title

show plot Determines if the current
device data is to be shown
in the normal daily data
plots (graph will be shown
in the ’all data’ page). Only
relevant for enabled devices

Yes
No

Yes

use cache Determines if persisten
caching of read values is
allowed

Yes
No

No

comments Description for this device.
Do not use ’,’ in text as that
character is used as newline
substitute.

disable readstring Determines if readstring
should always return the
empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.38: Configuration tags for MFC device
type ’Manual’. An empty value field generally
indicates that the tag value can be either a free
text string or a number (integer or floating point).

12.5.2 Brooks

Tag Description Values Default
mode Device control mode Automatic Automatic
tty Communication device (ex.

ttyS0)
ttyS0

channel Tag number (ex 05691001),
NB must be 8 digits!

00000000

Continued on next page

225 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.39 – continued from previous page
Tag Description Values Default

calibrated gas The gas for which the
maxflow is specified on the
controler (usually nitrogen)

ne
co2
o2
d2
n2
no
kr
backup
co
o2 cathode
ch4
he
ext anode
n2o3
no2
h2
ar
xe
n2 cathode
ext cathode
air
chx
n20

n2

calibrated maxflow Maximum flowrate for the
callibrated gas (Note in
L/hour!)

100

unit Flow unit in which the con-
troler reports the gas flow.
MB This may be different
than the unit the maxflow
is given in!

L/s
L/min
L/hour
mL/s
mL/min
mL/hour
m3/s
m3/min
m3/hour

L/hour

gas selected gas n2

relay Bypass relay avaliable
YES
NO

NO

relay time bypass relay engage time
(seconds)

0

relay name Bypass relay name

Continued on next page

226 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.39 – continued from previous page
Tag Description Values Default

relay type bypass relay device type
(used only if no relay name
is specified)

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

relay tty Bypass relay communica-
tion device (used only if no
relay name is specified)

ttyS0

relay address Bypass relay address (used
only if no relay name is
specified)

1

relay channel bypass relay channel (used
only if no relay name is
specified)

0

output control relay Switch controling if an ex-
ternal output control device
is fitted (for instance a mag-
netic valve for forcing com-
plete cutoff of gas)

YES
NO

NO

control relay name Cutoff relay name

control relay type Control relay device type
(used only if no control re-
lay name is specified)

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

control relay tty Control relay tty (used only
if no control relay name is
specified)

ttyS0

control relay address Control relay address (used
only if no control relay
name is specified)

1

control relay channel Control relay channel (used
only if no control relay
name is specified)

0

gas change Gas change mode
Manual
Automatic

Manual

gas multiplexer Name of gas multiplexer de-
vice if any

Continued on next page

227 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.39 – continued from previous page
Tag Description Values Default
gasses Avaliable gasses, Must con-

tain a comma separated list
of gas names (device name!)
that the MFC can be used
to control (in case of no
multiplexer, just the single
gas connected).

n2

setflow factor Callibration factor for set-
tig flow

1

read factor Callibration factor for read-
ing flow

1

title Optional title

show plot Determines if the current
device data is to be shown
in the normal daily data
plots (graph will be shown
in the ’all data’ page). Only
relevant for enabled devices

Yes
No

Yes

use cache Determines if persisten
caching of read values is
allowed

Yes
No

No

persistent settings Determines if the device
should be queried each time
for flow trange settings or
if settings should be cached
on disk. Default for Brooks
MFCs are Yes as communi-
cation overhead usually be-
comes a problem (a single
MFC require 1 second for
initialisation otherwise)

Yes
No

Yes

comments Description for this device.
Do not use ’,’ in text as that
character is used as newline
substitute.

disable readstring Determines if readstring
should always return the
empty string (only relevant
for enabled devices)

No
Yes

No

Continued on next page

228 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.39 – continued from previous page
Tag Description Values Default

Table 12.39: Configuration tags for MFC device
type ’Brooks’. An empty value field generally in-
dicates that the tag value can be either a free text
string or a number (integer or floating point).

12.5.3 BrooksReadonly

Tag Description Values Default
mode Device control mode Automatic Automatic
tty Communication device (ex.

ttyS0)
ttyS0

channel Tag number (ex 05691001),
NB must be 8 digits!

00000000

calibrated gas The gas for which the
maxflow is specified on the
controler (usually nitrogen)

ne
co2
o2
d2
n2
no
kr
backup
co
o2 cathode
ch4
he
ext anode
n2o3
no2
h2
ar
xe
n2 cathode
ext cathode
air
chx
n20

n2

Continued on next page

229 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.40 – continued from previous page
Tag Description Values Default
calibrated maxflow Maximum flowrate for the

callibrated gas (Note in
L/hour!)

100

unit Flow unit in which the con-
troler reports the gas flow.
MB This may be different
than the unit the maxflow
is given in!

L/s
L/min
L/hour
mL/s
mL/min
mL/hour
m3/s
m3/min
m3/hour

L/hour

controler mode Controler mode of opera-
tion

Flowrate Flowrate

gas selected gas n2

gas change Gas change mode
Manual
Automatic

Manual

gas multiplexer Name of gas multiplexer de-
vice if any

gasses Avaliable gasses, Must con-
tain a comma separated list
of gas names (device name!)
that the MFC can be used
to control (in case of no
multiplexer, just the single
gas connected).

n2

setflow factor Callibration factor for set-
tig flow

1

read factor Callibration factor for read-
ing flow

1

title Optional title

show plot Determines if the current
device data is to be shown
in the normal daily data
plots (graph will be shown
in the ’all data’ page). Only
relevant for enabled devices

Yes
No

Yes

use cache Determines if persisten
caching of read values is
allowed

Yes
No

No

Continued on next page

230 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.40 – continued from previous page
Tag Description Values Default

persistent settings Determines if the device
should be queried each time
for flow trange settings or
if settings should be cached
on disk. Default for Brooks
MFCs are Yes as communi-
cation overhead usually be-
comes a problem (a single
MFC require 1 second for
initialisation otherwise)

Yes
No

Yes

comments Description for this device.
Do not use ’,’ in text as that
character is used as newline
substitute.

disable readstring Determines if readstring
should always return the
empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.40: Configuration tags for MFC device
type ’BrooksReadonly’. An empty value field
generally indicates that the tag value can be ei-
ther a free text string or a number (integer or
floating point).

12.5.4 Analog

Tag Description Values Default
mode Device control mode Automatic Automatic
output name Name of analog output de-

vice (the RFCcontrol device
controling the analog out-
put to the physical MFC)

output type Output device type (Only
used if no output name)

ICP7024
ICP87024
ICP87028
ManualAnalo-
gOut

ICP87024

Continued on next page

231 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.41 – continued from previous page
Tag Description Values Default
address Output device address

(Only used if no output
name)

1

control channel Output device channel
(Only used if no output
name)

0

tty Output device communica-
tion device (Only used if no
output name)

ttyS0

channel name Name of the analog input
device (The RFCcontrol in-
put device measuring the
analog signal from the phys-
ical MFC)

channel type Input device type (used
only if no channel name is
specified)

Keithley
Keithley580
ICP
ICP7017/18
ICP7017ZW
ICP7019
ModbusTCP
Modbus
PLCRead
External
Socket
SOAP

Keithley

channel Input device channel (used
only if no channel name is
specified)

1:101

channel tty Input device communica-
tion device (used only if no
channel name is specified)

ttyS0

channel address Input device address (used
only if no channel name is
specified)

1

output control relay Switch controling if an ex-
ternal output control device
is fitted (for instance a mag-
netic valve for forcing com-
plete cutoff of gas)

YES
NO

NO

control relay name Cutoff relay name

Continued on next page

232 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.41 – continued from previous page
Tag Description Values Default

control relay type Control relay device type
(used only if no control re-
lay name is specified)

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

control relay tty Control relay tty (used only
if no control relay name is
specified)

ttyS0

control relay address Control relay address (used
only if no control relay
name is specified)

1

control relay channel Control relay channel (used
only if no control relay
name is specified)

0

calibrated gas The gas for which the
maxflow is specified on the
controler (usually nitrogen)

ne
co2
o2
d2
n2
no
kr
backup
co
o2 cathode
ch4
he
ext anode
n2o3
no2
h2
ar
xe
n2 cathode
ext cathode
air
chx
n20

n2

calibrated maxflow Maximum flowrate for the
callibrated gas (Note in
L/hour!)

100

Continued on next page

233 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.41 – continued from previous page
Tag Description Values Default
accuracy Accuracy of the flow rate in

percent
1

output range Output range, note that
this may be different than
the range of the output de-
vice!

0-5V
1-5V
0-10V
2-10V
0-20mA
4-20mA

0-5V

use underrange cutoff Allow the analog output to
be set below the operational
range in order to force the
MFC to close completely

Yes
No

Yes

gas selected gas n2

relay Bypass relay avaliable
YES
NO

NO

relay time bypass relay engage time
(seconds)

0

relay name Bypass relay name

relay type bypass relay device type
(used only if no relay name
is specified)

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

relay tty Bypass relay tty (used only
if no relay name is specified)

ttyS0

relay address Bypass relay address (used
only if no relay name is
specified)

1

relay channel bypass relay channel (used
only if no relay name is
specified)

0

gas change Gas change mode
Manual
Automatic

Manual

gas multiplexer Name of gas multiplexer de-
vice if any

Continued on next page

234 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.41 – continued from previous page
Tag Description Values Default
gasses Avaliable gasses, Must con-

tain a comma separated list
of gas names (device name!)
that the MFC can be used
to control (in case of no
multiplexer, just the single
gas connected).

n2

setflow factor Callibration factor for set-
tig flow

1

read factor Callibration factor for read-
ing flow

1

title Optional title

show plot Determines if the current
device data is to be shown
in the normal daily data
plots (graph will be shown
in the ’all data’ page). Only
relevant for enabled devices

Yes
No

Yes

use cache Determines if persisten
caching of read values is
allowed

Yes
No

No

comments Description for this device.
Do not use ’,’ in text as that
character is used as newline
substitute.

disable readstring Determines if readstring
should always return the
empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.41: Configuration tags for MFC device
type ’Analog’. An empty value field generally in-
dicates that the tag value can be either a free text
string or a number (integer or floating point).

12.5.5 AnalogReadonly

235 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Tag Description Values Default
mode Device control mode Readonly Readonly
channel name Name of the analog input

device (The RFCcontrol in-
put device measuring the
analog signal from the phys-
ical MFC)

calibrated gas The gas for which the
maxflow is specified on the
controler (usually nitrogen)

ne
co2
o2
d2
n2
no
kr
backup
co
o2 cathode
ch4
he
ext anode
n2o3
no2
h2
ar
xe
n2 cathode
ext cathode
air
chx
n20

n2

calibrated maxflow Maximum flowrate for the
callibrated gas (Note in
L/hour!)

100

accuracy Accuracy of the flow rate in
percent

output range Output range, note that
this may be different than
the range of the output de-
vice!

0-5V
1-5V

0-5V

gas selected gas n2

gas change Gas change mode
Manual
Automatic

Manual

Continued on next page

236 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.42 – continued from previous page
Tag Description Values Default
gas multiplexer Name of gas multiplexer de-

vice if any
gasses Avaliable gasses, Must con-

tain a comma separated list
of gas names (device name!)
that the MFC can be used
to control (in case of no
multiplexer, just the single
gas connected).

n2

read factor Callibration factor for read-
ing flow

1

title Optional title

show plot Determines if the current
device data is to be shown
in the normal daily data
plots (graph will be shown
in the ’all data’ page). Only
relevant for enabled devices

Yes
No

Yes

use cache Determines if persisten
caching of read values is
allowed

Yes
No

No

comments Description for this device.
Do not use ’,’ in text as that
character is used as newline
substitute.

disable readstring Determines if readstring
should always return the
empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.42: Configuration tags for MFC device
type ’AnalogReadonly’. An empty value field
generally indicates that the tag value can be ei-
ther a free text string or a number (integer or
floating point).

12.5.6 MKS

237 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Tag Description Values Default
mode Device control mode Automatic Automatic
tty Communication device (ex.

ttyS0)
ttyS0

channel Device address (ex 021),
NB must be 3 digits! Note
that address 254 and 255
are broadcast addresses (all
MKS units will listen on
those, but will only respond
on 254)!

001

calibrated gas The gas for which the
maxflow is specified on the
controler (usually nitrogen)

ne
co2
o2
d2
n2
no
kr
backup
co
o2 cathode
ch4
he
ext anode
n2o3
no2
h2
ar
xe
n2 cathode
ext cathode
air
chx
n20

n2

maxflow Maximum flowrate for
the selected gas (Note in
L/hour!)

unit Flow unit in which the con-
troler reports the gas flow.
MB This may be different
than the unit the maxflow
is given in!

gas selected gas n2

Continued on next page

238 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.43 – continued from previous page
Tag Description Values Default

relay Bypass relay avaliable
YES
NO

NO

relay time bypass relay engage time
(seconds)

0

relay name Bypass relay name

output control relay Switch controling if an ex-
ternal output control device
is fitted (for instance a mag-
netic valve for forcing com-
plete cutoff of gas)

YES
NO

NO

control relay name Cutoff relay name

gas change Gas change mode
Manual
Automatic

Manual

gas multiplexer Name of gas multiplexer de-
vice if any

gasses Avaliable gasses, Must con-
tain a comma separated list
of gas names (device name!)
that the MFC can be used
to control (in case of no
multiplexer, just the single
gas connected).

n2

setflow factor Callibration factor for set-
tig flow

1

read factor Callibration factor for read-
ing flow

1

title Optional title

show plot Determines if the current
device data is to be shown
in the normal daily data
plots (graph will be shown
in the ’all data’ page). Only
relevant for enabled devices

Yes
No

Yes

use cache Determines if persisten
caching of read values is
allowed

Yes
No

No

Continued on next page

239 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.43 – continued from previous page
Tag Description Values Default

persistent settings Determines wether or not
settings such as callibrated
gas should be cached
(speeding up normal use)
or queried each time

Yes
No

No

comments Description for this device.
Do not use ’,’ in text as that
character is used as newline
substitute.

disable readstring Determines if readstring
should always return the
empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.43: Configuration tags for MFC device
type ’MKS’. An empty value field generally indi-
cates that the tag value can be either a free text
string or a number (integer or floating point).

12.5.7 MKSReadonly

Tag Description Values Default
mode Device control mode Automatic Automatic
tty Communication device (ex.

ttyS0)
ttyS0

channel Device address (ex 021),
NB must be 3 digits! Note
that address 254 and 255
are broadcast addresses (all
MKS units will listen on
those, but will only respond
on 254)!

001

Continued on next page

240 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.44 – continued from previous page
Tag Description Values Default

calibrated gas The gas for which the
maxflow is specified on the
controler (usually nitrogen)

ne
co2
o2
d2
n2
no
kr
backup
co
o2 cathode
ch4
he
ext anode
n2o3
no2
h2
ar
xe
n2 cathode
ext cathode
air
chx
n20

n2

maxflow Maximum flowrate for
the selected gas (Note in
L/hour!)

unit Flow unit in which the con-
troler reports the gas flow.
MB This may be different
than the unit the maxflow
is given in!

gas selected gas n2

gas change Gas change mode
Manual
Automatic

Manual

gas multiplexer Name of gas multiplexer de-
vice if any

Continued on next page

241 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.44 – continued from previous page
Tag Description Values Default
gasses Avaliable gasses, Must con-

tain a comma separated list
of gas names (device name!)
that the MFC can be used
to control (in case of no
multiplexer, just the single
gas connected).

n2

setflow factor Callibration factor for set-
tig flow

1

read factor Callibration factor for read-
ing flow

1

title Optional title

show plot Determines if the current
device data is to be shown
in the normal daily data
plots (graph will be shown
in the ’all data’ page). Only
relevant for enabled devices

Yes
No

Yes

use cache Determines if persisten
caching of read values is
allowed

Yes
No

No

persistent settings Determines wether or not
settings such as callibrated
gas should be cached
(speeding up normal use)
or queried each time

Yes
No

No

comments Description for this device.
Do not use ’,’ in text as that
character is used as newline
substitute.

disable readstring Determines if readstring
should always return the
empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.44: Configuration tags for MFC device
type ’MKSReadonly’. An empty value field gen-
erally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

242 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

12.5.8 Pc ER3000

Tag Description Values Default
mode Device control mode Automatic Automatic
tty Communication device (ex.

ttyS0)
ttyS0

address Device address (Default
factory address on a
ER3000 is 250)

1

minpressure Minimum pressure (Note
in barA, 1 BarA is atmo-
spheric pressure!)

1

maxpressure Maximum pressure (Note
in barA, 1 barA is atmo-
spheric pressure!)

101

gas selected gas n2
title Optional title

show plot Determines if the current
device data is to be shown
in the daily data plots

Yes
No

Yes

use cache Determines if persisten
caching of read values is
allowed

Yes
No

No

comments Description for this device.
Do not use ’,’ in text as that
character is used as newline
substitute.

disable readstring Determines if readstring
should always return the
empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.45: Configuration tags for MFC device
type ’Pc ER3000’. An empty value field generally
indicates that the tag value can be either a free
text string or a number (integer or floating point).

12.5.9 Pc Analog

243 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Tag Description Values Default
mode Device control mode Automatic Automatic
input name Input device name
output name Output device name

output range

0-5V
1-5V
0-10V
2-10V
0-20mA
4-20mA

minpressure Minimum pressure (Note
in barA, 1 BarA is atmo-
spheric pressure!)

1

maxpressure Maximum pressure (Note
in barA, 1 barA is atmo-
spheric pressure!)

101

gas selected gas n2
title Optional title

show plot Determines if the current
device data is to be shown
in the daily data plots

Yes
No

Yes

use cache Determines if persisten
caching of read values is
allowed

Yes
No

No

comments Description for this device.
Do not use ’,’ in text as that
character is used as newline
substitute.

disable readstring Determines if readstring
should always return the
empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.46: Configuration tags for MFC device
type ’Pc Analog’. An empty value field generally
indicates that the tag value can be either a free
text string or a number (integer or floating point).

12.5.10 Pc AnalogReadonly

244 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Tag Description Values Default
mode Device control mode Automatic Automatic
input name Input device name

output range

0-5V
1-5V
0-10V
2-10V
0-20mA
4-20mA

minpressure Minimum pressure (Note
in barA, 1 BarA is atmo-
spheric pressure!)

1

maxpressure Maximum pressure (Note
in barA, 1 barA is atmo-
spheric pressure!)

101

gas selected gas n2
title Optional title

show plot Determines if the current
device data is to be shown
in the daily data plots

Yes
No

Yes

use cache Determines if persisten
caching of read values is
allowed

Yes
No

No

comments Description for this device.
Do not use ’,’ in text as that
character is used as newline
substitute.

disable readstring Determines if readstring
should always return the
empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.47: Configuration tags for MFC device
type ’Pc AnalogReadonly’. An empty value field
generally indicates that the tag value can be ei-
ther a free text string or a number (integer or
floating point).

245 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

12.5.11 Pc Manual

Tag Description Values Default
mode Device control mode Manual Manual
minpressure Minimum pressure (Note

in barA, 1 BarA is atmo-
spheric pressure!)

1

maxpressure Maximum pressure (Note
in barA, 1 barA is atmo-
spheric pressure!)

101

gas selected gas n2
title Optional title

show plot Determines if the current
device data is to be shown
in the normal daily data
plots (graph will be shown
in the ’all data’ page). Only
relevant for enabled devices

Yes
No

Yes

use cache Determines if persisten
caching of read values is
allowed

Yes
No

No

comments Description for this device.
Do not use ’,’ in text as that
character is used as newline
substitute.

disable readstring Determines if readstring
should always return the
empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.48: Configuration tags for MFC device
type ’Pc Manual’. An empty value field generally
indicates that the tag value can be either a free
text string or a number (integer or floating point).

12.5.12 VacuumControl RVC300

Tag Description Values Default
mode Device control mode Automatic Automatic

Continued on next page

246 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.49 – continued from previous page
Tag Description Values Default
tty Communication device (ex.

ttyS0)
ttyS0

minpressure Minimum pressure (Note in
barA = mbar /1000!)

0.001

maxpressure Maximum pressure (Note
in barA = mbar /1000!)

1.1

gas selected gas n2
title Optional title

show plot Determines if the current
device data is to be shown
in the daily data plots

Yes
No

Yes

use cache Determines if persisten
caching of read values is
allowed

Yes
No

No

Controllertype Controller type setup: a
number between: (1-99) =
PI and a 0 = PID

Kp Gain Kp , Kontroller gain
setting between 0.1 and
100.0

Tn Reset time between 0.0 and
3600.0 s.

Tv Derivative time between 0.0
and 3600.0 s.

comments Description for this device.
Do not use ’,’ in text as that
character is used as newline
substitute.

disable readstring Determines if readstring
should always return the
empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.49: Configuration tags for MFC device
type ’VacuumControl RVC300’. An empty value
field generally indicates that the tag value can be
either a free text string or a number (integer or
floating point).

247 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

12.6 Water

Water bubler devices are compound devices serving two distinct functions.
The first is to measure the temperature of the water bubler (for dewpoint
determinations) and the second function is to control/determine if the water
bubler is enabled or bypassed. The first functions is performed using sim-
pledevices similarly to the temperature log devices in section eftemplogdev
and the second function is performed by using a relay device (refer section
12.2). Notice that if the channel device is already a temperature logging de-
vice, a lot of the additional tags is not used and can be left blank (In effect
only the control device tags are used in this case).

All water devices supports the setstatus command which controls if the water
bubler is enabled or not.

12.6.1 Water

Tag Description Values Default

mode Device control mode
Manual
Automatic

Manual

channel name Input device name, may be either
a simple channel name or a tem-
perature log device name (tem-
perature log device recomended,
will be prefixed with ”Tlog ” in
list)

channel Input channel (if no channel
name)

1:101

channel input type Input channel type (if no channel
name)

Keithley
Keithley580
ICP
ICP7017/18
ICP7017ZW
ICP7019
ModbusTCP
Modbus
PLCRead
External
Socket
SOAP

Keithley

channel tty Input communication device (ex.
ttyS0), used only if channel type
is not Keithley

ttyS0

Continued on next page

248 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.50 – continued from previous page
Tag Description Values Default
channel address Input device address (if input type

is not Keithley)
1

gas stream Name (label) of gas stream the de-
vice is attatched to, Used only for
display / UI purposes

type Device type
pt100
pt1000

pt100

lead res name Name of lead resistance input de-
vice

lead res Lead resistance 1:101

lead res type Lead resistance input type (if no
lead resistance name)

fixed value
Keithley
Keithley580
ICP
ICP7017/18
ICP7017ZW
ICP7019
ModbusTCP
Modbus
PLCRead
External
Socket
SOAP

Fixed value

lead res tty Lead resistance communication
device (If no lead resistance name
and lead resistance type is not
Keithley)

ttyS0

lead res address Lead resistance device address (If
no lead resistance name and lead
resistance type is not Keithley)

1

lead res value Value (if fixed) for lead resistance 0
control relay name Device name for control relay

(Used for controling if Water
bubler device is enabled or by-
passed)

control type Device type for control relay (if no
control relay name)

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

Continued on next page

249 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.50 – continued from previous page
Tag Description Values Default
tty Serial device for contro relay com-

munication (ex. ttyS0)
control address Control relay device address, only

used if no control relay name
1

control channel Control relay device channel, only
used if no control relay name

0

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

use cache Determines if persisten caching of
read values is allowed

Yes
No

No

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.50: Configuration tags for water device
type ’Humidifier’. An empty value field generally
indicates that the tag value can be either a free
text string or a number (integer or floating point).

250 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

12.7 Gas

Gas devices are used for controling gas flows. Each gas supplied to the device
and/or test setup in question must have its own gas device. Each gas device
can be either manually controled or automatically controled. In the manual
case (for instance safety rules may specify that purge gas flows be controled
by manual ball flowmeters to be sure that the purge gas continues in case
of poweroutages), the gas devicesimply stores the last entreed flow rate and
returns that upon read. In the automatic case, the actual control device (a
MFC device, refer section 12.5), is used and a read on the gas device forwards
the read command to the control device.

All gas devices supports the setflow command to set the gas flow.

12.7.1 Normal gasses

Tag Description Values Default

class Device type
Normal
Multiline

Normal

gas Name of gas controlled by this de-
vice. Only rarely should this be
set to anything other than the de-
vice name! If set to something
else, problems may arise with gas
multiplexer control if the control
name (name of gas to be con-
troled) is not the same as the
eventuel gas name (intermediate
device names may dffer however!)

ne
co2
o2
d2
n2
no
kr
backup
co
o2 cathode
ch4
he
ext anode
n2o3
no2
h2
ar
xe
n2 cathode
ext cathode
air
chx
n20

n2

mode Device control mode
Manual
Automatic

Manual

Continued on next page

251 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.51 – continued from previous page
Tag Description Values Default
controler Name of controler device (if any) 0 0
maxflow Maximum flow rate (Note

L/hour), only used for manual
gasses

1

maxflow set Maximum allowable flow rate
(l/hour)

0

cutoff set Cutoff flow rate (force close if set
below this value)

0

cutoff report Cutoff flow rate for report gen-
eration, flows below this level is
treated as 0

0

link Optional gas device name for link-
ing purposes, If a gas (parent)
links to one or more other gas
devices (childs) and the flow for
one of the child devices is above
the cutoff value, the flow rate re-
ported by the parent device is set
to 0 irrespectively of actual / as-
sumed flow rate. Notice that by
using links it is possible to config-
ure circular references which must
be awoided!

title Optional title

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

control name Name of control valve device (re-
lay) if any, used mainly if gas is
part of a gas group

control value Control valve relay status for al-
lowing flow, used mainly if gas is
part of a gas group

0

master device Device name for the master device
in case current device is a slave
device (locked to have X percent
of master device flow rate)

slave flow Percentage of master device flow
rate that current device is sup-
posed to have

100

Continued on next page

252 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.51 – continued from previous page
Tag Description Values Default

use cache Determines if persisten caching of
read values is allowed

Yes
No

No

include tally Indicates if the flow of this gas is
to be included in any taly of gas
use

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.51: Configuration tags for gas device
type ’Gas’. An empty value field generally indi-
cates that the tag value can be either a free text
string or a number (integer or floating point).

12.7.2 Multiline

Tag Description Values Default

class Device type
Normal
Multiline

Multiline

mode Device control mode
Manual
Automatic

Automatic

device 1 Device name for first gas device
device 2 Device name for first gas device
maxflow Maximum flow rate (l/hour),

readonly
maxflow set Maximum allowable flow rate

(l/hour)
0

cutoff set Cutoff flow rate (force close if set
below this value), readonly

0

cutoff report Cutoff flow rate for report gen-
eration, flows below this level is
treated as 0

0

shift up Flow level where control shifts
from small to large device, default
is maxflow of low flow device

1

Continued on next page

253 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.52 – continued from previous page
Tag Description Values Default
shift down Flow level where control shifts

from large to small device, default
is 80 percent of maxflow of low
flow device

0.8

steps Number of steps in flow shift be-
tween devices

5

sleep Wait time in seconds on each step
in a shift between devices

1

link Optional gas device name for link-
ing purposes, If a gas (parent)
links to an other gas device (child)
and the flow for the child device
is above the cutoff value, the flow
rate reported by the parent de-
vice is set to 0 irrespectively of
actual/assumed flow rate

title Optional title

show plot Determines if the current device
data is to be shown in the daily
data plots

Yes
No

Yes

control name Name of control valve device (re-
lay) if any, used mainly if gas is
part of a gas group

control value control valve relay status for al-
lowing flow, used mainly if gas is
part of a gas group

0

master device Device name for the master device
in case current device is a slave
device (locked to have X percent
of master device flow rate)

slave flow Percentage of master device flow
rate that current device is sup-
posed to have

100

use cache Determines if persisten caching of
read values is allowed

Yes
No

No

include tally Indicates if the flow of this gas is
to be included in any taly of gas
use

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

Continued on next page

254 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.52 – continued from previous page
Tag Description Values Default

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.52: Configuration tags for gas device
type ’Multiline’. An empty value field generally
indicates that the tag value can be either a free
text string or a number (integer or floating point).

255 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

12.8 Gasgroup

Gas groups are used for special confugrations of gas systems. If for istance
two separate gas lines with the same gas supply are used but with a automatic
cross-over walve for fast switching of gas flows, then the gas group can be used
to log what the acutal gas flow through the device under test actually was.

For instance assuming that the gas devices o2 1 and o2 2 are each automat-
ically controled and noe are set to 10 L/h and the other to 20 L/h and one
wants to do a fast increase in O2 flow rate, a cross ower valve (actually usually
in the form of 4 valves, 2x NO and 2x NC in bridge configuration), then the
gas group o2 group can be set to include o2 1 and o2 2 but each of them with
different control values, so in one position, only the flow from o2 1 is included
in the group value and o2 2 is used in the other.

12.8.1 ICP

Tag Description Values Default
gasses Names of gas devices included in

gas group
title Optional title

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

use cache Determines if persisten caching of
read values is allowed

Yes
No

No

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.53: Configuration tags for gasgroup de-
vice type ’Gasgroup’. An empty value field gen-
erally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

256 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

12.9 PSU

DC power supply devices are used for cotroling DC power supplies (includ-
ing electronic loads). This may seem to overlab the analog output devices
described in section efanalogdev. However, this overlap is intentional, as in
theory a controlable DC powersuppy coudl be used as an analog output de-
vice, however in reality this us usually cost ineffective.

PSU devices supports the voltage and current commands, these commands
control the DC voltage and current respectively. A special argument ’ocv’
can be given to the voltage or current commands, specifying that the device
should go to open circuit conditions (some devices supports this natively,
others throgh an external relay).

12.9.1 ManualPSU

Tag Description Values Default

mode Device control mode
Manual
Automatic

Manual

external RSD Existence of external remote shut
down device (usually an external
relay)

Yes
No

No

RSD name Device name for remote shut
down relay

RSD type Device type for remote shutdown
relay, only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote
shutdown relay, only used if no
RSD name

ttyS0

RSD address Remote shutdown relay address,
only used if no RSD name

0

RSD channel Remote shutdown relay channel,
only used if no RSD name

0

control mode determines if the set() function
should control voltage or current

Voltage
Current

Current

master device Device name for the master device
in case current device is a slave
device (locked to have X percent
of master device current)

Continued on next page

257 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.54 – continued from previous page
Tag Description Values Default
slave current Percentage of master device cur-

rent that this device is supposed
to have

100

slave voltage Percentage of master device volt-
age that this device is supposed to
have

100

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.54: Configuration tags for PSU device
type ’Manual PSU’. An empty value field gener-
ally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

12.9.2 SM 15 100

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (mas-

ter + slaves)
1

parallel Number of devices in parallel
(master + slaves)

1

Continued on next page

258 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.55 – continued from previous page
Tag Description Values Default

external RSD Existence of external remote shut
down device (usually an external
relay)

Yes
No

No

RSD name Device name for remote shut
down relay

RSD type Device type for remote shutdown
relay, only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote
shutdown relay, only used if no
RSD name

ttyS0

RSD address Remote shutdown relay address,
only used if no RSD name

0

RSD channel Remote shutdown relay channel,
only used if no RSD name

0

control mode determines if the set() function
should control voltage or current

Voltage
Current

Current

master device Device name for the master device
in case current device is a slave
device (locked to have X percent
of master device current)

slave current Percentage of master device cur-
rent that this device is supposed
to have

100

slave voltage Percentage of master device volt-
age that this device is supposed to
have

100

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

Continued on next page

259 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.55 – continued from previous page
Tag Description Values Default

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.55: Configuration tags for PSU device
type ’SM-15-100’. An empty value field generally
indicates that the tag value can be either a free
text string or a number (integer or floating point).

12.9.3 SM 18 50

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (mas-

ter + slaves)
1

parallel Number of devices in parallel
(master + slaves)

1

external RSD Existence of external remote shut
down device (usually an external
relay)

Yes
No

No

RSD name Device name for remote shut
down relay

RSD type Device type for remote shutdown
relay, only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote
shutdown relay, only used if no
RSD name

ttyS0

RSD address Remote shutdown relay address,
only used if no RSD name

0

RSD channel Remote shutdown relay channel,
only used if no RSD name

0

Continued on next page

260 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.56 – continued from previous page
Tag Description Values Default

control mode determines if the set() function
should control voltage or current

Voltage
Current

Current

master device Device name for the master device
in case current device is a slave
device (locked to have X percent
of master device current)

slave current Percentage of master device cur-
rent that this device is supposed
to have

100

slave voltage Percentage of master device volt-
age that this device is supposed to
have

100

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.56: Configuration tags for PSU device
type ’SM-18-50’. An empty value field generally
indicates that the tag value can be either a free
text string or a number (integer or floating point).

12.9.4 SM 60 100

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0

Continued on next page

261 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.57 – continued from previous page
Tag Description Values Default
serial Number of devices in serial (mas-

ter + slaves)
1

parallel Number of devices in parallel
(master + slaves)

1

external RSD Existence of external remote shut
down device (usually an external
relay)

Yes
No

No

RSD name Device name for remote shut
down relay

RSD type Device type for remote shutdown
relay, only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote
shutdown relay, only used if no
RSD name

ttyS0

RSD address Remote shutdown relay address,
only used if no RSD name

0

RSD channel Remote shutdown relay channel,
only used if no RSD name

0

control mode determines if the set() function
should control voltage or current

Voltage
Current

Current

master device Device name for the master device
in case current device is a slave
device (locked to have X percent
of master device current)

slave current Percentage of master device cur-
rent that this device is supposed
to have

100

slave voltage Percentage of master device volt-
age that this device is supposed to
have

100

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

Continued on next page

262 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.57 – continued from previous page
Tag Description Values Default
comments Description for this device. Do

not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.57: Configuration tags for PSU device
type ’SM-60-100’. An empty value field generally
indicates that the tag value can be either a free
text string or a number (integer or floating point).

12.9.5 SM 35 45

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (mas-

ter + slaves)
1

parallel Number of devices in parallel
(master + slaves)

1

external RSD Existence of external remote shut
down device (usually an external
relay)

Yes
No

No

RSD name Device name for remote shut
down relay

RSD type Device type for remote shutdown
relay, only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote
shutdown relay, only used if no
RSD name

ttyS0

Continued on next page

263 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.58 – continued from previous page
Tag Description Values Default
RSD address Remote shutdown relay address,

only used if no RSD name
0

RSD channel Remote shutdown relay channel,
only used if no RSD name

0

control mode determines if the set() function
should control voltage or current

Voltage
Current

Current

master device Device name for the master device
in case current device is a slave
device (locked to have X percent
of master device current)

slave current Percentage of master device cur-
rent that this device is supposed
to have

100

slave voltage Percentage of master device volt-
age that this device is supposed to
have

100

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.58: Configuration tags for PSU device
type ’SM-35-45’. An empty value field generally
indicates that the tag value can be either a free
text string or a number (integer or floating point).

12.9.6 SM 52 30

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

Continued on next page

264 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.59 – continued from previous page
Tag Description Values Default
communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (mas-

ter + slaves)
1

parallel Number of devices in parallel
(master + slaves)

1

external RSD Existence of external remote shut
down device (usually an external
relay)

Yes
No

No

RSD name Device name for remote shut
down relay

RSD type Device type for remote shutdown
relay, only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote
shutdown relay, only used if no
RSD name

ttyS0

RSD address Remote shutdown relay address,
only used if no RSD name

0

RSD channel Remote shutdown relay channel,
only used if no RSD name

0

control mode determines if the set() function
should control voltage or current

Voltage
Current

Current

master device Device name for the master device
in case current device is a slave
device (locked to have X percent
of master device current)

slave current Percentage of master device cur-
rent that this device is supposed
to have

100

slave voltage Percentage of master device volt-
age that this device is supposed to
have

100

Continued on next page

265 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.59 – continued from previous page
Tag Description Values Default

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.59: Configuration tags for PSU device
type ’SM-52-30’. An empty value field generally
indicates that the tag value can be either a free
text string or a number (integer or floating point).

12.9.7 SM 70 22

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (mas-

ter + slaves)
1

parallel Number of devices in parallel
(master + slaves)

1

external RSD Existence of external remote shut
down device (usually an external
relay)

Yes
No

No

RSD name Device name for remote shut
down relay

Continued on next page

266 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.60 – continued from previous page
Tag Description Values Default

RSD type Device type for remote shutdown
relay, only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote
shutdown relay, only used if no
RSD name

ttyS0

RSD address Remote shutdown relay address,
only used if no RSD name

0

RSD channel Remote shutdown relay channel,
only used if no RSD name

0

control mode determines if the set() function
should control voltage or current

Voltage
Current

Current

master device Device name for the master device
in case current device is a slave
device (locked to have X percent
of master device current)

slave current Percentage of master device cur-
rent that this device is supposed
to have

100

slave voltage Percentage of master device volt-
age that this device is supposed to
have

100

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.60: Configuration tags for PSU device
type ’SM-70-22’. An empty value field generally
indicates that the tag value can be either a free
text string or a number (integer or floating point).

267 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

12.9.8 SM 120 13

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (mas-

ter + slaves)
1

parallel Number of devices in parallel
(master + slaves)

1

external RSD Existence of external remote shut
down device (usually an external
relay)

Yes
No

No

RSD name Device name for remote shut
down relay

RSD type Device type for remote shutdown
relay, only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote
shutdown relay, only used if no
RSD name

ttyS0

RSD address Remote shutdown relay address,
only used if no RSD name

0

RSD channel Remote shutdown relay channel,
only used if no RSD name

0

control mode determines if the set() function
should control voltage or current

Voltage
Current

Current

master device Device name for the master device
in case current device is a slave
device (locked to have X percent
of master device current)

slave current Percentage of master device cur-
rent that this device is supposed
to have

100

Continued on next page

268 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.61 – continued from previous page
Tag Description Values Default
slave voltage Percentage of master device volt-

age that this device is supposed to
have

100

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.61: Configuration tags for PSU device
type ’SM-120-13’. An empty value field generally
indicates that the tag value can be either a free
text string or a number (integer or floating point).

12.9.9 SM 300 5

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (mas-

ter + slaves)
1

parallel Number of devices in parallel
(master + slaves)

1

external RSD Existence of external remote shut
down device (usually an external
relay)

Yes
No

No

RSD name Device name for remote shut
down relay

Continued on next page

269 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.62 – continued from previous page
Tag Description Values Default

RSD type Device type for remote shutdown
relay, only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote
shutdown relay, only used if no
RSD name

ttyS0

RSD address Remote shutdown relay address,
only used if no RSD name

0

RSD channel Remote shutdown relay channel,
only used if no RSD name

0

control mode determines if the set() function
should control voltage or current

Voltage
Current

Current

master device Device name for the master device
in case current device is a slave
device (locked to have X percent
of master device current)

slave current Percentage of master device cur-
rent that this device is supposed
to have

100

slave voltage Percentage of master device volt-
age that this device is supposed to
have

100

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.62: Configuration tags for PSU device
type ’SM-300-5’. An empty value field generally
indicates that the tag value can be either a free
text string or a number (integer or floating point).

270 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

12.9.10 SM 30 200

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (mas-

ter + slaves)
1

parallel Number of devices in parallel
(master + slaves)

1

external RSD Existence of external remote shut
down device (usually an external
relay)

Yes
No

No

RSD name Device name for remote shut
down relay

RSD type Device type for remote shutdown
relay, only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote
shutdown relay, only used if no
RSD name

ttyS0

RSD address Remote shutdown relay address,
only used if no RSD name

0

RSD channel Remote shutdown relay channel,
only used if no RSD name

0

control mode determines if the set() function
should control voltage or current

Voltage
Current

Current

master device Device name for the master device
in case current device is a slave
device (locked to have X percent
of master device current)

slave current Percentage of master device cur-
rent that this device is supposed
to have

100

Continued on next page

271 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.63 – continued from previous page
Tag Description Values Default
slave voltage Percentage of master device volt-

age that this device is supposed to
have

100

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.63: Configuration tags for PSU device
type ’SM-30-200’. An empty value field generally
indicates that the tag value can be either a free
text string or a number (integer or floating point).

272 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

12.9.11 ES015 10

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (mas-

ter + slaves)
1

parallel Number of devices in parallel
(master + slaves)

1

external RSD Existence of external remote shut
down device (usually an external
relay)

Yes
No

No

RSD name Device name for remote shut
down relay

RSD type Device type for remote shutdown
relay, only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote
shutdown relay, only used if no
RSD name

ttyS0

RSD address Remote shutdown relay address,
only used if no RSD name

0

RSD channel Remote shutdown relay channel,
only used if no RSD name

0

control mode determines if the set() function
should control voltage or current

Voltage
Current

Current

master device Device name for the master device
in case current device is a slave
device (locked to have X percent
of master device current)

slave current Percentage of master device cur-
rent that this device is supposed
to have

100

slave voltage Percentage of master device volt-
age that this device is supposed to
have

100

Continued on next page

273 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.64 – continued from previous page
Tag Description Values Default

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.64: Configuration tags for PSU device
type ’ES015-10’. An empty value field generally
indicates that the tag value can be either a free
text string or a number (integer or floating point).

12.9.12 ES030 5

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (mas-

ter + slaves)
1

parallel Number of devices in parallel
(master + slaves)

1

external RSD Existence of external remote shut
down device (usually an external
relay)

Yes
No

No

RSD name Device name for remote shut
down relay

Continued on next page

274 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.65 – continued from previous page
Tag Description Values Default

RSD type Device type for remote shutdown
relay, only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote
shutdown relay, only used if no
RSD name

ttyS0

RSD address Remote shutdown relay address,
only used if no RSD name

0

RSD channel Remote shutdown relay channel,
only used if no RSD name

0

control mode determines if the set() function
should control voltage or current

Voltage
Current

Current

master device Device name for the master device
in case current device is a slave
device (locked to have X percent
of master device current)

slave current Percentage of master device cur-
rent that this device is supposed
to have

100

slave voltage Percentage of master device volt-
age that this device is supposed to
have

100

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.65: Configuration tags for PSU device
type ’ES030-5’. An empty value field generally
indicates that the tag value can be either a free
text string or a number (integer or floating point).

275 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

12.9.13 ES075 2

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (mas-

ter + slaves)
1

parallel Number of devices in parallel
(master + slaves)

1

external RSD Existence of external remote shut
down device (usually an external
relay)

Yes
No

No

RSD name Device name for remote shut
down relay

RSD type Device type for remote shutdown
relay, only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote
shutdown relay, only used if no
RSD name

ttyS0

RSD address Remote shutdown relay address,
only used if no RSD name

0

RSD channel Remote shutdown relay channel,
only used if no RSD name

0

control mode determines if the set() function
should control voltage or current

Voltage
Current

Current

master device Device name for the master device
in case current device is a slave
device (locked to have X percent
of master device current)

slave current Percentage of master device cur-
rent that this device is supposed
to have

100

Continued on next page

276 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.66 – continued from previous page
Tag Description Values Default
slave voltage Percentage of master device volt-

age that this device is supposed to
have

100

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.66: Configuration tags for PSU device
type ’ES075-2’. An empty value field generally
indicates that the tag value can be either a free
text string or a number (integer or floating point).

12.9.14 ES0300 045

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (mas-

ter + slaves)
1

parallel Number of devices in parallel
(master + slaves)

1

external RSD Existence of external remote shut
down device (usually an external
relay)

Yes
No

No

RSD name Device name for remote shut
down relay

Continued on next page

277 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.67 – continued from previous page
Tag Description Values Default

RSD type Device type for remote shutdown
relay, only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote
shutdown relay, only used if no
RSD name

ttyS0

RSD address Remote shutdown relay address,
only used if no RSD name

0

RSD channel Remote shutdown relay channel,
only used if no RSD name

0

control mode determines if the set() function
should control voltage or current

Voltage
Current

Current

master device Device name for the master device
in case current device is a slave
device (locked to have X percent
of master device current)

slave current Percentage of master device cur-
rent that this device is supposed
to have

100

slave voltage Percentage of master device volt-
age that this device is supposed to
have

100

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.67: Configuration tags for PSU device
type ’ES0300-045’. An empty value field generally
indicates that the tag value can be either a free
text string or a number (integer or floating point).

278 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

12.9.15 EL 9080 200

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (mas-

ter + slaves)
1

parallel Number of devices in parallel
(master + slaves)

1

external RSD Existence of external remote shut
down device (usually an external
relay)

Yes
No

No

RSD name Device name for remote shut
down relay

RSD type Device type for remote shutdown
relay, only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote
shutdown relay, only used if no
RSD name

ttyS0

RSD address Remote shutdown relay address,
only used if no RSD name

0

RSD channel Remote shutdown relay channel,
only used if no RSD name

0

control mode determines if the set() function
should control voltage or current

Voltage
Current

Current

master device Device name for the master device
in case current device is a slave
device (locked to have X percent
of master device current)

slave current Percentage of master device cur-
rent that this device is supposed
to have

100

Continued on next page

279 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.68 – continued from previous page
Tag Description Values Default
slave voltage Percentage of master device volt-

age that this device is supposed to
have

100

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.68: Configuration tags for PSU device
type ’EL 9080-200 HP’. An empty value field gen-
erally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

12.9.16 EL 9160 100

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (mas-

ter + slaves)
1

parallel Number of devices in parallel
(master + slaves)

1

external RSD Existence of external remote shut
down device (usually an external
relay)

Yes
No

No

RSD name Device name for remote shut
down relay

Continued on next page

280 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.69 – continued from previous page
Tag Description Values Default

RSD type Device type for remote shutdown
relay, only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote
shutdown relay, only used if no
RSD name

ttyS0

RSD address Remote shutdown relay address,
only used if no RSD name

0

RSD channel Remote shutdown relay channel,
only used if no RSD name

0

control mode determines if the set() function
should control voltage or current

Voltage
Current

Current

master device Device name for the master device
in case current device is a slave
device (locked to have X percent
of master device current)

slave current Percentage of master device cur-
rent that this device is supposed
to have

100

slave voltage Percentage of master device volt-
age that this device is supposed to
have

100

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Continued on next page

281 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.69 – continued from previous page
Tag Description Values Default

Table 12.69: Configuration tags for PSU device
type ’EL 9160-100 HP’. An empty value field gen-
erally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

12.9.17 EL 9400 50

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (mas-

ter + slaves)
1

parallel Number of devices in parallel
(master + slaves)

1

external RSD Existence of external remote shut
down device (usually an external
relay)

Yes
No

No

RSD name Device name for remote shut
down relay

RSD type Device type for remote shutdown
relay, only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote
shutdown relay, only used if no
RSD name

ttyS0

RSD address Remote shutdown relay address,
only used if no RSD name

0

RSD channel Remote shutdown relay channel,
only used if no RSD name

0

control mode determines if the set() function
should control voltage or current

Voltage
Current

Current

Continued on next page

282 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.70 – continued from previous page
Tag Description Values Default
master device Device name for the master device

in case current device is a slave
device (locked to have X percent
of master device current)

slave current Percentage of master device cur-
rent that this device is supposed
to have

100

slave voltage Percentage of master device volt-
age that this device is supposed to
have

100

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.70: Configuration tags for PSU device
type ’EL 9400-50’. An empty value field generally
indicates that the tag value can be either a free
text string or a number (integer or floating point).

12.9.18 EL 9750 50

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (mas-

ter + slaves)
1

parallel Number of devices in parallel
(master + slaves)

1

Continued on next page

283 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.71 – continued from previous page
Tag Description Values Default

external RSD Existence of external remote shut
down device (usually an external
relay)

Yes
No

No

RSD name Device name for remote shut
down relay

RSD type Device type for remote shutdown
relay, only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote
shutdown relay, only used if no
RSD name

ttyS0

RSD address Remote shutdown relay address,
only used if no RSD name

0

RSD channel Remote shutdown relay channel,
only used if no RSD name

0

control mode determines if the set() function
should control voltage or current

Voltage
Current

Current

master device Device name for the master device
in case current device is a slave
device (locked to have X percent
of master device current)

slave current Percentage of master device cur-
rent that this device is supposed
to have

100

slave voltage Percentage of master device volt-
age that this device is supposed to
have

100

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

Continued on next page

284 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.71 – continued from previous page
Tag Description Values Default

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.71: Configuration tags for PSU device
type ’EL 9750-50’. An empty value field generally
indicates that the tag value can be either a free
text string or a number (integer or floating point).

12.9.19 EL 9080 200 HP

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (mas-

ter + slaves)
1

parallel Number of devices in parallel
(master + slaves)

1

external RSD Existence of external remote shut
down device (usually an external
relay)

Yes
No

No

RSD name Device name for remote shut
down relay

RSD type Device type for remote shutdown
relay, only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote
shutdown relay, only used if no
RSD name

ttyS0

RSD address Remote shutdown relay address,
only used if no RSD name

0

RSD channel Remote shutdown relay channel,
only used if no RSD name

0

Continued on next page

285 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.72 – continued from previous page
Tag Description Values Default

control mode determines if the set() function
should control voltage or current

Voltage
Current

Current

master device Device name for the master device
in case current device is a slave
device (locked to have X percent
of master device current)

slave current Percentage of master device cur-
rent that this device is supposed
to have

100

slave voltage Percentage of master device volt-
age that this device is supposed to
have

100

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.72: Configuration tags for PSU device
type ’EL 9080-200 HP’. An empty value field gen-
erally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

12.9.20 EL 9160 100 HP

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0

Continued on next page

286 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.73 – continued from previous page
Tag Description Values Default
serial Number of devices in serial (mas-

ter + slaves)
1

parallel Number of devices in parallel
(master + slaves)

1

external RSD Existence of external remote shut
down device (usually an external
relay)

Yes
No

No

RSD name Device name for remote shut
down relay

RSD type Device type for remote shutdown
relay, only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote
shutdown relay, only used if no
RSD name

ttyS0

RSD address Remote shutdown relay address,
only used if no RSD name

0

RSD channel Remote shutdown relay channel,
only used if no RSD name

0

control mode determines if the set() function
should control voltage or current

Voltage
Current

Current

master device Device name for the master device
in case current device is a slave
device (locked to have X percent
of master device current)

slave current Percentage of master device cur-
rent that this device is supposed
to have

100

slave voltage Percentage of master device volt-
age that this device is supposed to
have

100

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

Continued on next page

287 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.73 – continued from previous page
Tag Description Values Default
comments Description for this device. Do

not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.73: Configuration tags for PSU device
type ’EL 9160-100 HP’. An empty value field gen-
erally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

288 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

12.9.21 EL 9400 50 HP

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (mas-

ter + slaves)
1

parallel Number of devices in parallel
(master + slaves)

1

external RSD Existence of external remote shut
down device (usually an external
relay)

Yes
No

No

RSD name Device name for remote shut
down relay

RSD type Device type for remote shutdown
relay, only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote
shutdown relay, only used if no
RSD name

ttyS0

RSD address Remote shutdown relay address,
only used if no RSD name

0

RSD channel Remote shutdown relay channel,
only used if no RSD name

0

control mode determines if the set() function
should control voltage or current

Voltage
Current

Current

master device Device name for the master device
in case current device is a slave
device (locked to have X percent
of master device current)

slave current Percentage of master device cur-
rent that this device is supposed
to have

100

slave voltage Percentage of master device volt-
age that this device is supposed to
have

100

Continued on next page

289 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.74 – continued from previous page
Tag Description Values Default

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.74: Configuration tags for PSU device
type ’EL 9400-50 HP’. An empty value field gen-
erally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

12.9.22 EL 9750 50 HP

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (mas-

ter + slaves)
1

parallel Number of devices in parallel
(master + slaves)

1

external RSD Existence of external remote shut
down device (usually an external
relay)

Yes
No

No

RSD name Device name for remote shut
down relay

Continued on next page

290 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.75 – continued from previous page
Tag Description Values Default

RSD type Device type for remote shutdown
relay, only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote
shutdown relay, only used if no
RSD name

ttyS0

RSD address Remote shutdown relay address,
only used if no RSD name

0

RSD channel Remote shutdown relay channel,
only used if no RSD name

0

control mode determines if the set() function
should control voltage or current

Voltage
Current

Current

master device Device name for the master device
in case current device is a slave
device (locked to have X percent
of master device current)

slave current Percentage of master device cur-
rent that this device is supposed
to have

100

slave voltage Percentage of master device volt-
age that this device is supposed to
have

100

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Continued on next page

291 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.75 – continued from previous page
Tag Description Values Default

Table 12.75: Configuration tags for PSU device
type ’EL 9750-50-HP’. An empty value field gen-
erally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

12.9.23 EL 9080 600

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (mas-

ter + slaves)
1

parallel Number of devices in parallel
(master + slaves)

1

external RSD Existence of external remote shut
down device (usually an external
relay)

Yes
No

No

RSD name Device name for remote shut
down relay

RSD type Device type for remote shutdown
relay, only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote
shutdown relay, only used if no
RSD name

ttyS0

RSD address Remote shutdown relay address,
only used if no RSD name

0

RSD channel Remote shutdown relay channel,
only used if no RSD name

0

control mode determines if the set() function
should control voltage or current

Voltage
Current

Current

Continued on next page

292 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.76 – continued from previous page
Tag Description Values Default
master device Device name for the master device

in case current device is a slave
device (locked to have X percent
of master device current)

slave current Percentage of master device cur-
rent that this device is supposed
to have

100

slave voltage Percentage of master device volt-
age that this device is supposed to
have

100

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.76: Configuration tags for PSU device
type ’EL 9080-600 HP’. An empty value field gen-
erally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

12.9.24 EL 9160 300

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (mas-

ter + slaves)
1

Continued on next page

293 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.77 – continued from previous page
Tag Description Values Default
parallel Number of devices in parallel

(master + slaves)
1

external RSD Existence of external remote shut
down device (usually an external
relay)

Yes
No

No

RSD name Device name for remote shut
down relay

RSD type Device type for remote shutdown
relay, only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote
shutdown relay, only used if no
RSD name

ttyS0

RSD address Remote shutdown relay address,
only used if no RSD name

0

RSD channel Remote shutdown relay channel,
only used if no RSD name

0

control mode determines if the set() function
should control voltage or current

Voltage
Current

Current

master device Device name for the master device
in case current device is a slave
device (locked to have X percent
of master device current)

slave current Percentage of master device cur-
rent that this device is supposed
to have

100

slave voltage Percentage of master device volt-
age that this device is supposed to
have

100

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

Continued on next page

294 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.77 – continued from previous page
Tag Description Values Default

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.77: Configuration tags for PSU device
type ’EL 9160-300 HP’. An empty value field gen-
erally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

12.9.25 EL 9400 150

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (mas-

ter + slaves)
1

parallel Number of devices in parallel
(master + slaves)

1

external RSD Existence of external remote shut
down device (usually an external
relay)

Yes
No

No

RSD name Device name for remote shut
down relay

RSD type Device type for remote shutdown
relay, only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote
shutdown relay, only used if no
RSD name

ttyS0

RSD address Remote shutdown relay address,
only used if no RSD name

0

Continued on next page

295 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.78 – continued from previous page
Tag Description Values Default
RSD channel Remote shutdown relay channel,

only used if no RSD name
0

control mode determines if the set() function
should control voltage or current

Voltage
Current

Current

master device Device name for the master device
in case current device is a slave
device (locked to have X percent
of master device current)

slave current Percentage of master device cur-
rent that this device is supposed
to have

100

slave voltage Percentage of master device volt-
age that this device is supposed to
have

100

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.78: Configuration tags for PSU device
type ’EL 9400-150 HP’. An empty value field gen-
erally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

12.9.26 EL 9750 75

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial

Continued on next page

296 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.79 – continued from previous page
Tag Description Values Default
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (mas-

ter + slaves)
1

parallel Number of devices in parallel
(master + slaves)

1

external RSD Existence of external remote shut
down device (usually an external
relay)

Yes
No

No

RSD name Device name for remote shut
down relay

RSD type Device type for remote shutdown
relay, only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote
shutdown relay, only used if no
RSD name

ttyS0

RSD address Remote shutdown relay address,
only used if no RSD name

0

RSD channel Remote shutdown relay channel,
only used if no RSD name

0

control mode determines if the set() function
should control voltage or current

Voltage
Current

Current

master device Device name for the master device
in case current device is a slave
device (locked to have X percent
of master device current)

slave current Percentage of master device cur-
rent that this device is supposed
to have

100

slave voltage Percentage of master device volt-
age that this device is supposed to
have

100

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

Continued on next page

297 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.79 – continued from previous page
Tag Description Values Default
comments Description for this device. Do

not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.79: Configuration tags for PSU device
type ’EL 9750-75’. An empty value field generally
indicates that the tag value can be either a free
text string or a number (integer or floating point).

12.9.27 EL 9080 600 HP

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (mas-

ter + slaves)
1

parallel Number of devices in parallel
(master + slaves)

1

external RSD Existence of external remote shut
down device (usually an external
relay)

Yes
No

No

RSD name Device name for remote shut
down relay

RSD type Device type for remote shutdown
relay, only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote
shutdown relay, only used if no
RSD name

ttyS0

Continued on next page

298 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.80 – continued from previous page
Tag Description Values Default
RSD address Remote shutdown relay address,

only used if no RSD name
0

RSD channel Remote shutdown relay channel,
only used if no RSD name

0

control mode determines if the set() function
should control voltage or current

Voltage
Current

Current

master device Device name for the master device
in case current device is a slave
device (locked to have X percent
of master device current)

slave current Percentage of master device cur-
rent that this device is supposed
to have

100

slave voltage Percentage of master device volt-
age that this device is supposed to
have

100

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.80: Configuration tags for PSU device
type ’EL 9080-600 HP’. An empty value field gen-
erally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

12.9.28 EL 9160 300 HP

299 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (mas-

ter + slaves)
1

parallel Number of devices in parallel
(master + slaves)

1

external RSD Existence of external remote shut
down device (usually an external
relay)

Yes
No

No

RSD name Device name for remote shut
down relay

RSD type Device type for remote shutdown
relay, only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote
shutdown relay, only used if no
RSD name

ttyS0

RSD address Remote shutdown relay address,
only used if no RSD name

0

RSD channel Remote shutdown relay channel,
only used if no RSD name

0

control mode determines if the set() function
should control voltage or current

Voltage
Current

Current

master device Device name for the master device
in case current device is a slave
device (locked to have X percent
of master device current)

slave current Percentage of master device cur-
rent that this device is supposed
to have

100

slave voltage Percentage of master device volt-
age that this device is supposed to
have

100

Continued on next page

300 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.81 – continued from previous page
Tag Description Values Default

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.81: Configuration tags for PSU device
type ’EL 9160-300 HP’. An empty value field gen-
erally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

12.9.29 EL 9400 150 HP

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (mas-

ter + slaves)
1

parallel Number of devices in parallel
(master + slaves)

1

external RSD Existence of external remote shut
down device (usually an external
relay)

Yes
No

No

RSD name Device name for remote shut
down relay

Continued on next page

301 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.82 – continued from previous page
Tag Description Values Default

RSD type Device type for remote shutdown
relay, only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote
shutdown relay, only used if no
RSD name

ttyS0

RSD address Remote shutdown relay address,
only used if no RSD name

0

RSD channel Remote shutdown relay channel,
only used if no RSD name

0

control mode determines if the set() function
should control voltage or current

Voltage
Current

Current

master device Device name for the master device
in case current device is a slave
device (locked to have X percent
of master device current)

slave current Percentage of master device cur-
rent that this device is supposed
to have

100

slave voltage Percentage of master device volt-
age that this device is supposed to
have

100

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Continued on next page

302 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.82 – continued from previous page
Tag Description Values Default

Table 12.82: Configuration tags for PSU device
type ’EL 9400-150 HP’. An empty value field gen-
erally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

12.9.30 EL 9750 75 HP

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (mas-

ter + slaves)
1

parallel Number of devices in parallel
(master + slaves)

1

external RSD Existence of external remote shut
down device (usually an external
relay)

Yes
No

No

RSD name Device name for remote shut
down relay

RSD type Device type for remote shutdown
relay, only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote
shutdown relay, only used if no
RSD name

ttyS0

RSD address Remote shutdown relay address,
only used if no RSD name

0

RSD channel Remote shutdown relay channel,
only used if no RSD name

0

control mode determines if the set() function
should control voltage or current

Voltage
Current

Current

Continued on next page

303 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.83 – continued from previous page
Tag Description Values Default
master device Device name for the master device

in case current device is a slave
device (locked to have X percent
of master device current)

slave current Percentage of master device cur-
rent that this device is supposed
to have

100

slave voltage Percentage of master device volt-
age that this device is supposed to
have

100

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.83: Configuration tags for PSU device
type ’EL 9750-75 HP’. An empty value field gen-
erally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

304 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

12.9.31 EL 3160 60A

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (mas-

ter + slaves)
1

parallel Number of devices in parallel
(master + slaves)

1

external RSD Existence of external remote shut
down device (usually an external
relay)

Yes
No

No

RSD name Device name for remote shut
down relay

RSD type Device type for remote shutdown
relay, only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote
shutdown relay, only used if no
RSD name

ttyS0

RSD address Remote shutdown relay address,
only used if no RSD name

0

RSD channel Remote shutdown relay channel,
only used if no RSD name

0

control mode determines if the set() function
should control voltage or current

Voltage
Current

Current

master device Device name for the master device
in case current device is a slave
device (locked to have X percent
of master device current)

slave current Percentage of master device cur-
rent that this device is supposed
to have

100

slave voltage Percentage of master device volt-
age that this device is supposed to
have

100

Continued on next page

305 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.84 – continued from previous page
Tag Description Values Default

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.84: Configuration tags for PSU device
type ’EL 3160-60A’. An empty value field gener-
ally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

12.9.32 EL 3400 25A

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (mas-

ter + slaves)
1

parallel Number of devices in parallel
(master + slaves)

1

external RSD Existence of external remote shut
down device (usually an external
relay)

Yes
No

No

RSD name Device name for remote shut
down relay

Continued on next page

306 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.85 – continued from previous page
Tag Description Values Default

RSD type Device type for remote shutdown
relay, only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote
shutdown relay, only used if no
RSD name

ttyS0

RSD address Remote shutdown relay address,
only used if no RSD name

0

RSD channel Remote shutdown relay channel,
only used if no RSD name

0

control mode determines if the set() function
should control voltage or current

Voltage
Current

Current

master device Device name for the master device
in case current device is a slave
device (locked to have X percent
of master device current)

slave current Percentage of master device cur-
rent that this device is supposed
to have

100

slave voltage Percentage of master device volt-
age that this device is supposed to
have

100

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Continued on next page

307 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.85 – continued from previous page
Tag Description Values Default

Table 12.85: Configuration tags for PSU device
type ’EL 3400-25A’. An empty value field gener-
ally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

12.9.33 EL 9080 200

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (mas-

ter + slaves)
1

parallel Number of devices in parallel
(master + slaves)

1

external RSD Existence of external remote shut
down device (usually an external
relay)

Yes
No

No

RSD name Device name for remote shut
down relay

RSD type Device type for remote shutdown
relay, only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote
shutdown relay, only used if no
RSD name

ttyS0

RSD address Remote shutdown relay address,
only used if no RSD name

0

RSD channel Remote shutdown relay channel,
only used if no RSD name

0

control mode determines if the set() function
should control voltage or current

Voltage
Current

Current

Continued on next page

308 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.86 – continued from previous page
Tag Description Values Default
master device Device name for the master device

in case current device is a slave
device (locked to have X percent
of master device current)

slave current Percentage of master device cur-
rent that this device is supposed
to have

100

slave voltage Percentage of master device volt-
age that this device is supposed to
have

100

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.86: Configuration tags for PSU device
type ’EL 9080-200 HP’. An empty value field gen-
erally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

12.9.34 EL 9160 100

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (mas-

ter + slaves)
1

Continued on next page

309 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.87 – continued from previous page
Tag Description Values Default
parallel Number of devices in parallel

(master + slaves)
1

external RSD Existence of external remote shut
down device (usually an external
relay)

Yes
No

No

RSD name Device name for remote shut
down relay

RSD type Device type for remote shutdown
relay, only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote
shutdown relay, only used if no
RSD name

ttyS0

RSD address Remote shutdown relay address,
only used if no RSD name

0

RSD channel Remote shutdown relay channel,
only used if no RSD name

0

control mode determines if the set() function
should control voltage or current

Voltage
Current

Current

master device Device name for the master device
in case current device is a slave
device (locked to have X percent
of master device current)

slave current Percentage of master device cur-
rent that this device is supposed
to have

100

slave voltage Percentage of master device volt-
age that this device is supposed to
have

100

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

Continued on next page

310 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.87 – continued from previous page
Tag Description Values Default

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.87: Configuration tags for PSU device
type ’EL 9160-100 HP’. An empty value field gen-
erally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

12.9.35 EL 9400 50

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (mas-

ter + slaves)
1

parallel Number of devices in parallel
(master + slaves)

1

external RSD Existence of external remote shut
down device (usually an external
relay)

Yes
No

No

RSD name Device name for remote shut
down relay

RSD type Device type for remote shutdown
relay, only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote
shutdown relay, only used if no
RSD name

ttyS0

RSD address Remote shutdown relay address,
only used if no RSD name

0

Continued on next page

311 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.88 – continued from previous page
Tag Description Values Default
RSD channel Remote shutdown relay channel,

only used if no RSD name
0

control mode determines if the set() function
should control voltage or current

Voltage
Current

Current

master device Device name for the master device
in case current device is a slave
device (locked to have X percent
of master device current)

slave current Percentage of master device cur-
rent that this device is supposed
to have

100

slave voltage Percentage of master device volt-
age that this device is supposed to
have

100

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.88: Configuration tags for PSU device
type ’EL 9400-50’. An empty value field generally
indicates that the tag value can be either a free
text string or a number (integer or floating point).

12.9.36 EL 9400 50 S01

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0

Continued on next page

312 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.89 – continued from previous page
Tag Description Values Default
address Device address 0
serial Number of devices in serial (mas-

ter + slaves)
1

parallel Number of devices in parallel
(master + slaves)

1

external RSD Existence of external remote shut
down device (usually an external
relay)

Yes
No

No

RSD name Device name for remote shut
down relay

RSD type Device type for remote shutdown
relay, only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote
shutdown relay, only used if no
RSD name

ttyS0

RSD address Remote shutdown relay address,
only used if no RSD name

0

RSD channel Remote shutdown relay channel,
only used if no RSD name

0

control mode determines if the set() function
should control voltage or current

Voltage
Current

Current

master device Device name for the master device
in case current device is a slave
device (locked to have X percent
of master device current)

slave current Percentage of master device cur-
rent that this device is supposed
to have

100

slave voltage Percentage of master device volt-
age that this device is supposed to
have

100

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

Continued on next page

313 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.89 – continued from previous page
Tag Description Values Default
comments Description for this device. Do

not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.89: Configuration tags for PSU device
type ’EL 9400-50 S01’. An empty value field gen-
erally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

12.9.37 EL 9750 25

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (mas-

ter + slaves)
1

parallel Number of devices in parallel
(master + slaves)

1

external RSD Existence of external remote shut
down device (usually an external
relay)

Yes
No

No

RSD name Device name for remote shut
down relay

RSD type Device type for remote shutdown
relay, only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote
shutdown relay, only used if no
RSD name

ttyS0

Continued on next page

314 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.90 – continued from previous page
Tag Description Values Default
RSD address Remote shutdown relay address,

only used if no RSD name
0

RSD channel Remote shutdown relay channel,
only used if no RSD name

0

control mode determines if the set() function
should control voltage or current

Voltage
Current

Current

master device Device name for the master device
in case current device is a slave
device (locked to have X percent
of master device current)

slave current Percentage of master device cur-
rent that this device is supposed
to have

100

slave voltage Percentage of master device volt-
age that this device is supposed to
have

100

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.90: Configuration tags for PSU device
type ’EL 9750 25’. An empty value field generally
indicates that the tag value can be either a free
text string or a number (integer or floating point).

12.9.38 EL 9080 400

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

Continued on next page

315 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.91 – continued from previous page
Tag Description Values Default
communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (mas-

ter + slaves)
1

parallel Number of devices in parallel
(master + slaves)

1

external RSD Existence of external remote shut
down device (usually an external
relay)

Yes
No

No

RSD name Device name for remote shut
down relay

RSD type Device type for remote shutdown
relay, only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote
shutdown relay, only used if no
RSD name

ttyS0

RSD address Remote shutdown relay address,
only used if no RSD name

0

RSD channel Remote shutdown relay channel,
only used if no RSD name

0

control mode determines if the set() function
should control voltage or current

Voltage
Current

Current

master device Device name for the master device
in case current device is a slave
device (locked to have X percent
of master device current)

slave current Percentage of master device cur-
rent that this device is supposed
to have

100

slave voltage Percentage of master device volt-
age that this device is supposed to
have

100

Continued on next page

316 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.91 – continued from previous page
Tag Description Values Default

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.91: Configuration tags for PSU device
type ’EL 9080-400’. An empty value field gener-
ally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

12.9.39 EL 9160 200

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (mas-

ter + slaves)
1

parallel Number of devices in parallel
(master + slaves)

1

external RSD Existence of external remote shut
down device (usually an external
relay)

Yes
No

No

RSD name Device name for remote shut
down relay

Continued on next page

317 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.92 – continued from previous page
Tag Description Values Default

RSD type Device type for remote shutdown
relay, only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote
shutdown relay, only used if no
RSD name

ttyS0

RSD address Remote shutdown relay address,
only used if no RSD name

0

RSD channel Remote shutdown relay channel,
only used if no RSD name

0

control mode determines if the set() function
should control voltage or current

Voltage
Current

Current

master device Device name for the master device
in case current device is a slave
device (locked to have X percent
of master device current)

slave current Percentage of master device cur-
rent that this device is supposed
to have

100

slave voltage Percentage of master device volt-
age that this device is supposed to
have

100

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Continued on next page

318 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.92 – continued from previous page
Tag Description Values Default

Table 12.92: Configuration tags for PSU device
type ’EL 9160-100’. An empty value field gener-
ally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

12.9.40 EL 9400 100

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (mas-

ter + slaves)
1

parallel Number of devices in parallel
(master + slaves)

1

external RSD Existence of external remote shut
down device (usually an external
relay)

Yes
No

No

RSD name Device name for remote shut
down relay

RSD type Device type for remote shutdown
relay, only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote
shutdown relay, only used if no
RSD name

ttyS0

RSD address Remote shutdown relay address,
only used if no RSD name

0

RSD channel Remote shutdown relay channel,
only used if no RSD name

0

control mode determines if the set() function
should control voltage or current

Voltage
Current

Current

Continued on next page

319 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.93 – continued from previous page
Tag Description Values Default
master device Device name for the master device

in case current device is a slave
device (locked to have X percent
of master device current)

slave current Percentage of master device cur-
rent that this device is supposed
to have

100

slave voltage Percentage of master device volt-
age that this device is supposed to
have

100

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.93: Configuration tags for PSU device
type ’EL 9400-100’. An empty value field gener-
ally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

320 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

12.9.41 EL 9400 100 S01

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (mas-

ter + slaves)
1

parallel Number of devices in parallel
(master + slaves)

1

external RSD Existence of external remote shut
down device (usually an external
relay)

Yes
No

No

RSD name Device name for remote shut
down relay

RSD type Device type for remote shutdown
relay, only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote
shutdown relay, only used if no
RSD name

ttyS0

RSD address Remote shutdown relay address,
only used if no RSD name

0

RSD channel Remote shutdown relay channel,
only used if no RSD name

0

control mode determines if the set() function
should control voltage or current

Voltage
Current

Current

master device Device name for the master device
in case current device is a slave
device (locked to have X percent
of master device current)

slave current Percentage of master device cur-
rent that this device is supposed
to have

100

slave voltage Percentage of master device volt-
age that this device is supposed to
have

100

Continued on next page

321 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.94 – continued from previous page
Tag Description Values Default

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.94: Configuration tags for PSU device
type ’EL 9400-100 S01’. An empty value field
generally indicates that the tag value can be ei-
ther a free text string or a number (integer or
floating point).

12.9.42 EL 9750 50

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (mas-

ter + slaves)
1

parallel Number of devices in parallel
(master + slaves)

1

external RSD Existence of external remote shut
down device (usually an external
relay)

Yes
No

No

RSD name Device name for remote shut
down relay

Continued on next page

322 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.95 – continued from previous page
Tag Description Values Default

RSD type Device type for remote shutdown
relay, only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote
shutdown relay, only used if no
RSD name

ttyS0

RSD address Remote shutdown relay address,
only used if no RSD name

0

RSD channel Remote shutdown relay channel,
only used if no RSD name

0

control mode determines if the set() function
should control voltage or current

Voltage
Current

Current

master device Device name for the master device
in case current device is a slave
device (locked to have X percent
of master device current)

slave current Percentage of master device cur-
rent that this device is supposed
to have

100

slave voltage Percentage of master device volt-
age that this device is supposed to
have

100

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.95: Configuration tags for PSU device
type ’EL 9750-50’. An empty value field generally
indicates that the tag value can be either a free
text string or a number (integer or floating point).

323 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

12.9.43 PSU Bipolar

Tag Description Values Default
mode Device control mode Automatic Automatic

PSU device Device for controling current in
electrolyser mode (negative cur-
rent)

Eload device Device for controling current in
fuel cell mode (positive current)

control mode determines if the set() function
should control voltage or current

Voltage
Current

Current

show plot Determines if the current device
data is to be shown in the daily
data plots

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.96: Configuration tags for PSU device
type ’PSU Bipolar’. An empty value field gener-
ally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

12.9.44 PSU B2N

Tag Description Values Default
mode Device control mode Automatic Automatic

PSU device Bipolar power supply device

control mode determines if the set() function
should control voltage or current

Voltage
Current

Current

Continued on next page

324 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.97 – continued from previous page
Tag Description Values Default

show plot Determines if the current device
data is to be shown in the daily
data plots

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.97: Configuration tags for PSU device
type ’PSU B2N’. An empty value field generally
indicates that the tag value can be either a free
text string or a number (integer or floating point).

12.9.45 PSU N2B

Tag Description Values Default
mode Device control mode Automatic Automatic

PSU device Power supply device

relay device Relay device controling the direc-
tion of curent for the underlying
PSU device

control mode determines if the set() function
should control voltage or current

Voltage
Current

Current

show plot Determines if the current device
data is to be shown in the daily
data plots

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Continued on next page

325 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.98 – continued from previous page
Tag Description Values Default

Table 12.98: Configuration tags for PSU device
type ’PSU N2B’. An empty value field generally
indicates that the tag value can be either a free
text string or a number (integer or floating point).

12.9.46 Kepco BOP 50 20MG

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication GPIB
address Device address 6
serial Number of devices in serial (mas-

ter + slaves)
1

parallel Number of devices in parallel
(master + slaves)

1

external RSD Existence of external remote shut
down device (usually an external
relay)

Yes
No

No

RSD name Device name for remote shut
down relay

RSD type Device type for remote shutdown
relay, only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote
shutdown relay, only used if no
RSD name

ttyS0

RSD address Remote shutdown relay address,
only used if no RSD name

0

RSD channel Remote shutdown relay channel,
only used if no RSD name

0

control mode determines if the set() function
should control voltage or current

Voltage
Current

Voltage

Continued on next page

326 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.99 – continued from previous page
Tag Description Values Default
master device Device name for the master device

in case current device is a slave
device (locked to have X percent
of master device current)

slave current Percentage of master device cur-
rent that this device is supposed
to have

100

slave voltage Percentage of master device volt-
age that this device is supposed to
have

100

title Optional device title

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.99: Configuration tags for PSU device
type ’BOP-50-200MG’. An empty value field gen-
erally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

12.9.47 Keithley2400

Tag Description Values Default

mode Device control mode. If set to
’hidden’ it will not show up as
a controlable device in the GUI.
However it will still be avali-
able through other devices such as
PSU B2N

Normal
hidden

Normal

Continued on next page

327 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.100 – continued from previous page
Tag Description Values Default
communication Device connunication GPIB 488.1 GPIB 488.1
address Device address 1

PSU mode Mode of operation (determines if
the device should act as a constant
current source or a constant volt-
age source)

CC
CV

CC

external RSD Existence of external remote shut
down device (usually an external
relay)

Yes
No

No

RSD name Device name for remote shut
down relay

control mode determines if the set() function
should control voltage or current

Voltage
Current

Current

master device Device name for the master device
in case current device is a slave
device (locked to have X percent
of master device current)

slave current Percentage of master device cur-
rent that this device is supposed
to have

100

slave voltage Percentage of master device volt-
age that this device is supposed to
have

100

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.100: Configuration tags for PSU device
type ’keithley2400’. An empty value field gener-
ally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

328 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

12.9.48 PSUMulti

Tag Description Values Default

class Device type
Normal
PSUMulti

PSUMulti

mode Device control mode Automatic Automatic
device 1 Name of low range PSU device
device 2 Name of high range PSU device
cutoff device 1 curent for device 1 below which

the current is defined to be 0
(OCV)

0

cutoff device 2 curent for device 2 below which
the current is defined to be 0
(OCV)

0

minvoltage
maxvoltage
mincurrent
maxcurrent
shift up Flow level where control shifts

from small to large device, default
is maxcurrent of low range device

1

shift down Flow level where control shifts
from large to small device, default
is 80 percent of maxcurrent of low
range device

0.8

steps Number of steps in current shift
between devices

1

sleep Wait time in seconds on each step
in a shift between devices

1

control mode determines if the set() function
should control voltage or current

Current Current

master device Device name for the master device
in case current device is a slave
device (locked to have X percent
of master device current)

slave current Percentage of master device cur-
rent that this device is supposed
to have

100

slave voltage Percentage of master device volt-
age that this device is supposed to
have

100

Continued on next page

329 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.101 – continued from previous page
Tag Description Values Default

show plot Determines if the current device
data is to be shown in the daily
data plots

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.101: Configuration tags for PSU device
type ’PSUMulti’. An empty value field generally
indicates that the tag value can be either a free
text string or a number (integer or floating point).

12.9.49 BKPrecision

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication
USB
RS232

USB

tty Communication device ttyS0

external RSD Existence of external remote shut
down device (usually an external
relay)

Yes
No

No

RSD name Device name for remote shut
down relay

control mode determines if the set() function
should control voltage or current

Voltage
Current

Current

master device Device name for the master device
in case current device is a slave
device (locked to have X percent
of master device current)

slave current Percentage of master device cur-
rent that this device is supposed
to have

100

Continued on next page

330 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.102 – continued from previous page
Tag Description Values Default
slave voltage Percentage of master device volt-

age that this device is supposed to
have

100

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.102: Configuration tags for PSU device
type ’BK Precision’. An empty value field gener-
ally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

12.9.50 Hocherl ZS

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0

baudrate Baud rate

4800
9600
14400
19200
28800
38400
57600

9600

parity Parity check scheme
even
odd

even

databits Data bits
7
8

8

Continued on next page

331 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.103 – continued from previous page
Tag Description Values Default

stopbits Stop bits
1
2

2

serial Number of devices in serial (mas-
ter + slaves)

1

parallel Number of devices in parallel
(master + slaves)

1

external RSD Existence of external remote shut
down device (usually an external
relay)

Yes
No

No

RSD name Device name for remote shut
down relay

control mode determines if the set() function
should control voltage or current

Current Current

master device Device name for the master device
in case current device is a slave
device (locked to have X percent
of master device current)

slave current Percentage of master device cur-
rent that this device is supposed
to have

100

slave voltage Percentage of master device volt-
age that this device is supposed to
have

100

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.103: Configuration tags for PSU device
type ’Hocherl and hackl ZS Eloads’. An empty
value field generally indicates that the tag value
can be either a free text string or a number (in-
teger or floating point).

332 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

12.10 Analog

Analog output devices are used for instances where a specific control device
needs an analog voltage for actual control. This is usually mass flow controlers,
but other devices could also utilise this.

Analog output devices supports the set() command to set the output voltage
or current.

12.10.1 ICP7024

Tag Description Values Default
mode Device control mode Automatic Volt
tty Serial device for communication

(ex ttyS0)
ttyS0

address Device address 0
channel Device channel 0
title Optional title

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

use cache Determines if persisten caching of
read values is allowed

Yes
No

No

persistent settings Determines wether or not settings
should be cached on file (speed-
ing up normal use) or queried each
time

Yes
No

No

CRC Determines if checksum is to be
used for serial communication

No
Yes

No

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Continued on next page

333 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.104 – continued from previous page
Tag Description Values Default

Table 12.104: Configuration tags for analog de-
vice type ’AnalogICP87024’. An empty value
field generally indicates that the tag value can
be either a free text string or a number (integer
or floating point).

12.10.2 ICP87024

Tag Description Values Default
mode Device control mode Automatic Volt
tty Serial device for communication

(ex ttyS0)
ttyS0

address Device address 0
channel Device channel 0
title Optional title

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

use cache Determines if persisten caching of
read values is allowed

Yes
No

No

persistent settings Determines wether or not settings
should be cached on file (speed-
ing up normal use) or queried each
time

Yes
No

No

CRC Determines if checksum is to be
used for serial communication

No
Yes

No

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Continued on next page

334 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.105 – continued from previous page
Tag Description Values Default

Table 12.105: Configuration tags for analog de-
vice type ’AnalogICP87024’. An empty value
field generally indicates that the tag value can
be either a free text string or a number (integer
or floating point).

12.10.3 ICP87028

Tag Description Values Default
mode Device control mode Automatic Volt
tty Serial device for communication

(ex ttyS0)
ttyS0

address Device address 0
channel Device channel 0
title Optional title

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

use cache Determines if persisten caching of
read values is allowed

Yes
No

No

persistent settings Determines wether or not settings
should be cached on file (speed-
ing up normal use) or queried each
time

Yes
No

No

CRC Determines if checksum is to be
used for serial communication

No
Yes

No

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Continued on next page

335 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.106 – continued from previous page
Tag Description Values Default

Table 12.106: Configuration tags for analog de-
vice type ’AnalogICP87028’. An empty value
field generally indicates that the tag value can
be either a free text string or a number (integer
or floating point).

12.10.4 ManualAnalogOut

Tag Description Values Default
mode Device control mode Volt/mA Volt/mA
title Optional title

show plot Determines if the current device
data is to be shown in the daily
data plots

Yes
No

Yes

use cache Determines if persisten caching of
read values is allowed

Yes
No

No

min -1e+100
max 1e+100
comments Description for this device. Do

not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.107: Configuration tags for analog de-
vice type ’ManualAnalogOut’. An empty value
field generally indicates that the tag value can be
either a free text string or a number (integer or
floating point).

336 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

12.11 Multiplex

Gas multiplexer devices are used in the case that multiple gas strings are used
sequentially by the same mass flow controler (this is usually done to save cost)
A multiplexer device thus connects several gas devices to a MFC device.

Multiplexer devices supports the set command to set the currently selected
gas. If the multiplexer is manually controler, then the user must make sure
that whenever he/she changes either the valve status or the multiplexer sta-
tus, that the other is kept in sync!. In case of automatically controled multi-
plexers, relay devices (refer section 12.2) handles the gas selection.

12.11.1 Relay

Tag Description Values Default

type
Relay
VICI
Slave

mode Device control mode
Manual
Automatic

Automatic

tty Device communication device (ex.
ttyS0)

ttyS0

address Device address 0

control type Device control type

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

title Optional title

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

use cache Determines if persisten caching of
read values is allowed

Yes
No

No

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

Continued on next page

337 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.108 – continued from previous page
Tag Description Values Default

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.108: Configuration tags for multiplex de-
vice type ’Gas multiplexer’. An empty value field
generally indicates that the tag value can be ei-
ther a free text string or a number (integer or
floating point).

12.11.2 VICI

Tag Description Values Default

type
Relay
VICI
Slave

tty Device communication device (ex.
ttyS0)

ttyS0

communication Device communication protocol
RS232
RS485

RS485

baudrate Communication speed

4800
9600
19200
38400
57600
115200

4800

address Device address Z
title Optional title

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

use cache Determines if persisten caching of
read values is allowed

Yes
No

No

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

Continued on next page

338 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.109 – continued from previous page
Tag Description Values Default

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.109: Configuration tags for multiplex de-
vice type ’VICI’. An empty value field generally
indicates that the tag value can be either a free
text string or a number (integer or floating point).

12.11.3 Slave

Tag Description Values Default

type
Relay
VICI
Slave

mode Device control mode
Manual
Automatic

Automatic

title Optional title
master device

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

use cache Determines if persisten caching of
read values is allowed

Yes
No

No

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled devices)

No
Yes

No

Table 12.110: Configuration tags for multiplex de-
vice type ’Slave multiplexer’. An empty value
field generally indicates that the tag value can be
either a free text string or a number (integer or
floating point).

339 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

340 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

12.12 Filter

Filter devices are a special group of devices. The individual filter devices are
used as a filter between other devices. The filter devices work by passing all
commands to the filtered device but running the result of a read operation
on a filtered device through the filter specified by the filter device (usually a
spline interpolation).

The Filter device type ’spline’ contains a special setting variable called ’spline’.
It is intended to be used in case the base device output (read) is to be cor-
rected according to a spline interpolation table. The format of the setting is
a list of values as shown below:

0 0

1 1.2

2 2.1

3 3

4 3.9

If the field is left blank, no correction is atempted and the reported value is
used as is, but in which case the use of the filter device is somewhat pointless.

A final special filter device is teh Typecast device. This device can be used
to convert commands from one device type to another. Notice however that
the typecast device class is limited in scope and not all callable functions on
the soruce type may be possible to convert to the target type. As a general
rule, only one callable function (usually the ’set’ command) can be called on
the target type.

12.12.1 Input spline

Tag Description Values Default

mode Device control mode
Manual
Automatic

spline Spline table

Continued on next page

341 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.111 – continued from previous page
Tag Description Values Default

device type Type of raw device

simplechannel
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

device Raw device
title Optional title

show plot Determines if the current
device data is to be shown
in the normal daily data
plots (graph will be shown
in the ’all data’ page). Only
relevant for enabled devices

Yes
No

Yes

read function Device function to use for
read operations

read read

comments Description for this device.
Do not use ’,’ in text as that
character is used as newline
substitute.

disable readstring Determines if readstring
should always return the
empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.111: Configuration tags for filter device
type ’Input spline device’. An empty value field
generally indicates that the tag value can be ei-
ther a free text string or a number (integer or
floating point).

342 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

12.12.2 Output spline

Tag Description Values Default

mode Device control mode
Manual
Automatic

spline Spline table

device type Type of raw device

simplechannel
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

analog

device Raw device
device set function Function to call on the en-

capsulated device. If no
functin name is specified all
calls will be forwarded to
the set or setflow command.

title Optional title

show plot Determines if the current
device data is to be shown
in the normal daily data
plots (graph will be shown
in the ’all data’ page). Only
relevant for enabled devices

Yes
No

Yes

Continued on next page

343 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.112 – continued from previous page
Tag Description Values Default

master device type Device type for the master
device in case current de-
vice is a slave device (locked
to have X percent of master
device setpoint)

simplechannel
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

master device Device name for the master
device in case current de-
vice is a slave device (locked
to have X percent of master
device setpoint)

master set function Function which triggers a
forward response. If no
functin name is specified all
calls will be forwarded.

slave flow Percentage of master device
setpoint that current device
is supposed to have

100

comments Description for this device.
Do not use ’,’ in text as that
character is used as newline
substitute.

disable readstring Determines if readstring
should always return the
empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.112: Configuration tags for filter device
type ’Output spline device’. An empty value field
generally indicates that the tag value can be ei-
ther a free text string or a number (integer or
floating point).

344 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

12.12.3 IO spline

Tag Description Values Default

mode Device control mode
Manual
Automatic

input spline Spline table used for read
operation

output spline Spline table used for set op-
eration

device type Type of raw device

simplechannel
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

analog

device Raw device
device set function Function to call on the en-

capsulated device. If no
functin name is specified all
calls will be forwarded to
the set or setflow command.

title Optional title
read function Device function to use for

read operations
read read

Continued on next page

345 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.113 – continued from previous page
Tag Description Values Default

master device type Device type for the master
device in case current de-
vice is a slave device (locked
to have X percent of master
device setpoint)

simplechannel
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

master device Device name for the master
device in case current de-
vice is a slave device (locked
to have X percent of master
device setpoint)

master set function Function which triggers a
forward response. If no
functin name is specified all
calls will be forwarded.

slave flow Percentage of master device
setpoint that current device
is supposed to have

100

show plot Determines if the current
device data is to be shown
in the normal daily data
plots (graph will be shown
in the ’all data’ page). Only
relevant for enabled devices

Yes
No

Yes

comments Description for this device.
Do not use ’,’ in text as that
character is used as newline
substitute.

Continued on next page

346 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.113 – continued from previous page
Tag Description Values Default

disable readstring Determines if readstring
should always return the
empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.113: Configuration tags for filter device
type ’IO spline device’. An empty value field gen-
erally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

12.12.4 Y-split

Tag Description Values Default
mode Device control mode Automatic
control device Relay device for controlling

which device is used

device type Type of raw device to con-
trol

simplechannel
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

input device Optional input device. If it
exists, commands from the
input device is passed on to
one of the output devices

device 1 Device selected if control
device is off (0)

Continued on next page

347 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.114 – continued from previous page
Tag Description Values Default
device 2 Device selected if control

device is on (1)
title

show plot Determines if the current
device data is to be shown
in the normal daily data
plots (graph will be shown
in the ’all data’ page). Only
relevant for enabled devices

Yes
No

Yes

comments Description for this device.
Do not use ’,’ in text as that
character is used as newline
substitute.

disable readstring Determines if readstring
should always return the
empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.114: Configuration tags for filter device
type ’Y-split filter device’. An empty value field
generally indicates that the tag value can be ei-
ther a free text string or a number (integer or
floating point).

12.12.5 Schmidttrigger

Tag Description Values Default

mode Device control mode
Manual
Automatic

Readonly

Continued on next page

348 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.115 – continued from previous page
Tag Description Values Default

device type Type of raw device

simplechannel
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

device Raw device
shift up Threshold above wich the

trigger is on
0.6

shift down Threshold below which the
trigger is off

0.4

reverse output Indicates if the locgical out-
put state should be re-
versed

Yes
No

No

title Optional title

show plot Determines if the current
device data is to be shown
in the normal daily data
plots (graph will be shown
in the ’all data’ page). Only
relevant for enabled devices

Yes
No

Yes

comments Description for this device.
Do not use ’,’ in text as that
character is used as newline
substitute.

disable readstring Determines if readstring
should always return the
empty string (only relevant
for enabled devices)

No
Yes

No

Continued on next page

349 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.115 – continued from previous page
Tag Description Values Default

Table 12.115: Configuration tags for filter device
type ’Schmidt trigger latch’. An empty value field
generally indicates that the tag value can be ei-
ther a free text string or a number (integer or
floating point).

12.12.6 Sum

Tag Description Values Default

mode Device control mode
Manual
Automatic

device type Device type

simplechannel
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

offset Numeric offset of the out-
put (added to the sum of
the inputs)

0

inputs number of inputs

2
3
4
5
6
7
8
9

2

Continued on next page

350 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.116 – continued from previous page
Tag Description Values Default
output device Output device (optional if

current device is used in a
control chain)

title Optional title

show plot Determines if the current
device data is to be shown
in the normal daily data
plots (graph will be shown
in the ’all data’ page). Only
relevant for enabled devices

Yes
No

Yes

read function Device function to use for
read operations

read read

input device 0 Input device 0
input device factor 0 Input device 0 factor (mul-

tiplied on input device read
value before summing)

1

input device 1 Input device 1
input device factor 1 Input device 1 factor (mul-

tiplied on input device read
value before summing)

1

comments Description for this device.
Do not use ’,’ in text as that
character is used as newline
substitute.

disable readstring Determines if readstring
should always return the
empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.116: Configuration tags for filter device
type ’Summing device’. An empty value field gen-
erally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

12.12.7 Min

351 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Tag Description Values Default

mode Device control mode
Manual
Automatic

device type Device type

simplechannel
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

inputs number of inputs

2
3
4
5
6
7
8
9

2

output device Output device (optional if
current device is used in a
control chain)

title Optional title

show plot Determines if the current
device data is to be shown
in the normal daily data
plots (graph will be shown
in the ’all data’ page). Only
relevant for enabled devices

Yes
No

Yes

read function Device function to use for
read operations

read read

input device 0 Input device 0 factor (mul-
tiplied on input device read
value before determining
minimum)

Continued on next page

352 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.117 – continued from previous page
Tag Description Values Default
input device factor 0 Input device 0 factor (mul-

tiplied on input device read
value before summing)

1

input device 1 Input device 1 factor (mul-
tiplied on input device read
value before determining
minimum)

input device factor 1 Input device 1 factor (mul-
tiplied on input device read
value before summing)

1

comments Description for this device.
Do not use ’,’ in text as that
character is used as newline
substitute.

disable readstring Determines if readstring
should always return the
empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.117: Configuration tags for filter device
type ’Minimum device’. An empty value field
generally indicates that the tag value can be ei-
ther a free text string or a number (integer or
floating point).

12.12.8 Redundancy

Tag Description Values Default

mode Device control mode
Manual
Automatic

Redundancy

Continued on next page

353 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.118 – continued from previous page
Tag Description Values Default

inputs number of inputs

2
3
4
5
6
7
8
9
10
11

3

device type Type of raw device

simplechannel
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

maximum bad Number of inputs which
can have values outside
range before bool() returns
false

0
1

0

limit Maximum deviation from
the mean of the rest of the
inputs an input may have

0

input device 0 Input device 0
input device 1 Input device 1
input device 2 Input device 2
comments Description for this device.

Do not use ’,’ in text as that
character is used as newline
substitute.

Continued on next page

354 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.118 – continued from previous page
Tag Description Values Default

disable readstring Determines if readstring
should always return the
empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.118: Configuration tags for filter device
type ’Redundancy filter’. An empty value field
generally indicates that the tag value can be ei-
ther a free text string or a number (integer or
floating point).

12.12.9 Max

Tag Description Values Default

mode Device control mode
Manual
Automatic

device type Device type

simplechannel
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

Continued on next page

355 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.119 – continued from previous page
Tag Description Values Default

inputs number of inputs

2
3
4
5
6
7
8
9

2

output device Output device (optional if
current device is used in a
control chain)

title Optional title

show plot Determines if the current
device data is to be shown
in the normal daily data
plots (graph will be shown
in the ’all data’ page). Only
relevant for enabled devices

Yes
No

Yes

read function Device function to use for
read operations

read read

input device 0 Input device 0 factor (mul-
tiplied on input device read
value before determining
maximum)

input device factor 0 Input device 0 factor (mul-
tiplied on input device read
value before summing)

1

input device 1 Input device 1 factor (mul-
tiplied on input device read
value before determining
maximum)

input device factor 1 Input device 1 factor (mul-
tiplied on input device read
value before summing)

1

comments Description for this device.
Do not use ’,’ in text as that
character is used as newline
substitute.

Continued on next page

356 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.119 – continued from previous page
Tag Description Values Default

disable readstring Determines if readstring
should always return the
empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.119: Configuration tags for filter device
type ’Maximum device’. An empty value field
generally indicates that the tag value can be ei-
ther a free text string or a number (integer or
floating point).

12.12.10 Lowpass

Tag Description Values Default

mode Device control mode
Manual
Automatic

Readonly

device type Type of raw device

simplechannel
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

device Raw device
time constant Time constant in seconds 10
title Optional title

Continued on next page

357 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.120 – continued from previous page
Tag Description Values Default

show plot Determines if the current
device data is to be shown
in the normal daily data
plots (graph will be shown
in the ’all data’ page). Only
relevant for enabled devices

Yes
No

Yes

comments Description for this device.
Do not use ’,’ in text as that
character is used as newline
substitute.

disable readstring Determines if readstring
should always return the
empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.120: Configuration tags for filter device
type ’Low pass filter’. An empty value field gen-
erally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

358 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

12.12.11 Moving average

Tag Description Values Default

mode Device control mode
Manual
Automatic

Readonly

device type Type of raw device

simplechannel
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

device Raw device

interval type Determines if interval is in
number of measruements or
a time interval

Measurements
Time interval

Measurements

interval Number of readings to
aveage over

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

5

Continued on next page

359 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.121 – continued from previous page
Tag Description Values Default

method Averaging method, The
median method often gives
better noise rejection than
simple arithmetic mean

Mean
Median

Mean

min Only values above the min
value will be considered for
average calculation, if no
min value is set, no mini-
mum limit is enforced

max Only values below the max
value will be considered for
average calculation, if no
max value is set, no maxi-
mum limit is enforced

read function Device function to use for
read operations

read read

title Optional title

show plot Determines if the current
device data is to be shown
in the normal daily data
plots (graph will be shown
in the ’all data’ page). Only
relevant for enabled devices

Yes
No

Yes

comments Description for this device.
Do not use ’,’ in text as that
character is used as newline
substitute.

disable readstring Determines if readstring
should always return the
empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.121: Configuration tags for filter device
type ’Moving average’. An empty value field gen-
erally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

12.12.12 Circular average

360 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Tag Description Values Default

mode Device control mode
Manual
Automatic

Readonly

device type Type of raw device

simplechannel
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

device Raw device

interval type Determines if interval is in
number of measruements or
a time interval

Measurements
Time interval

Measurements

interval Number of readings to
aveage over

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

5

data type Specify if data is in radians
or degrees

Radian
Degree

Radian

Continued on next page

361 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.122 – continued from previous page
Tag Description Values Default
read function Device function to use for

read operations
read read

title Optional title

show plot Determines if the current
device data is to be shown
in the normal daily data
plots (graph will be shown
in the ’all data’ page). Only
relevant for enabled devices

Yes
No

Yes

comments Description for this device.
Do not use ’,’ in text as that
character is used as newline
substitute.

disable readstring Determines if readstring
should always return the
empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.122: Configuration tags for filter de-
vice type ’Circular average’. An empty value field
generally indicates that the tag value can be ei-
ther a free text string or a number (integer or
floating point).

12.12.13 Derivative

Tag Description Values Default

mode Device control mode
Manual
Automatic

Readonly

Continued on next page

362 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.123 – continued from previous page
Tag Description Values Default

device type Type of raw device

simplechannel
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

device Raw device

interval type Determines if interval is in
number of measruements or
a time interval

Measurements
Time interval

Measurements

interval Number of readings to iter-
ate over

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

5

unit Scaling factor
/s
/min
/hour

/s

Continued on next page

363 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.123 – continued from previous page
Tag Description Values Default
read function Device function to use for

read operations
read read

title Optional title

show plot Determines if the current
device data is to be shown
in the normal daily data
plots (graph will be shown
in the ’all data’ page). Only
relevant for enabled devices

Yes
No

Yes

comments Description for this device.
Do not use ’,’ in text as that
character is used as newline
substitute.

disable readstring Determines if readstring
should always return the
empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.123: Configuration tags for filter device
type ’Derivative’. An empty value field generally
indicates that the tag value can be either a free
text string or a number (integer or floating point).

12.12.14 Integrator

Tag Description Values Default

mode Device control mode
Manual
Automatic

Readonly

Continued on next page

364 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.124 – continued from previous page
Tag Description Values Default

device type Type of raw device

simplechannel
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

device Raw device
read function Device function to use for

read operations
read read

title Optional title

show plot Determines if the current
device data is to be shown
in the normal daily data
plots (graph will be shown
in the ’all data’ page). Only
relevant for enabled devices

Yes
No

Yes

comments Description for this device.
Do not use ’,’ in text as that
character is used as newline
substitute.

disable readstring Determines if readstring
should always return the
empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.124: Configuration tags for filter device
type ’Integrator’. An empty value field generally
indicates that the tag value can be either a free
text string or a number (integer or floating point).

365 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

12.12.15 Typecast

Tag Description Values Default

mode Device control mode
Manual
Automatic

device type Type of raw device

simplechannel
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

device Raw device

output type Type of device to convert to

simplechannel
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

gas

output device Optional output device
notify function Function to call on the out-

put device and any listening
devices if a notify event is
called on current device

set

Continued on next page

366 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.125 – continued from previous page
Tag Description Values Default
comments Description for this device.

Do not use ’,’ in text as that
character is used as newline
substitute.

disable readstring Determines if readstring
should always return the
empty string (only relevant
for enabled devices)

No
Yes

Yes

Table 12.125: Configuration tags for filter device
type ’Typecast device’. An empty value field gen-
erally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

12.12.16 Typecast PSU to gas

Tag Description Values Default

mode Device control mode
Manual
Automatic

device Raw device

output device Optional output device
title

show plot Determines if the current
device data is to be shown
in the normal daily data
plots (graph will be shown
in the ’all data’ page). Only
relevant for enabled devices

Yes
No

Yes

comments Description for this device.
Do not use ’,’ in text as that
character is used as newline
substitute.

disable readstring Determines if readstring
should always return the
empty string (only relevant
for enabled devices)

No
Yes

Yes

Continued on next page

367 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.126 – continued from previous page
Tag Description Values Default

Table 12.126: Configuration tags for filter device
type ’Typecast device Faraday’. An empty value
field generally indicates that the tag value can be
either a free text string or a number (integer or
floating point).

12.12.17 Truncate

Tag Description Values Default

mode Device control mode
Manual
Automatic

Readonly

device type Type of raw device

simplechannel
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

device Raw device

interval type Timestamp to truncate
data to

Minute
Hour
Day
Week
Month

Hour

interval Number of hours or days
etc, Note only integers al-
lowed!

1

offset Time offset (in units of the
interval)

0

Continued on next page

368 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.127 – continued from previous page
Tag Description Values Default
read function Device function to use for

read operations
read read

title Optional title

show plot Determines if the current
device data is to be shown
in the normal daily data
plots (graph will be shown
in the ’all data’ page). Only
relevant for enabled devices

Yes
No

Yes

comments Description for this device.
Do not use ’,’ in text as that
character is used as newline
substitute.

disable readstring Determines if readstring
should always return the
empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.127: Configuration tags for filter device
type ’Data truncate’. An empty value field gen-
erally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

12.12.18 Integer

Tag Description Values Default

mode Device control mode
Manual
Automatic

Readonly

Continued on next page

369 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.128 – continued from previous page
Tag Description Values Default

device type Type of raw device

simplechannel
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

device Raw device
read function Device function to use for

read operations
read read

comments Description for this device.
Do not use ’,’ in text as that
character is used as newline
substitute.

disable readstring Determines if readstring
should always return the
empty string (only relevant
for enabled devices)

No
Yes

Yes

Table 12.128: Configuration tags for filter device
type ’Integer’. An empty value field generally in-
dicates that the tag value can be either a free text
string or a number (integer or floating point).

12.12.19 Constant

370 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Tag Description Values Default

output type Type of device to convert to

simplechannel
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

gas

value
comments Description for this device.

Do not use ’,’ in text as that
character is used as newline
substitute.

Table 12.129: Configuration tags for filter device
type ’Constant value’. An empty value field gen-
erally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

371 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

12.13 PID

PID devices are virtual devices used for more complex process control than
normally avaliable with fixed setpoints. The devices implement the normal
behaviour of a PID controler but uses other RFCcontrol devices for input and
output.

12.13.1 PID

Tag Description Values Default
P Proportional gain 0.8
I Integrator gain 0.3
D Differential gain 0.1
intwindup Maximum integrated error 10
deadband Deadband, whenever the

absolute error is less than
this no change in ouptut
is made (determined before
error gain is applied!). Note
that the deadband should
not be set to a value less
than the accuracy of the
sensor measuring the actual
value (and hence the error)!

0

cutoff Maximum error that will
result in an iteration. If the
error is greater than this
value, no iteration will oc-
cour (similar to the dead-
band, except for large er-
rors). If no value is speci-
fied, this feature is disabled
(Default)

0

min minimum allowed output
(check that it is greater
than output device mini-
mum output!)

0

max maximum allowed output
(check that it is less than
output device maximum
output!)

1

Continued on next page

372 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.130 – continued from previous page
Tag Description Values Default

sensor type Device type of the sensing
device

simplechannel
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
filter
PID
logic
math
Alert
Adapter

simplechannel

sensor device Device name of sensing de-
vice

control type Device type of the con-
trolled device

simplechannel
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
filter
PID
logic
math
Alert
Adapter

gas

control device Device name of controlled
device. Dhe device in-
stance must support the
set() member function!

Continued on next page

373 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.130 – continued from previous page
Tag Description Values Default

allow override Allow controlled device to
be controlled directly from
the GUI

Yes
No

No

error gain Factor multiplied on the er-
ror. Used to keep the
error values within the
most optimum range. For
RFC devices with long time
constants usually a value
of 0.01 should be chosen.
Note that error gain can be
used to invert the output by
changing the sign.

0.1

fast Determines if the PID con-
trol loop is running as
fast as possible (Yes) or
only with one iteratoion /
minute (No)

Yes
No

No

output enabled Determines if each call to
out() or control() should re-
sult in commands passed to
the output device (closed
loop) or merely result in an
iteration and resulting up-
date of the integrated error
(open loop). Setting this
to No is usefull for calibra-
tion / configuration / test-
ing purposes

Yes
No
Relay

Yes

output enable input relay device determining if
output is enabled or not

show plot Determines if the current
device data is to be shown
in the normal daily data
plots (graph will be shown
in the ’all data’ page). Only
relevant for enabled devices

Yes
No

Yes

Continued on next page

374 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.130 – continued from previous page
Tag Description Values Default
comments Description for this device.

Do not use ’,’ in text as that
character is used as newline
substitute.

disable readstring Determines if readstring
should always return the
empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.130: Configuration tags for PID device
type ’RFCPID’. An empty value field generally
indicates that the tag value can be either a free
text string or a number (integer or floating point).

12.13.2 LinearApproach

Tag Description Values Default
P Proportional gain 0.8
I Integrator gain 0.3
D Differential gain 0.1
intwindup Maximum integrated error 10
deadband Deadband, whenever the

absolute error is less than
this no change in ouptut
is made (determined before
error gain is applied!). Note
that the deadband should
not be set to a value less
than the accuracy of the
sensor measuring the actual
value (and hence the error)!

0

Continued on next page

375 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.131 – continued from previous page
Tag Description Values Default
cutoff Maximum error that will

result in an iteration. If the
error is greater than this
value, no iteration will oc-
cour (similar to the dead-
band, except for large er-
rors). If no value is speci-
fied, this feature is disabled
(Default)

0

min minimum allowed output
(check that it is greater
than output device mini-
mum output!)

0

max maximum allowed output
(check that it is less than
output device maximum
output!)

1

sensor type Device type of the sensing
device

simplechannel
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
filter
PID
logic
math
Alert
Adapter

simplechannel

sensor device Device name of sensing de-
vice

Continued on next page

376 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.131 – continued from previous page
Tag Description Values Default

control type Device type of the con-
trolled device

simplechannel
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
filter
PID
logic
math
Alert
Adapter

gas

control device Device name of controlled
device. Dhe device in-
stance must support the
set() member function!

allow override Allow controlled device to
be controlled directly from
the GUI

Yes
No

No

error gain Factor multiplied on the er-
ror. Used to keep the
error values within the
most optimum range. For
RFC devices with long time
constants usually a value
of 0.01 should be chosen.
Note that error gain can be
used to invert the output by
changing the sign.

0.1

fast Determines if the PID con-
trol loop is running as
fast as possible (Yes) or
only with one iteratoion /
minute (No)

Yes
No

No

Continued on next page

377 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.131 – continued from previous page
Tag Description Values Default

output enabled Determines if each call to
out() or control() should re-
sult in commands passed to
the output device (closed
loop) or merely result in an
iteration and resulting up-
date of the integrated error
(open loop). Setting this
to No is usefull for calibra-
tion / configuration / test-
ing purposes

Yes
No
Relay

Yes

output enable input relay device determining if
output is enabled or not

show plot Determines if the current
device data is to be shown
in the normal daily data
plots (graph will be shown
in the ’all data’ page). Only
relevant for enabled devices

Yes
No

Yes

comments Description for this device.
Do not use ’,’ in text as that
character is used as newline
substitute.

disable readstring Determines if readstring
should always return the
empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.131: Configuration tags for PID device
type ’RFCPID’. An empty value field generally
indicates that the tag value can be either a free
text string or a number (integer or floating point).

378 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

12.14 Logic

Logic devices are virtual logical devices used for more complex process control.
The devices implement the normal behaviour of the usual logical operators
AND, OR, XOR etc. A logic device can operate with relay, logic or schmidt
trigger devices as inputs. The individual logic devices uses short circuit eval-
uation where appropriate.

Notice that all logic devices return undefined if the readstring function is
called as they are virtual devices not intended for data logging but only for
process control.

12.14.1 AND

Tag Description Values Default
mode Device control mode Logic Logic

inputs number of inputs

2
3
4
5
6
7
8
9

2

output device Relay device for output (optional
if current device is used in a logic
chain)

input device 0 Input device 0

reverse input 0 Indicates if value of input 0 should
be inverted before logic operation

No
Yes

No

input device 1 Input device 1

reverse input 1 Indicates if value of input 1 should
be inverted before logic operation

No
Yes

No

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

Table 12.132: Configuration tags for logic device
type ’AND logic device’. An empty value field
generally indicates that the tag value can be ei-
ther a free text string or a number (integer or
floating point).

379 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

12.14.2 OR

Tag Description Values Default
mode Device control mode Logic Logic

inputs number of inputs

2
3
4
5
6
7
8
9

2

output device Relay device for output (optional
if current device is used in a logic
chain)

input device 0 Input device 0

reverse input 0 Indicates if value of input 0 should
be inverted before logic operation

No
Yes

No

input device 1 Input device 1

reverse input 1 Indicates if value of input 1 should
be inverted before logic operation

No
Yes

No

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

Table 12.133: Configuration tags for logic device
type ’OR logic device’. An empty value field gen-
erally indicates that the tag value can be either a
free text string or a number (integer or floating
point).

12.14.3 NOT

Tag Description Values Default
mode Device control mode Logic Logic
input device 0 Input device
output device Relay device for output (optional

if current device is used in a logic
chain)

Continued on next page

380 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.134 – continued from previous page
Tag Description Values Default
comments Description for this device. Do

not use ’,’ in text as that character
is used as newline substitute.

Table 12.134: Configuration tags for logic device
type ’NOT logic device’. An empty value field
generally indicates that the tag value can be ei-
ther a free text string or a number (integer or
floating point).

12.14.4 Buffer

Tag Description Values Default
mode Device control mode Logic Logic
input device 0 Input device
output device Relay device for output (optional

if current device is used in a logic
chain)

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

Table 12.135: Configuration tags for logic device
type ’Buffer logic device’. An empty value field
generally indicates that the tag value can be ei-
ther a free text string or a number (integer or
floating point).

12.14.5 XOR

Tag Description Values Default
mode Device control mode Logic Logic
inputs number of inputs 2 2
output device Relay device for output (optional

if current device is used in a logic
chain)

Continued on next page

381 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.136 – continued from previous page
Tag Description Values Default
input device 0 Input device 0

reverse input 0 Indicates if value of input 0 should
be inverted before logic operation

No
Yes

No

input device 1 Input device 1

reverse input 1 Indicates if value of input 1 should
be inverted before logic operation

No
Yes

No

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

Table 12.136: Configuration tags for logic device
type ’XOR logic device’. An empty value field
generally indicates that the tag value can be ei-
ther a free text string or a number (integer or
floating point).

12.14.6 NAND

Tag Description Values Default
mode Device control mode Logic Logic

inputs number of inputs

2
3
4
5
6
7
8
9

2

output device Relay device for output (optional
if current device is used in a logic
chain)

input device 0 Input device 0

reverse input 0 Indicates if value of input 0 should
be inverted before logic operation

No
Yes

No

input device 1 Input device 1

reverse input 1 Indicates if value of input 1 should
be inverted before logic operation

No
Yes

No

Continued on next page

382 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.137 – continued from previous page
Tag Description Values Default
comments Description for this device. Do

not use ’,’ in text as that character
is used as newline substitute.

Table 12.137: Configuration tags for logic device
type ’NAND logic device’. An empty value field
generally indicates that the tag value can be ei-
ther a free text string or a number (integer or
floating point).

12.14.7 NOR

Tag Description Values Default
mode Device control mode Logic Logic

inputs number of inputs

2
3
4
5
6
7
8
9

2

output device Relay device for output (optional
if current device is used in a logic
chain)

input device 0 Input device 0

reverse input 0 Indicates if value of input 0 should
be inverted before logic operation

No
Yes

No

input device 1 Input device 1

reverse input 1 Indicates if value of input 1 should
be inverted before logic operation

No
Yes

No

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

Continued on next page

383 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.138 – continued from previous page
Tag Description Values Default

Table 12.138: Configuration tags for logic device
type ’NOR logic device’. An empty value field
generally indicates that the tag value can be ei-
ther a free text string or a number (integer or
floating point).

12.14.8 NXOR

Tag Description Values Default
mode Device control mode Logic Logic
inputs number of inputs 2 2
output device Relay device for output (optional

if current device is used in a logic
chain)

input device 0 Input device 0

reverse input 0 Indicates if value of input 0 should
be inverted before logic operation

No
Yes

No

input device 1 Input device 1

reverse input 1 Indicates if value of input 1 should
be inverted before logic operation

No
Yes

No

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

Table 12.139: Configuration tags for logic device
type ’NXOR logic device’. An empty value field
generally indicates that the tag value can be ei-
ther a free text string or a number (integer or
floating point).

12.14.9 Modulus

Tag Description Values Default
mode Device control mode Logic Readonly

Continued on next page

384 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.140 – continued from previous page
Tag Description Values Default

device type Input device type

simplechann-
el
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

relay

input device 0 Input device
divisor Divisor for modulus operation,

must be an integer!
2

offset Integer offset added to input be-
fore modulus operation

0

boolean output Force output to be either 0 or 1.
For normal modular arithmetic,
the result of the reminder (0 to
n-1), but if this key is set to yes,
any non-zero value will be set to 1
(thus output can be directly used
for relay operations)

Yes
No

yes

reverse output Indicates if the locgical output
state should be reversed. Only
avaliable if boolean output is set
to yes

Yes
No

No

output device Relay device for output (optional)
title Optional title

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled devices

Yes
No

Yes

Continued on next page

385 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.140 – continued from previous page
Tag Description Values Default
comments Description for this device. Do

not use ’,’ in text as that character
is used as newline substitute.

Table 12.140: Configuration tags for logic device
type ’Arithmetic Modulus device’. An empty
value field generally indicates that the tag value
can be either a free text string or a number (in-
teger or floating point).

386 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

12.15 Math

Math devices are virtual arithmetic devices used for more complex process
control. The devices implement the normal behaviour of the usual arithmetic
operators such as + - * / exp log and sqrt A math device can operate with any
kind of device as input(s) For the math devices where specific input values
would normally cause a divide by zero error or similar, the devices simply
return 0 to awoid causing a premature termination of the program.

Notice that all math devices return undefined if the readstring function is
called as they are virtual devices not intended for data logging.

12.15.1 Add

Tag Description Values Default
mode Device control mode Math Automatic

inputs number of inputs

2
3
4
5
6
7
8
9

2

offset Nummeric offset added to result
of inputs

0

device type 0 Device type for input 0

simplechann-
el
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

device 0 Input device 0

Continued on next page

387 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.141 – continued from previous page
Tag Description Values Default
input factor 0 Factor multiplied on value from

input 0 before math operation
1

read function 0 Device function to use for read op-
erations for device 0

read read

device type 1 Device type for input 1

simplechann-
el
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

device 1 Input device 1
input factor 1 Factor multiplied on value from

input 1 before math operation
1

read function 1 Device function to use for read op-
erations for device 1

read read

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

Table 12.141: Configuration tags for math device
type ’Arithmnitic sum device’. An empty value
field generally indicates that the tag value can be
either a free text string or a number (integer or
floating point).

12.15.2 Multiply

Tag Description Values Default
mode Device control mode Math Automatic

Continued on next page

388 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.142 – continued from previous page
Tag Description Values Default

inputs number of inputs

2
3
4
5
6
7
8
9

2

device type 0 Device type for input 0

simplechann-
el
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

device 0 Input device 0
input factor 0 Factor multiplied on value from

input 0 before math operation
1

read function 0 Device function to use for read op-
erations for device 0

read read

Continued on next page

389 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.142 – continued from previous page
Tag Description Values Default

device type 1 Device type for input 1

simplechann-
el
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

device 1 Input device 1
input factor 1 Factor multiplied on value from

input 1 before math operation
1

read function 1 Device function to use for read op-
erations for device 1

read read

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

Table 12.142: Configuration tags for math de-
vice type ’Arithmnitic multiplication’. An empty
value field generally indicates that the tag value
can be either a free text string or a number (in-
teger or floating point).

12.15.3 Subtract

Tag Description Values Default
mode Device control mode Math Automatic
offset Nummeric offset added to result

of inputs
0

Continued on next page

390 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.143 – continued from previous page
Tag Description Values Default

device type 0 Device type for input 0

simplechann-
el
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

device 0 Input device 0
input factor 0 Factor multiplied on value from

input 0 before math operation
1

read function 0 Device function to use for read op-
erations for device 0

read read

device type 1 Device type for input 1

simplechann-
el
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

device 1 Input device 1
input factor 1 Factor multiplied on value from

input 1 before math operation
1

read function 1 Device function to use for read op-
erations for device 1

read read

Continued on next page

391 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.143 – continued from previous page
Tag Description Values Default
comments Description for this device. Do

not use ’,’ in text as that character
is used as newline substitute.

Table 12.143: Configuration tags for math device
type ’Arithmnitic subtraction’. An empty value
field generally indicates that the tag value can be
either a free text string or a number (integer or
floating point).

12.15.4 Divide

Tag Description Values Default
mode Device control mode Math Automatic

device type 0 Device type for input 0

simplechann-
el
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

device 0 Input device 0
input factor 0 Factor multiplied on value from

input 0 before math operation
1

read function 0 Device function to use for read op-
erations for device 0

read read

Continued on next page

392 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.144 – continued from previous page
Tag Description Values Default

device type 1 Device type for input 1

simplechann-
el
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

device 1 Input device 1
input factor 1 Factor multiplied on value from

input 1 before math operation
1

read function 1 Device function to use for read op-
erations for device 1

read read

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

Table 12.144: Configuration tags for math device
type ’Arithmnitic division’. An empty value field
generally indicates that the tag value can be ei-
ther a free text string or a number (integer or
floating point).

12.15.5 Log

Tag Description Values Default
mode Device control mode Math Automatic

Continued on next page

393 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.145 – continued from previous page
Tag Description Values Default

device type 0 Device type for input 0

simplechann-
el
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

device 0 Input device 0
input factor 0 Factor multiplied on value from

input 0 before math operation
1

read function 0 Device function to use for read op-
erations for device 0

read read

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

Table 12.145: Configuration tags for math device
type ’Arithmnitic logarithm’. An empty value
field generally indicates that the tag value can
be either a free text string or a number (integer
or floating point).

12.15.6 Exp

Tag Description Values Default
mode Device control mode Math Automatic

Continued on next page

394 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.146 – continued from previous page
Tag Description Values Default

device type 0 Device type for input 0

simplechann-
el
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

device 0 Input device 0
input factor 0 Factor multiplied on value from

input 0 before math operation
1

read function 0 Device function to use for read op-
erations for device 0

read read

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

Table 12.146: Configuration tags for math device
type ’Arithmnitic exponential’. An empty value
field generally indicates that the tag value can be
either a free text string or a number (integer or
floating point).

12.15.7 Root

Tag Description Values Default
mode Device control mode Math Automatic

Continued on next page

395 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.147 – continued from previous page
Tag Description Values Default

device type 0 Device type for input 0

simplechann-
el
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

device 0 Input device 0
input factor 0 Factor multiplied on value from

input 0 before math operation
1

read function 0 Device function to use for read op-
erations for device 0

read read

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

Table 12.147: Configuration tags for math device
type ’Arithmnitic square root’. An empty value
field generally indicates that the tag value can be
either a free text string or a number (integer or
floating point).

12.15.8 Abs

Tag Description Values Default
mode Device control mode Math Automatic

Continued on next page

396 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.148 – continued from previous page
Tag Description Values Default

device type 0 Device type for input 0

simplechann-
el
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

device 0 Input device 0
input factor 0 Factor multiplied on value from

input 0 before math operation
1

read function 0 Device function to use for read op-
erations for device 0

read read

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

Table 12.148: Configuration tags for math de-
vice type ’Arithmnitic absolute value’. An empty
value field generally indicates that the tag value
can be either a free text string or a number (in-
teger or floating point).

12.15.9 Inv

Tag Description Values Default
mode Device control mode Math Automatic

Continued on next page

397 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.149 – continued from previous page
Tag Description Values Default

device type 0 Device type for input 0

simplechann-
el
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

device 0 Input device 0
input factor 0 Factor multiplied on value from

input 0 before math operation
1

read function 0 Device function to use for read op-
erations for device 0

read read

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

Table 12.149: Configuration tags for math device
type ’Arithmnitic inverse’. An empty value field
generally indicates that the tag value can be ei-
ther a free text string or a number (integer or
floating point).

398 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

12.16 Alert

Alert devices are virtual logical devices used for more monitoring the sytem
and alerting the operators if process parameters exceeds specific limits.

Notice that all Alert devices return undefined if the readstring function is
called as they are virtual devices not intended for data logging.

12.16.1 Normal

Tag Description Values Default

class Device class
Normal
Trigger

Normal

device type Type of raw device

simplechann-
el
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
filter
logic
math
Adapter

simplechannel

device Raw device
read function Device function to use for

read operations
read

title Optional title

Continued on next page

399 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.150 – continued from previous page
Tag Description Values Default
threshold Threshold over (or under)

which the devices triggeres
an alert mail. If the thresh-
old value is higher than the
reset value the device value
must be higher than the trig-
ger level to trigger an alert,
if threshold is lowet than re-
set value, a value below the
threshold value triggers an
alert.

1

reset Value under (or over) the de-
vice resets the alert. If the
threshold value is higher than
the reset value the device
value must be higher than
the trigger level to trigger
an alert, if threshold is lowet
than reset value, a value be-
low the threshold value trig-
gers an alert.

0.5

retries The number of retries per-
formed before an alert is trig-
gered (to awoid single read
errors to triger alerts)

3

kill program Terminate any running se-
quential program if alert is
triggered (only terminated
once / alert)

Yes
No

No

execute commands Execute additional com-
mands if alert is triggered
(only executed once / alert)

Yes
No

No

Continued on next page

400 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.150 – continued from previous page
Tag Description Values Default
command list List of commands to be

executed upon alert trig-
ger. Uses exactly same
structure as normal sequen-
tial programs. Do NOT
include comands which re-
quire a komma (,) in the
argument list or any com-
mands depending on external
resources (timeslot and/or
impedance commands etc)

output enable Relay name used to control
if this device should act on a
trigger event or not. If de-
fined and the specified relay
device returns 0, any call to
check() will return without
any actions! (effectively dis-
abling this device)

warning mails Comma separated list of
email addresses which will re-
cieve warnings if the thresh-
old is exceeded. If no value is
given, the global list is used
as default instead

comments Description for this device.
Do not use ’,’ in text as that
character is used as newline
substitute.

Table 12.150: Configuration tags for Alert device
type ’Alert’. An empty value field generally indi-
cates that the tag value can be either a free text
string or a number (integer or floating point).

12.16.2 Trigger

Tag Description Values Default

class Device class
Normal
Trigger

Trigger

Continued on next page

401 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.151 – continued from previous page
Tag Description Values Default

device type Type of raw device

simplechann-
el
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
filter
logic
math
Adapter

simplechannel

device Raw device
read function Device function to use for

read operations
read

title Optional title
threshold Threshold over (or under)

which the devices triggeres
an alert mail. If the thresh-
old value is higher than the
reset value the device value
must be higher than the trig-
ger level to trigger an alert,
if threshold is lowet than re-
set value, a value below the
threshold value triggers an
alert.

1

reset Value under (or over) the de-
vice resets the alert. If the
threshold value is higher than
the reset value the device
value must be higher than
the trigger level to trigger
an alert, if threshold is lowet
than reset value, a value be-
low the threshold value trig-
gers an alert.

0.5

Continued on next page

402 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.151 – continued from previous page
Tag Description Values Default
retries The number of retries per-

formed before an alert is trig-
gered (to awoid single read
errors to triger alerts)

3

command list List of commands to be
executed upon alert trig-
ger. Uses exactly same
structure as normal sequen-
tial programs. Do NOT
include comands which re-
quire a komma (,) in the
argument list or any com-
mands depending on external
resources (timeslot and/or
impedance commands etc)

output enable Relay name used to control
if this device should act on a
trigger event or not. If de-
fined and the specified relay
device returns 0, any call to
check() will return without
any actions! (effectively dis-
abling this device)

comments Description for this device.
Do not use ’,’ in text as that
character is used as newline
substitute.

disable readstring Determines if readstring
should always return the
empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.151: Configuration tags for Alert device
type ’Trigger’. An empty value field generally
indicates that the tag value can be either a free
text string or a number (integer or floating point).

403 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

12.17 Adapter

Adapter devices are virtual logical devices used to supply functionality to
normal devices which does not themselves supply the needed functionality
natively. For instance a device may only have an option for specifying a set-
point but not a ramprate. By suing a ramprate adapter the missing ramprate
can be emulated.

The adpapter devices uses the GoF Adapter pattern allowing fo multiple
adapters to be applied to individual devices. A device wrapped in an adapter
is automatically set to be readonly, as the adapter device takes over the
responsibility for controlling the wrapped device.

Notice that all Adapter devices return undefined if the readstring function is
called as they are virtual devices not intended for data logging but only for
process control.

12.17.1 Ramprate

Tag Description Values Default

class

Ramprate
Exponential-
Decay
TempControl

Ramprate

mode Device control mode
Manual
Automatic

device type Type of raw device

simplechann-
el
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

device Raw device

Continued on next page

404 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.152 – continued from previous page
Tag Description Values Default
read function Device function to use for read op-

erations. This value will be used
as the start value for the ramp op-
eration

read read

control function Device function to use for setpoint
operations

set set

minramp Minimum alllowed ramprate for
device

0

maxramp Maximum alllowed ramprate for
device

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.

Table 12.152: Configuration tags for Adapter de-
vice type ’Ramprate adapter’. An empty value
field generally indicates that the tag value can be
either a free text string or a number (integer or
floating point).

12.17.2 ExponentialDecay

Tag Description Values Default

class

Ramprate
Exponential-
Decay
TempControl

ExponentialDecay

mode Device control mode
Manual
Automatic

Continued on next page

405 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Table 12.153 – continued from previous page
Tag Description Values Default

device type Type of raw device

simplechann-
el
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

device Raw device
read function Device function to use for read op-

erations. This value will be used
as the start value for the ramp op-
eration

read read

control function Device function to use for setpoint
operations

set set

time constant Time constant for decay in sec-
onds

10

cutoff If the difference between the local
setpoint and target setpoint is be-
low this the decay is stopped and
target setpoint is set

0.01

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.
Table 12.153: Configuration tags for Adapter de-
vice type ’Exponential decay adapter’. An empty
value field generally indicates that the tag value
can be either a free text string or a number (in-
teger or floating point).

406 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

12.17.3 TempControl

Tag Description Values Default

class

Ramprate
Exponential-
Decay
TempControl

TempControl

mode Device control mode
Manual
Automatic

device Raw device
minramp Minimum alllowed ramprate for

device
0

maxramp Maximum alllowed ramprate for
device

mintemp Minimum alllowed temperature
for device

-273

maxtemp Maximum alllowed temperature
for device

6000

comments Description for this device. Do
not use ’,’ in text as that character
is used as newline substitute.
Table 12.154: Configuration tags for Adapter de-
vice type ’Temperature controler adapter’. An
empty value field generally indicates that the tag
value can be either a free text string or a number
(integer or floating point).

407 of 433 Implemented by Søren Koch

Chapter 13

Troubleshooting

13.1 The web server only returns ’Internal server er-

ror’ when trying to display the prelogin.cgi page

• Is SE-Linux running in enforcing mode?. If so, disable enforcing mode
(Refer the Linux manual as to how to do this). The non-standard location
of the document root necessary for NAME to run is incompatible with
most standard configurations of SE-Linux.

• Is the Apache web server running as group sofc?. If not, edit /etc/groups
and add Apache to the sofc group. Remember to check in httpd.conf if
the Apache web server is set to start as group sofc as well. Restart the
web server after this.

• Check the errorlog of the web server (Often located in /var/log/httpd/error log)
to identify if file permission errors or other misconfiguration are the
cause.

13.2 Data logging suddenly stops or user interface

appears unresponsive for a single rig

13.2.1 Does the rig use PID devices?

If so, a potential cause could be too many open files for that rig.

• In order to check this, in a terminal type (as root):
lsof | grep rigXX | wc
Where XX is the rig number. The response will look something like this:
400 3663 37848.
Where the first number is the number of open files for that rig user.

408

DTU energy RFCcontrol 6.3.2

• This number has to be compared to any limits set by the operating
system on open files (refer the operating system manual as how to do
this).

• If the cause is too may open files, kill all instances of PID fast control.pl
for the rig in question and restart one instance again.

• If necessary a cron job may be needed to restart the PID fast control
program periodically.

The cause for the above problem can be that PID-devices are used with too
complex control structures causing the Perl garbage collector to not work
properly. For instance it is known that using feed-forward of gas flows in
combination with sum devices and a PID control can cause this.

13.2.2 Test the rig configuration

Test that the rig configuration is sane and that no devices takes too long time
to respond and/or reports errors. In order to do this, run the diagnostics
program:

/usr/local/bin/celltest/test rig conf.pl $rig.

Where $rig is the rig number in question.

This program will run througn all devices configured for that rig and query
each one according the the test() function on each.

If one or more devices does not pass the test this will be reported as well as it
will be visible how long communication with each device takes. This makes it
possible to identivy a particular device which has long response times, which
may adversely affect system performance.

Particular Brooks MFC’s sometimes fails gradually where the communication
takes longer and longer before finally failing completely.

13.3 Show current values does not work or shows

ERROR: ’xx.xx.xx.xx’ port refused

The likely cause for this error is that the CGI-server for the rig in question
is not running.

Check that the CGI-server is running for the rig in question. To do this, in a
terminal write: ps -ef | grep CGI. The response should look something like
like:
0 S rig10 1358 1 0 85 0 - 3481 ? Sep14 ? 00:00:00 /usr/bin/perl
/usr/local/bin/celltest/CGI-server 10
0 R sofc 5000 3387 0 78 0 - 999 - 12:52 pts/8 00:00:00 grep CGI

409 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

0 S rig1 14674 1 0 77 0 - 3351 ? Apr04 ? 00:00:00 /usr/bin/perl
/usr/local/bin/celltest/CGI-server 1
0 S rig2 25611 1 0 83 0 - 3447 ? Aug31 ? 00:00:00 /usr/bin/perl
/usr/local/bin/celltest/CGI-server 2
Check that each rig on the system has a CGI server running (in the above
example, rig 1,2 and 10 has servers running).

The CGI-server should be restarted once every hour if it is not running, but
can be started explixcitly by running (as root) the following command:

/usr/local/bin/celltest/start servers

13.4 Sequential programs can not be started

The likely cause for this error is that the CGI-server for the rig in question
is not running.

Check that the CGI-server is running for the rig in question. To do this, in a
terminal write: ps -ef | grep CGI. The response should look something like
like:
0 S rig10 1358 1 0 85 0 - 3481 ? Sep14 ? 00:00:00 /usr/bin/perl
/usr/local/bin/celltest/CGI-server 10
0 R sofc 5000 3387 0 78 0 - 999 - 12:52 pts/8 00:00:00 grep CGI
0 S rig1 14674 1 0 77 0 - 3351 ? Apr04 ? 00:00:00 /usr/bin/perl
/usr/local/bin/celltest/CGI-server 1
0 S rig2 25611 1 0 83 0 - 3447 ? Aug31 ? 00:00:00 /usr/bin/perl
/usr/local/bin/celltest/CGI-server 2
Check that each rig on the system has a CGI server running (in the above
example, rig 1,2 and 10 has servers running).

The CGI-server should be restarted once every hour if it is not running, but
can be started explixcitly by running (as root) the following command:

/usr/local/bin/celltest/start servers

13.5 Daily graphs looks strange (sudden jumps in

values, missing graphs etc)

It is normal that the daily graphs of logged values may behave strangely if the
number (or order) of enabled devices has changed, as the graph subsystem
only looks at the first line of the daily data file to determine which data
columns to plot as well as their names.

If a device has been added, the data of subsequent lines for that day may be
misaligned and thus the graphics will be displayed wrong. However all the
data are still logged correctly and can be viewed in the raadata file.

410 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Also test the rig configuration to see if any device behaves wrong and / or
strangely (see section 13.2.2).

13.6 History plots shows strange sudden jumps in

data values

It is not uncommon for the history plots to show strange jumps if one or
more devices has been enabled or disabled durring the course of a test as this
causes the order of alignment of the data collumns to differ between different
parts of the jdata file (refer section 13.5).

This file can be post-test corrected manually by running the program:

/usr/local/bin/celltest/format jdata.pl $rig $test

Followed by

/usr/local/bin/history plot $rig $test

(where $rig and $test are the rig and test numbers respectively).

Also test the rig configuration to see if any device behaves wrong and / or
strangely (see section 13.2.2).

13.7 Specific device data are not shown in the daily

graphs

1. Is the device in question enabled in the configuration? If not, the data
is not logged and graphs can not be created for that device.

2. If the device is enabled, is the show plot key set to ’No’? If so, plotting
this device data is disabled.

3. Is there an other device (potentially with an other type) with the same
name configrued, and does this device have the show plot key set to ’No’.
This will in some cases override the true device configuration for plotting
data, as due to historical reasons, the device type is not stored as part
of the device name when storeing logged data. Thus the plotting system
has to run through all device types untill it finds one with the same name
as the data it is to plot and then query the value of the show plot key.
There is thus a risk that the wrong value vill be used. The best way
to awoid this is to make sure that all devices (irrespectively of enabled
status) have unique names.

411 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

13.8 No data can be wiewed for a specific test (shows

blank page)

Is access restriction set up as described in section 3.4?

If so, is the correct server IP-address listed in the .htaccess file in the test
directory?

13.9 User restrictions does not work (all users can

still access data)

Has Apache been cofigured to use .htaccess files (refer the Apache manual for
how to configure and test this).

Is the RFCcotnrol configuration file configured correctly (specifically is the
data access authorisationid key set correctly), refer section 3.4.

13.10 Font size on daily graphs too small

If the font on the daily graphs appears to be too small, lower the values in
the GNUPLOT section of the main configuration file for the keys ps-size and
png-size:

ps-size = 1,1

png-size = 1,1

and replace with for instance:

ps-size = 0.6,0.6

png-size = 0.6,0.6

13.11 Program execution stops and / or command

interface behaves strangely (some commands

work but others does not)

Check that the default lock file (called SemaforeFile.lock) for the Semafore-
File.pm module has the right permissions. It is located in /var/lock/Semaforefile
and should have permissions 666 (Yes, I know the number of all evil...). Dur-
ing normal operation, it will be created with this permission, but sometimes
the system may clean up the temp directory, and in this case sometimes it may

412 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

be created with the wrong permissions. To resolve this, simply remove the
file or manually set the right permissions (both operations may be necessary
to do as root).

13.12 RFCcontrol-ssl-server can not start and exits

with ’Could not create socket Invalid Argu-

ment’

This error can arise if the hostname reported by the local system does not
match the hostname assigned by the DNS/DHCP server. If this is the case,
the hostname or IP address must be specified by starting the RFCcontrol-ssl-
server with the –host argument as shown below:

RFCcontrol-ssl-server –host IP ADDRESS

Where the IP-address is the address of the external IP, not 127.0.0.1, as the
server must be accessible from other systems.

13.13 report-server can not start and exits with ’Could

not create socket Invalid Argument’

This error can arise if the hostname reported by the local system does not
match the hostname assigned by the DNS/DHCP server. If this is the case,
the hostname or IP address must be specified by starting the report-server
with the –host argument as shown below:

report-server –host IP ADDRESS

Where the IP-address is the address of the external IP, not 127.0.0.1, as the
server must be accessible from other systems.

13.14 report webservice can not be accessed

This is likely caused by ssl certificate verification failure if self signed certifi-
cates are used.

execute the following command in the RFCcontrol install directory:

make allow selfsign

13.15 Users can not log in

If users can not log into the RFCcontrol system, check the following:

413 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

• Is the password system using webservice, if so communication with the
service can be tested by running:
/usr/local/bin/celltest/test pwdservice.pl

• is a self signed ssl certificate used on the password server system, if so
refer section 13.14.

• If the web-service programs does not recognise the certificate chain of
the certificate on the password server, you may need to install the correct
chain certificate on the RFCcontrol server and tell the system where this
file is: To do this, add the following section to the global configuration
file:

SECTION SSL

chainfile = /path/to/ssl/chainfile

ENDSECTION

• Is the password server running (may be on the local server or on a remote
server).

• is the password server using RSA encryption (started with the –ssl ar-
gument)?.

– Is the correct public keys found in the respective known hosts files
(on both password and RFC server)?.

– If remote password server is used, Is the local RFCcontrol-ssl-server
running?

– Can it be accessed from the password server system?

– Check the communication by running /usr/local/bin/celltest/sync ssl server.pl
$host where $host is the hostname of the password server and list-
server respectively.

• Is the password server accessible from the current system? To check
this, in a terminal write the following:
/usr/local/bin/celltest/passwd-client ping.
The response should be something like ABF-passwd-server on ABF-
labsystem-devel-01.RISOE.DK listening on port 2020. If no response
is received or a connection error is encountered, perhaps a firewall is
blocking access.

13.16 Rig list can not be shown

• is a self signed ssl certificate used on the password server system, if so
refer section 13.14.

414 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

• Is the report-server running on the specified host (log in with ssh on the
specified host and check with ’ps’).

• Is the RFCcontrol-ssl-server or celltest-passwd-server running on the
local system: To check this, run the command ’ps -efl | grep server’ and
inspect the output. Remember that only one of the above programs will
be running (and both should never run at the same time)!

• Is it possible to contact the listserver host. In order to check this try to
ping the server.

• Is report and password communication set up to use encryption, if so
try the following:

– Check the communication by running /usr/local/bin/celltest/sync ssl server.pl
$host where $host is the hostname of the password server and list-
server respectively.

– If errors occour, perhaps firewall settings prevent communication
(remember to check both the local system and the remote systems).
TCP-IP Ports 2020 and 4040 should be open.

13.17 Users can log in but not change anything or

view new data

Check the following:

• Check that the users has the right access privileges.

• Does the ’safety task access’ section exists in the global configuration
file and is the rig(s) listed in this? If so, does the users have authoriza-
tion/certification for this safety task (refer section 4.4).

• Check that the CGI-server is running for the rig in question. To do
this, in a terminal write: ps -ef | grep CGI. The response should look
something like like:
0 S rig10 1358 1 0 85 0 - 3481 ? Sep14 ? 00:00:00 /usr/bin/perl
/usr/local/bin/celltest/CGI-server 10
0 R sofc 5000 3387 0 78 0 - 999 - 12:52 pts/8 00:00:00 grep CGI
0 S rig1 14674 1 0 77 0 - 3351 ? Apr04 ? 00:00:00 /usr/bin/perl
/usr/local/bin/celltest/CGI-server 1
0 S rig2 25611 1 0 83 0 - 3447 ? Aug31 ? 00:00:00 /usr/bin/perl
/usr/local/bin/celltest/CGI-server 2
Check that each rig on the system has a CGI server running (in the
above example, rig 1,2 and 10 has servers running).

415 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

13.18 Log-in page does not complete loading or the

list of servers is incomplete

Run the /usr/local/bin/celltest/test cluster.pl script to check if one or more
of the servers in the cluster is not responding on the server intercommunica-
tion.

If the script hangs on one or more of the servers it tries to test, likely the
report-server on that server in hanging for some unknown reason. In that
case, log in to the affected server using ssh and issue the command killall
report-server followed by /usr/local/bin/celltest/start servers.

13.19 Data logging on a rig is not running

• Check that data logging it is enabled in the crontab scheduler. From the
rigs main page, go to miscellaneous setup, and then to Rig scheduler and
check that the line with logfile.pl is not disabled.

• Test that the rig configuration is sane. In a terminal type the following
as the correct user (user ’rig5’ for rig 5 and so on):
/usr/local/bin/celltest/test rig conf.pl $rig. This will test the rig con-
figuration including test each individual device. If errors are reported,
find and fix any critical errors (It is possible to have non critical errors
which the data logging system will handle and just report an invalid data
for that device, usually in the form of the magic number -32768).

• Check that the logfile.pl program does not return errors for that rig. In
a terminal type the following as the correct user (user ’rig5’ for rig 5 and
so on):
/usr/local/bin/celltest/logfile.pl $rig conf. This command will write the
complete rig configuration for data logging. If errors are reported, find
and fix any critical errors (It is possible to have non critical errors which
the data logging system will handle and just report an invalid data for
that device, usually in the form of the magic number -32768).

• Check that the cnv.pl program is also enabled in crontab as it is this
program which generates the web pages displaying the data.

13.20 Errors are reported when users are trying to

change process parameters

• In a terminal type the following as the correct user (user ’rig5’ for rig 5
and so on):

416 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

/usr/local/bin/celltest/test rig Conn.pl $rig. This will test the rig con-
figuration including test each individual device. If errors are reported,
find and fix any critical errors (It is possible to have non critical errors
which the data logging system will handle and just report an invalid data
for that device, usually in the form of the magic number -32768).

• Check that all serial servers are running as appropriate. To do this, in a
terminal write: ps -ef | grep serial. The response should look like:
4 S root 3682 1 0 75 0 - 2387 ? 09:26 ? 00:00:00 /usr/bin/perl
/usr/local/bin/celltest/serial-socket-server-9.0.pl ttyS0 9600
4 S root 3683 1 0 76 0 - 2387 ? 09:26 ? 00:00:00 /usr/bin/perl
/usr/local/bin/celltest/serial-socket-server-9.0.pl ttyS2 9600
4 S root 3684 1 0 76 0 - 2387 ? 09:26 ? 00:00:00 /usr/bin/perl
/usr/local/bin/celltest/serial-socket-server-9.0.pl ttyS3 9600
0 S sofc 9245 9214 0 78 0 - 1005 pipe w 12:58 pts/0 00:00:00 grep serial

• Check the individual device configuration under the device configuration
page (go to ’setup iv-curve parameters’ and then to ’rig configuration’
and select the devices on at a time and run the test for each, refer section
6).

• If some of the tests described above fails, try communicating directly
with the serial servers and devices using the serial client interface de-
scribed in section 8.4.

13.21 The logged data values from a Keithley 2700

/ 2750 are not correct, i.e. value -32768

.

• Check that the GPIB-server is running as appropriate. To do this, in a
terminal write ps -ef | grep gpib. The response should look like:
0 S root 3043 1 0 75 0 - 20725 415457 09:54 ? 00:00:01
/usr/local/bin/gpib socket server
If the gpib server is not running, it can usually be started in a terminal
by writing (as root):
/usr/local/bin/start servers.
Alternative it can be started by writing /usr/local/bin/gpib socket server.
This will give you a message if the GPIB-driver need an update as is
sometimes necessary for the drivers supplied by National Instruments®.
If so this can be done by writing (as root) /usr/local/bin/updateNIDrivers
after which the computer needs to be rebooted.

• Is the correct GPIB-address and board number selected. To check this
use the test facility in the setup page: If the response is something like:

417 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

2011:10:25:15:10:39 1319548239 3:303 CHANNEL ERROR -32768.000000
-32768.000000
Then either the GPIB-address or the board / channel number is incor-
rect.

13.22 The temperature logging does not report the

right values

• If a temperature logging device reports only values close to room tem-
perature irrespectively of the actual temperature, check the following:

– Is the channel measuring the thermovoltage configured to measure
mV? To check this, use the test facility, and in case of a Keithley
channel, the last two values in the reported raw measurement must
be a factor of 1000 different, if the numbers are equal, then the
channel is configured for voltage and must be reconfigured (refer
the manual for the gpib-server as how to do this). A correctly setup
Keithley channel should report something like this:
2011:11:22:08:37:07 1321947427 1:102 volt:dc 0.000010 0.009622

– Is the thermocouple short circuited at a lower temperature (terminal
block or similar).

• The temperature device is reporting wrong values (either too large, or
too small).

– Check the polarity of the thermocouple. If the temperature is above
room temperature, the raw voltage measured by a thermocouple
must be positive.

– Check the thermocouple type (K, N, S etc).

– Check that the cold junction measurement is correct. If the tem-
perature of the terminal block is measured by a pT100/1000 and
there is a loose connection, then the temperature will be measured
incorrectly.

13.23 Temperature control does not work correctly

or errors are reported when trying to change

temperature control setup

Check that only one version of the Eurotherm.pm module are installed. Older
versions of RFCcontrol installed modules in an other location, and depending
on search path, this may not have been detected by the NAME installer.

To resolve this, in a terminal type:

418 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

locate Eurotherm.pm

If more than one line is found beginning with /usr/lib, find which one is the
newest, and delete the rest.

13.24 Remote impedance does not work

If impedance spectroscopy measurements using the Elchemea system is not
working, do the following in order:

1. Check that a normal impedance spectrum can be acquired manually on
the Elchemea system. If errors are encountered, follow the Elchemea
manual to correct this.

2. Check that communication between the RFCcontrol system and the
Elchemea system is working:

(a) Check that the Elchemea system is on-line by typing the following
in a terminal:
remote-client IP:port ping (IP and port should be substituted for
the IP address of the Elchemea system and the correct port number,
usually 4040). The response should be something like this:
CGI-remote-server on abf-impmultiplex-01 on addr: 10.0.3.203
Listening on port 4040
If not, check firewall settings or other network issues on the RFC-
control or Elchemea system.

(b) Get the measurement mode form the Elchemea system by by using
the following command:
remote-client IP:port mode

(c) Check that an impedance can be started remotely by executing the
following command:
remote-client IP:port impedance user mode session nr where the
user is the user-name (on the Elchemea system!) and the mode is
the measurement mode acquired in step 2b and session nr is the
Elchemea system session number which configuration is to be used
(usually it is best to select the current Elchemea session). The re-
sponse in case an impedance measurement was started should be
something like:
Impedance, Mode 1255, Session 10, File 1004, Totaltime 3756.74

3. Check that the correct frequency settings are used (including start fre-
quency and number of points / decade).

4. If automatic impedance compensation is to be used, check that the com-
pensation file to be used has the exact same frequencies at all data points

419 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

and in the same order. If ’impedance under current’ is used, the compen-
sation files which will be used are the ’short.i2b’ and ’shunt.i2b’ found in
the imp comp directory in the rigs main data directory. If the imp comp
directory does not exist, it needs to be created and the short and shunt
file needs to be placed there for impedance compensation to work cor-
rectly, check the Linux/Unix manual as how to do this.

5. Run an impedance from the program interface (select either ’single
impedance’ or ’impedance under current’, but if ’single impedance is
selected, the only compensation which will be performed is the sub-
traction of the selected file!). Remember to use correct user-name and
session number as well as IP address and port number (Note that the
user-name entered must be the one on the Elchemea system as described
above).

6. Check that the impedance measurement start on the Elchemea system.

7. Once the measurement is finished, check that it is transferred to the
’raw’ directory in the ’impedance’ directory of the current test.

8. Check that it is compensated correctly, If the file only contains a few
liens, likely the wrong compensation files were chosen. To check/correct
htis, do the following:

(a) In a terminal first change directory to the raw directory (refer any
Unix/Linux help page/manual how to do this) and type:
x hio korr -X filename of compensation file file to be compensated
where X is the compensation mode (S for subtract, M for multiply,
A for add and D for divide).

(b) Check the resulting compensated file and see that it has the same
number of lines as the original. The compensated file will be named
as the original except it will have ’ cor’ appended just before the ex-
tension. If not, check the original file and the compensation file and
carefully check that each data line begins with the same frequency
(to within 0.1%).

(c) If the compensation file is not correct, Either make a new compen-
sation file with correct frequency ranges or redo the measurement
with frequency settings which match the compensation file (which
is often by far the easiest as usually the compensation file is a short
circuit measurement which can only be performed without a sample
in the test setup).

13.25 i-V curves behave strangely

If multiple PSU devices are configrued, the default behaviour (that is to use
the ifrst PSU device listed for controlling the DC current durring an i-V

420 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

curve) risks controlling an other device than intended.

The fix for this is to explicitly specify which PSU device to use durring i-V
curves. This is done by setting the correct PSU name in the ’iv control names’
key in the ’IV control’ section of the rig’s configuration (refer section 6.2).

13.26 PID regulators does not work although they

are enabled and set-points can be set

Make sure that the following lines are included in the rig’s crontab file:

* * * * * /usr/local/bin/celltest/PID_fast_control.pl $rig &

* * * * * /usr/local/bin/celltest/PID_slow_control.pl $rig &

(substitute $rig for the appropriate rig number).

13.27 Automatic software updates are blocked by a

web proxy

In order for the automatic software updater (celltest updater.pl) to work
through a web proxy, add the following line to the configuration file:

In the ’main’ section add

proxy=http://proxy.foo.bar:1234

Remember to change the server name and port number to the settings for
your proxy server.

13.28 Alerts does not work or are not sent although

they are enabled

Make sure that the following line is included in the rig’s crontab file:

* * * * * /usr/local/bin/celltest/Check_alert.pl $rig &

(substitute $rig for the appropriate rig number).

13.29 Adapters does not work although they are en-

abled

Make sure that the following line is included in the rig’s crontab file:

421 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

* * * * * /usr/local/bin/celltest/Adapter_update.pl $rig &

(substitute $rig for the appropriate rig number).

13.30 Programs stops prematurely without any ap-

parent cause

Thes may result from the operating system preventing opening more file han-
dles for the rig user in question.

On most sytsems there is a limit on how many files can be open simultaneously
for each individual user.

To check this, run the following command:

lsof | grep $rig | wc -l

(where $rig is the username for the rig user, f.eks ’rig45’)

If the rig in question has a configuration with many individual devices, this
number can approach the limit as each program (logfile.pl, CGI-server or
similar) will open lockfiles for a number of the devices in order to prevent
race conditions.

Refer your operating system manual as to how to increase this limit and
restart the CGI-server for the rigs in question.

13.31 CentOS 7 related issues

The introduction of CentOS 7 has changed a number of ways how the apache
webserver as well as CPAN works. Some of these changes is not ccompatible
with the way Elchemea works and the steps nescesarry to correct this is
described in this setion.

13.31.1 Aapche can not see the modules installed by CPAN.

This is a know problem for CentOS 7 servers as discussed here: http://stackoverflow.com/
questions/33636231/installed-cpan-modules-in-problematic-location

The script ’centos7 CPAN configuration.bash’ script fixes this.

Unforthuately it may be nescesarry to reinstall the CPAN modules required
by RFCcontrol, but this can usualy be fixed by running ’make CPAN’ in the
RFCcontrol installation directoy (as root).

Notice however that the script needs to be run in a separate su sesion (that
is you need to log out from root and log in again) before this wroks!

422 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

13.31.2 Programs can be started but not stopped again or UI
bahaves strangely

CentOS 7 has changed the way /tmp works for apache and has introduced
the concept of PrivateTmp.

This is not compatible with RFCcontrol and needs to be disabled.

To do this, do the following:

• cd into the /etc/systemd/system/ directory

• copy the httpd.service file to this directory: (use locate to find it)

cp /usr/lib/systemd/system/httpd.system .

• edit this file ad change ’PrivateTmp=true’ to ’PrivateTmp=false’

• restart systemd:

systemctl daemon-rload

• restart apache:

service httpd restart

13.32 Installation fails with an error like ’No package

perl-XXXX available’

Likely the Extra Packages for Enterprise Linux (EPEL) repository has not
been enabled properly. If on an CentOS 7 system, this should have been en-
abled as part of running the centos7 CPAN configuration.bash script. If not,
the repository can be enabled by following the description on https://fedoraproject.org/wiki/EPEL

423 of 433 Implemented by Søren Koch

Chapter 14

Examples

This chapter discusses a number of complex control situations which can be
performed by combining RFCcontrol devices.

14.1 Using a PID and a galvanostatic power supply

to emulate potentiostatic control

Usually when testing electrolysers of fuel cells, the DC current through the
device is controlled galvanostatically (that is a fixed current is specified) as
this makes it easier to avoid too high current which could result in damage
to the tested device (for instance by trying to convert more gas than is being
fed to the device).

However in some cases it is desirable to run a test potentiostatically (could
be at the thermoneutral potential in case of a solid oxide electrolyser cell).
In order to do this, a software PID can be used to adjust the DC current so
that the resulting cell voltage matches the desired target value.

Figure 14.1 shows such an example.

The control loop consists of an input device (the cell voltage) a PID device and
an output device (the DC power supply in galvanostatic mode). However in
order to be able to switch to and from potentiostatic control, a output enable
input is used. This virtual relay can be set to off when the PID device is
configured and tuned and then first set to on when the user wants to ’close
the loop’ (go to automatic potentiostatic control).

I order to make the switch to potentiostatic control as smooth as possible,
the DC current can be manually set (before enabling the PID output) so that
the cell voltage is close to the desired target.

However one must remember to set the integrated error to an appropriate
value before closing the loop as otherwise a large accumulated error could
result in large deviations before the PID loop stabilizes. Fortunately RFC-
control PID devices is equipped with a function to automatically set the

424

DTU energy RFCcontrol 6.3.2

Figure 14.1: Schematic of a PID device used to control a galvanostatic DC power supply
to emulate potentiostatic control. The user controllable manual (virtual) relay is used to
switch to and from potentiostatic control.

integrated error to a value which would result in a specified output based
on the measured process variable. This function however is only available to
the certified users of a particular rig, as using this function can bring a PID
controlled system out of equilibrium.

So in order to go to potentiostatic control do the following:

• Configure the PID device to use the cell voltage as input, disable output
and set the DC power supply as output.

• Configure the PID to allow override of the output device (otherwise no
GUI control of the DC current will be possible).

• Preferable configure a manual (virtual) relay to control the output enable
of the PID device. If so set it to off and the ’output enable’ key in the
PID setup to to ’relay’.

• manually set the DC current to a value close to where it is desired for
the cell voltage to be as wanted.

• In the PID setup, use the just set current value as input for the find int
function to set the integrated error for the PID to a value which does
not result in large over/under shoots.

• Toggle the virtual relay to on in order to close the PID loop.

When you then want to leave potentiostatic control, it is simply enough to
disable the PID output.

If no output enable relay is used, the output enabled can be controlled from
the PID setup page.

425 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

14.2 Potentiostatic control with fixed fuel utilization

It is possible to extend the potentiostatic control described in section 14.1 to
also control the gas flows so that a fuel cell or electrolyser cell can be run
at constant voltage at a fixed fuel utilization. Figure 14.2 shows a device
schematic of how this can be done. In the example described in the figure,
an electrolyser cell is to be run at a constant fuel utilization of 56% with an
input gas composition of 10% hydrogen and 90% water. It is assumed that
the water is created by auto-thermal conversion of oxygen and hydrogen, thus
in order for the water-hydrogen ratio to be fixed at 90% water, the flow of
oxygen must in this case be 45% of the hydrogen flow. This is achieved by
setting the oxygen gas to have 45% flow of the master gas (hydrogen) as
shown in the figure.

Figure 14.2: Schematic of a PID device used to control a galvanostatic DC power supply
to emulate potentiostatic control and at the same time having a fixed ratio between gas
flows and DC current (constant fuel utilization). The user controllable manual (virtual)
relay is used to switch to and from potentiostatic control. In this example the electrolyser
cell is run with a fixed fuel utilization of 56% and an inlet gas composition of 90% water
(the oxygen is used to burn hydrogen to make water).

The upper part of the figure 14.2 is like figure 14.1 and work as described
above. However the addition of the typecast device as well as the summing
device necessitates a more elaborate control sequence. First of all, if the
summing device and the manual offset gas was omitted, the gas flows would

426 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

be set to 0 if the DC power supply was ever set to 0 Amp or OCV. To protect
against this, the manual gas must be set to a sufficiently high value before
the current is shut off (so that the summing device output is higher than 0)

Notice that the summing device in the example has a negative offset. The
reason for the negative offset for the summing device is that it enables the
possibility for reducing gas flows below the theoretical if inaccuracies in the
physical devices results i higher flows than intended.

The procedure for setting up a control system like the one shown in figure
14.2 is as follows:

1. Configure the potentiostatic PID control loop as described in section
14.1

2. Configure the typecast device to accept input from the PSU and output
as gas.

3. Configure the manual offset gas and give it an appropriate initial flow
(more than the negative offset for the summing device).

4. Configure the summing device to accept inputs from the typecast device
and manual gas respectively. When configuring the summing device,
use Faraday’s law of electrolysis to calculate the input factor from the
typecast device according to the intended fuel utilization.

5. Test the summing device and check that the output would be above 0.

6. Configure any slave gas devices to have the correct flow according to the
’master gas’ (the gas which is intended to be controlled, in the example,
it is the hydrogen flow)

7. Set the desired start gas flow of the master gas (from the GUI).

8. Check that all slave gas flows works as intended.

9. Set the DC current as close to the intended value (without potentiostatic
control)

10. Check the summing device output.

11. If the summing device output is at least the value of the gas flow just
set, configure the output device for the summing device to be the master
gas.

12. Set the current again to update all gas flows (and check that forwarding
of commands works).

13. Reduce the flow of the manual gas to an appropriate value. Ideally to
the same (positive) value as the summing device negative offset, in the
example this would be 3 L/h, but i some cases it may be necessary to
set it at an other value.

427 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

14. Start the potentiostatic control as described in section 14.1.

If a true bipolar power supply is used, it will be necessary to configure a
RFC::Math::abs device between the PSU and the typecast device as in that
case running in electrolysis mode will result in negative currents being for-
warded.

An additional complexity when running potentiostatic control with fixed fuel
utilization is that setting a DC current of 0 A (or OCV) will most likely result
in shutting down the gas flows completely. In order to prevent this, follow
the following procedure when the DC current is to be shut off.

• Stop the potentiostatic control PID by setting the control relay to off.

• Increase the gas flow of the manual offset gas to a value big enough to
supply enough gas even when the typecast device reports no (zero) flow.

• Shutdown the DC current (setting the current to 0 A or OCV). This will
reduce the gas flows to the minimum set by the manual offset gas above
(corrected for potential negative offset on the summing device).

Now the DC power has been shut off, however the gas flow is still linked to
the power supply and any future changes in DC current will result in changes
in the gas flows (although with an offset). In order to remove this linking do
the following:

• Remove the output device for the summing device (Select the empty
option).

• If the coupling between the individual linked gasses are to be discontin-
ued, for each of those gasses remove the ’master gas’ name (select the
empty option).

Now the gasses can be controlled individually as can the DC power supply.

14.3 Pressure regulation using mass flow controllers

It is possible to control pressure in a pressure vessel by using pressure con-
trollers. However in some cases more precise control of the pressure is needed.
Figure 14.3 shows a schematic overview of a system where a device is tested at
elevated pressures abut at the same time one or more gasses is flowed through
the device.

In figure 14.3 the yellow boxes are gas devices (refer section 5.4) and are
assumed to be connected to mass flow controllers and the lines connecting
devices are the (simplified) gas tubing. In order to control the pressure in

428 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Figure 14.3: Schematic overview of a device tested under pressure and which requires gas
flowing trough it.

the pressure vessel, the flow of gas in and out must be balanced. This can be
achieved by using a PID regulation loop as described in figure 14.4.

For simple pressure regulation of the pressure vessel there may only be one
input gas (and in which case the first summing device will not be needed).

The pressure in the vessel can then be controlled by setting the input flow
to some fixed value and regulating the output flow by the PID. The pressure
in the vessel will then be increased or decreased until it matches the PID
setpoint. Notice however that if the input flow is the fixed one, then the
error gain in the PID device must be negative for the regulation loop to work
(if not exponential deviation from the desired setpoint will be observed).

The same regulation loop described in figure 14.4 can also be used to balance
the pressure in a device relative to the device surroundings. In this case the
pressure sensor should then be replaced with a differential pressure sensor
and the setpoint should be set to 0 (in case of complete balance) or some
other desired value.

14.4 Pressure regulation accounting for production

/ removal of gas in the device under test

In some cases the flow of gas to a device may not be the same as the flow out
of a device. For instance in the case of a fuel cell, if DC current are passed
through the fuel cell, hydrogen is either converted to water or produced from
water depending on current direction. If a water trap is installed between the
device and the output mass flow controller (not shown in the diagrams), the
gas flow in to and out from the device will not be identical, and will vary with
the DC current through the device. Water traps are often necessary in this
situation as most MFC’s designed for use with gasses do not handle water

429 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Figure 14.4: Logical diagram of simple pressure regulation using mass flow controllers,
pressure sensor and a PID regulator device using feed forward. Note that in this config-
uration the error gain in the PID must be negative. In this diagram all devices without
solid borders can be configured with the ’disable readstring’ option as in most cases their
value do not need to be stored as they are only necessary for control input forwarding
(only the input and output device values are necessary to log). As opposed to figure 14.3,
lines in this diagram does NOT represent physical wires or tubing, but instead the logical
connection between devices (both real and virtual / software devices).

well as condensation within the controller will result in wrong measurements
and / or unstable operation.

Figure 14.5 shows an example of how pressure balancing of the gas flow can
still be achieved by RFCcontrol by utilizing typecast devices. By using the
logical layout described in figure 14.5 any changes in the DC current load
and/or current direction (which is assumed to be controlled by the relay
device) is fed forward to the output controller. The blue dotted lines in
figure 14.5 indicate that the gas devices should be configured with the same
’control name’ (the device name for the switching relay) but with different
value of the ’control value’ (zero for the ’Pos’ gas device and one for the ’Neg’
gas device). This is necessary as only one of the gas group devices at a time
may supply a non-zero value. This ensures that the ’gas’ from the PSU is
either added to or subtracted from the result of the other gasses depending
on the setting of the switching relay (and thus the direction of the current).

430 of 433 Implemented by Søren Koch

DTU energy RFCcontrol 6.3.2

Figure 14.5: Logical diagram of a pressure regulation system where gas can be created
or removed from the system by a DC current (for instance by a fuel cell). For simplicity,
the input from the PID has been omitted. The value of x needs to be determined by
Faraday’s law of electrolysis converting current in amps to gas flow in L/hour.

431 of 433 Implemented by Søren Koch

Chapter 15

FAQ / How-to

15.1 How to set up a stand-alone RFCcontrol pass-

word server on a system with no DNS name

1. edit the configuration file (/home/celltest/conf/celltest global.conf) and
change the ’passwd server’ key in the ’paswds’ section to ’localhost’

2. In the ’servers’ section, change the ’listserver’ key to ’localhost’.

3. In the ’servers’ section, change the ’server names’ key to ’localhost’.

4. Remove the line ’@reboot /bin/su -c “/usr/local/bin/celltest/RFCcontrol-
ssl-server –ssl &” - sofc’ from roots crontab file to make sure that it does
not starts upon reboot (it will automatically exit but it is not needeed
in a stand alone system).

5. Add the line ’@reboot /bin/su -c “/usr/local/bin/celltest/celltest-passwd-
server –ssl &” - sofc’ to roots crontab file to make sure that the password
server starts upon reboot.

6. As the RFCcontrol system user (usually sofc), run the ’initialise passwdfile.pl’
script in the installation directory and note the initial root password thus
created.

7. make sure that the firewall does not block port 2020 (refer your opera-
tion system manual, this should have been handled durring RFCcontrol
installation, but do make sure....).

8. Reboot the computer and it should be possible to log in using the pass-
word created in step 6.

9. If it will not be possible to send emails from the server proceed to step
13.

432

DTU energy RFCcontrol 6.3.2

10. Connect the computer to the Internet so that mails with new users
passwords can be sent.

11. Create at least a single non-superuser user for normal operation of the
RFCcontrol system and assign correct permissions.

12. Installation should be complete.

13. Use the script create user.pl found in the installation directory to create
non-superuser accounts (note the passwords assigned to each user).

14. Check that the created users thus created can log into the RFCcontrol
system.

15. If a user needs to have his/her password reset without sending emails
(either because no network connection is possible or if the MTA does
not allow the host computer to send mail), then use the command:
/usr/local/bin/celltest/celltest-passwd-client resetpwd cmd $user.

15.2 How to prevent setting gas flows / DC current

to zero upon starting a new test

Set the set zero output start test key in the main section of the rigs config-
uration to ’no’ (refer section 6.1). This will prevent setting gas flows to zero
(and DC putputs to zero) upon starting a new test. The setting has to be
changed by manually editing the configuration file (No special GUI function
for this).

433 of 433 Implemented by Søren Koch

