
Manual for RFCcontrol - DTU Energy RFCcontrol

control software version 5.5.4

Søren Koch

March 13, 2017

Contents

1 Introduction 6
1.1 Safety . 8
1.2 License . 9

2 User interface 10
2.1 Custom rig main page . 12
2.2 Running i-V curves . 13
2.3 Setting up a sequential program . 14
2.4 Setting up a test . 16
2.5 Creating standard test reports . 17

3 Installation and system maintenance 20
3.1 Requirements . 20
3.2 Installation . 21
3.3 maintenance . 24

4 Global configuration 25
4.1 Global . 25
4.2 Admin . 26
4.3 Passwords . 26
4.4 User authentication control based on rig permissions 36
4.5 Server section . 36
4.6 Test rig control on server . 37
4.7 Gas factors . 37
4.8 Impedance acquisition control . 38
4.9 Report generation . 38
4.10 Global IV curve control . 39

5 Device description and philosophy of device design 41
5.1 Simple channel . 41
5.2 Control relay device . 41
5.3 Analog output device . 42
5.4 gas device . 42
5.5 Gas group device . 44
5.6 Mass flow controller . 44
5.7 Multiplexer device . 45
5.8 Power supply device . 45

1

DTU energy RFCcontrol 5.5.4

5.9 Temperature logging device . 46
5.10 Temperature control device . 47
5.11 Filter devices . 48
5.12 PID devices . 49
5.13 Virtual (pure software) devices . 49
5.14 Order of device configuration when setting up a new test rig 51
5.15 Note on gas and simplechannel names for ease of reporting 52

6 Rig configuration 55
6.1 Main section . 56
6.2 IV curve control . 58
6.3 Datalog section . 60
6.4 Control logic section . 61
6.5 Thermocouple calibration . 61
6.6 User interface . 62

7 Alarms 64
7.1 Gas trip . 64
7.2 Voltage trip . 66

8 Server structure 68
8.1 CGI-server . 68
8.2 Report server . 71
8.3 Serial server . 72
8.4 GPIB-server . 77
8.5 Custom program parser . 78

9 Web service 84
9.1 Remote interface . 84
9.2 Ajax callback interface . 84
9.3 Functions which can be called without log-in information 85
9.4 Functions requiring a valid log in session 87

10 System command interface (command line) 94

11 Module specifications 99
11.1 Debug . 99
11.2 SemaforeFile . 100
11.3 ElchemeaConfig . 101
11.4 SocketClient . 103
11.5 RFC::Header . 104
11.6 RFC::Main . 104
11.7 RFC::RFCCGI . 105
11.8 RFC::Device . 108
11.9 RFC::Observer . 110
11.10 RFC::Rig . 111
11.11 RFC::Visitor . 119

2 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

11.12 RFC::Cache . 120
11.13 RFC::Spline . 121
11.14 RFC::BaseDevice . 122
11.15 RFC::Simple . 129
11.16 RFC::BaseRelay . 129
11.17 RFC::Monostable . 130
11.18 RFC::AnalogOut . 131
11.19 RFC::PSU . 132
11.20 RFC::Elektro . 133
11.21 RFC::Kepco . 134
11.22 RFC::Keithley2400 . 135
11.23 RFC::PSU Bipolar . 135
11.24 RFC::PSU B2N . 136
11.25 RFC::PSUMulti . 137
11.26 RFC::MFC . 137
11.27 RFC::MKS . 138
11.28 RFC::Pcontrol . 139
11.29 RFC::Templog . 140
11.30 RFC::Gas . 140
11.31 RFC::CGas . 141
11.32 RFC::Multiplex . 142
11.33 RFC::GasGroup . 143
11.34 RFC::TempControl . 143
11.35 RFC::Honeywell . 144
11.36 RFC::Filter . 144
11.37 RFC::SPDEV . 145
11.38 RFC::Ysplit . 146
11.39 RFC::Sum . 146
11.40 RFC::PLC . 147
11.41 RFC::PLCRead . 149
11.42 RFC::PID . 150
11.43 RFC::RFCPID . 151
11.44 RFC::Logic . 152
11.45 RFC::Math . 153
11.46 RFC::Typecast . 154
11.47 RFC::Alert . 155
11.48 RFC::Adapter . 156

12 Device configuration 158
12.1 Simplechannel . 159
12.2 Relay . 165
12.3 Templog . 169
12.4 Tempcontrol . 178
12.5 MFC . 187
12.6 Water . 209
12.7 Gas . 212

3 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

12.8 Gasgroup . 216
12.9 PSU . 217
12.10 Analog . 286
12.11 Multiplex . 290
12.12 Filter . 293
12.13 PID . 313
12.14 Logic . 317
12.15 Math . 322
12.16 Alert . 334
12.17 Adapter . 336

13 Troubleshooting 340
13.1 The web server only returns ’Internal server error’ when trying to display

the prelogin.cgi page . 340
13.2 Data logging suddenly stops or user interface appears unresponsive for a

single rig . 340
13.3 Show current values does not work or shows ERROR: ’xx.xx.xx.xx’ port

refused . 341
13.4 Sequential programs can not be started 341
13.5 Daily graphs looks strange (sudden jumps in values, missing graphs etc) 342
13.6 Specific device data are not shown in the daily graphs 342
13.7 Font size on daily graphs too small . 342
13.8 Program execution stops and / or command interface behaves strangely

(some commands
work but others does not) . 343

13.9 RFCcontrol-ssl-server can not start and exits with ’Could not create
socket Invalid Argument’ . 343

13.10 report-server can not start and exits with ’Could not create socket Invalid
Argument’ . 343

13.11 Users can not log in . 344
13.12 Users can log in but not change anything or view new data 344
13.13 Log-in page does not complete loading or the list of servers is incomplete 345
13.14 Data logging on a rig is not running . 345
13.15 Errors are reported when users are trying to change process parameters 345
13.16 The logged data values from a Keithley 2700 / 2750 are not correct, i.e.

value -32768 . 346
13.17 The temperature logging does not report the right values 347
13.18 Temperature control does not work correctly or errors are reported when

trying to change temperature control setup 347
13.19 Remote impedance does not work . 347
13.20 i-V curves bevave strangely . 349
13.21 PID regulators does not work although they are enabled and set-points

can be set . 349
13.22 Automatic software updates are blocked by a web proxy 350
13.23 Alerts does not work or are not sent although they are enabled 350
13.24 Adapters does not work although they are enabled 350

4 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

13.25 Programs stops prematurely without any apparent cause 350
13.26 CentOS 7 related issues . 351

14 Examples 353
14.1 Using a PID and a galvanostatic power supply to emulate potentiostatic

control . 353
14.2 Potentiostatic control with fixed fuel utilization 354
14.3 Pressure regulation using mass flow controllers 357
14.4 Pressure regulation accounting for production / removal of gas in the

device under test . 359

15 FAQ / How-to 361
15.1 How to set up a stand-alone cell-test password server on a system with

no DNS name . 361
15.2 How to prevent setting gas flows / DC current to zero upon starting a

new test . 362

5 of 362 Implemented by Søren Koch

Chapter 1

Introduction

RFCcontrol is a generalized control system for fuel cell, electrolyser cells, battery and
other types of materials test stations / test setups. It features data logging as well as
device control and can handle gas flow control, gas pressure control, temperature control,
relay control, control of DC power supplies as well as handle data acquisition through a
number of data logging devices.

The main features of RFCcontrol are listed below:

• Individual device configuration through user friendly graphical user interface.

• Detailed device control.

• Wide range of control and data logging devices supported, including but not limited
to:

– Brooks R© and MKS R© digital mass flow controllers.

– Tescom ER3000 digital pressure controllers.

– Analog pressure controllers as well as analog flow controllers

– Eurotherm R© and Omron R© temperature controllers as well as some controllers
from some other vendors (Honeywell R©, Linkam R© and West Instruments R©).

– Delta Elektronika R© DC power supplies.

– EA Elektro Automatik R© electronic loads.

– ICP-Con R© DO-, DA-, DI- and AD-modules.

– Manual control devices (virtual) of flow controllers, pressure controllers as
well (for logging flow or pressure from ball flow meters or manual pressure
regulators).

– Composite gas control devices (using multiple MFC’s with different flow ranges
to increase range while maintain accuracy at low flows).

– Composite PSU/Eloads making it possible to use two PSU’s or a PSU-Eload
combo to emulate a full bipolar PSU.

6

DTU energy RFCcontrol 5.5.4

– Gas group device (a composite device) making it possible to use cross-over
valves/relays to facilitate fast gas composition switching by having two gas
lines with a cross over valve.

– Keithley R© 2700 and 2750 scanning multimeters as well as 2400 source meters
(Support for these devices is through the gpib socket server supplied sepa-
rately).

– Possibility to control magnetic valves in front of the MFC’s in order to force
complete cutoff of gasses as most MFC’s do not completely close even if valve
override is used.

– Possibility to control a magnetic bypass valve to vent any initial gas overshoot
from MFC’s (may be required in some cases).

• Possibility for using filter devices to do spline interpolations on return values of
physical devices. This can be used to correct measured values if a custom calibration
of a device has been made.

• Possibility to use slaved gas controllers (a slaved device always have x% of the
master controler flow).

• Possibility to use multiplexed gasses (one MFC controlling one of multiple gasses
depending on relay settings).

• Software PID devices which can be used for pressure regulation and / or other
situations where stability can be improved by a PID feedback loop.

• Automatic data acquisition/logging which is independent of the user interface.

• Email notifications in case of user defined trigger levels has been exceeded.

• Possibility for automatic software updates.

• Possibility to use custom calibrated thermocouples for temperature measurements
in additional to the use of the standard thermocouple calibration tables obtained
from NIST (http://www.nist.gov). How to use custom calibration tables is de-
scribed in detail in chapter 6).

• Graphical display of all logged data.

• Centrally managed user authentication / user permission control.

• Trace-logging of all user activities involving changes in the status of a device.

• Easy integration to Elchemea c© (http://www.elchemea.com/elchemea/) and
ElchemeaAnalytic c© (http://www.elchemea.com) impedance acquisition and
impedance analysis software packages.

• Automated i-V curve acquisition (Only in case a DC-power supply is attached and
configured)

7 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

• Possibility for using custom designed software control systems including PID control
loops.

• Possibility for using custom designed graphical user interfaces for individual test
stations (requires custom programming in Perl, HTML and javascript).

• Uses only open source software (OSS).

• Possibility to use single sign on if multiple test stations running RFCcontrol are
used.

• Possibility for using single sign on in collaboration with non-RFCcontrol systems
(refer section 4.3.6).

Each hardware device controlled from RFCcontrol is handled through a software device
(object) which internally handles device communication and control. The RFCcontrol
system uses an object orientated approach enabling almost infinite configuration combi-
nations. The use of an object oriented approach also makes it more safe and easy to add
new device types, thus making maintenance easier to handle.

The first part of this documentation is an overview of the user interface (Chapter 2)
mainly intended for new users of the system. The second part (chapters 3 to 7) is mainly
intended for more advanced users and system administrators as it contains information
regarding configuration and hardware set-up of the system. It is assumed that any ad-
ministrators has a fairly advanced knowledge of Unix system administration and possibly
Perl programming as well.

Chapters 4 and 6 describes configuration of a RFCcontrol system (global and rig specific)
and chapter 7 describes the two currently defined watchdog programs as well as custom
created alarms.

Chapter 11 contains the documentation for the different Perl module supplied by RFC-
control and chapter 12 contains the device instance documentation, including device setup
tags and potential default values.

1.1 Safety

Do not use the RFCcontrol - DTU Energy RFCcontrol control software for any
situation that could result in injury or death! This software is NOT certified
to be used for safety related control and should not be used for such.

In cases where dangerous gasses or other equipment / materials are used
which could pose a threat to human safety, the safety should be monitored
by a self contained and autonomous safety monitoring system (for instance
by a safety PLC or similar system).

8 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

1.2 License

Copyright (C) 2015 Søren Koch, Karin V. Hansen, Martin Nielsen, Jens V. T. Høgh and
DTU Energy at Technical University of Denmark.

This program is free software: you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program. If not, see http://www.gnu.org/licenses/.

9 of 362 Implemented by Søren Koch

Chapter 2

User interface

RFCcontrol is based on the Apache web server software (Open Source Software, OSS).
The measured data are displayed in a number of web pages with one page for each rig
and for each day to avoid too much clutter (In the case of fuel cell tests, more than 20
individual channels may be monitored and displayed). The control part of the software
is in the form of a number of interactive web pages where one must first log in to use
some of them, whereas others are free to use without log in. In figure 2.1 the log-in page
is shown as an example of the control web pages. The top part is where the navigation
buttons are (in this case, the log-in button along with four more buttons which leads to
various pages usable for calculating for instance the Emf of a fuel cell at specific condition
(gas composition and temperature etc.).

It is possible to view data without logging in to the RFCcontrol system. If some data
are confidential or access to them are to be restricted for other reasons, access can be
restricted by setting up user access restriction by using .htaccess files in the test directories
(refer the Apache manual as how to configure this).

For instance if access to test 10 on rig 3 is to be disabled, place a .htaccess file in
/home/http/html/rig3/3test10/ (the content of the .htaccess file must be appropriate or
user access will not be restricted).

Figure 2.2 shows an example of the main page after the user has logged in. The exact
number of buttons on the top navigation bar may change according to user privileges
(typically more buttons will be available for users with elevated privileges). The top part
of the actual page contains buttons linking the the configuration and control page for
each rig available for the systems connected.

Below this part, a list of test rigs for whom data are available for inspection similar to
the list shown in figure 2.1 (unfortunately this is not visible in figure 2.2). Pressing one of
these buttons takes the user from the interactive part of the system to the normal static
web pages containing historic and current data for the test rig in question.

If the user presses one of the control buttons mentioned above, the user is directed to a
page resembling figure 2.3. The four rows on the page displays the current conditions for
the rig in question; Temperature, Gas flows, cell voltage (or any other property that can
be measured as a voltage) as well as current through the device/sample.

10

DTU energy RFCcontrol 5.5.4

Figure 2.1: Example of what a prelogin page may look like. The actual number of rigs
may vary greatly.

Figure 2.2: Example of what a the main page may look like after the user has logged in.
The actual number of rigs may vary greatly. Notice the additional navigation buttons
visible on the top navigation bar.

Below this information are buttons which takes the user to pages where the properties
displayed above can be changed. The bottom part is two logbook type fields, where
information of the history of the current test is shown (the program log on the right)
as well as the content of the sample information file (on the left) is shown. It is also
possible to add further information the the sample information file . The program log is

11 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

immutable by the user and all information in this file is computer generated and shows
what has happened and at what time.

Figure 2.3: Example of what a rig control page may look like.

2.1 Custom rig main page

If a more customized user interface for a rig is wanted, it is possible to use custom
designed main pages for a rig. To do this, make a copy of the file rig template.cgi located
in /home/http/cgi-bin/celltest/ and edit the copy to correspond to the user interface
design wanted.

In order to enable the custom layout, edit the rig’s configuration file by adding or changing
the ’main page’ key in the ’main’ section to have the value of the new file.

However, in order to create a custom layout for a rig, it will likely require quite some
programming experience with javascript, HTML as well as Perl and the Perl modules
distributed as part of RFCcontrol (refer chapter 11).

Documentation for a variety of services which can be accessed through AJAX calls can
be found in chapter 9.

Notice that any custom created rig main pages will likely need to be manually updated
if changes in the rig’s hardware configuration occurs as opposed to the default main page
which should work with most configurations. Thus it is only advisable to create custom
layouts for fixed systems where changes in the system hardware is unlikely or prohibited.

12 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

2.2 Running i-V curves

As RFCcontrol is designed to be used for testing of fuel cell and electrolyser cells, it has
a built-in functionality for acquiring i-V curves. An i-V curve is defined as a sequence
of measurements at different DC currents through the device under test. Usually an i-V
curve starts at zero current (OCV) and then gradually increase the DC current until a
certain limit in either current density or voltage has been reached.

In order for the build-in i-V curve acquisition system to work, the following prerequisites
must be met.

• A simplechannel device measuring the device voltage (returning the voltage in mV).

• A simplechannel device measuring the DC current through the device (in A).

• A unipolar DC power supply controlling the DC current through the device. Notice
that in case a bipolar PSU is used, it needs to be encapsulated in a PSU B2N device
which emulates a unipolar PSU in conjunction with a switching relay.

• A Templog device measuring the device temperature.

As RFCcontrol expects a normal fuel cell or electrolyser with a mixture of hydrogen and
water vapor on one side and air on the other, thus the cell voltage is expected to be
around 1000 mV at zero current (OCV). If this is not the case, the i-V curve program
may abort prematurely as it would suspect something wrong if the cell voltage is not in
this approximate range (700 to 1300 mV).

This abort mode is primarily intended to protect the device under test if something
unexpected occurs during an i-V curve resulting in loss of cell voltage. If the device
voltage is not in this range at OCV, it may be necessary to create a filter device which
either adds/subtracts and/or multiplies some fixed value to the true device voltage to
emulate a OCV of approx 1000 mV and then use this device as the voltage measure
device in the i-V control setup (refer section 6.2).

The way the i-V curve program operates is that it first measures the cell voltage a few
times and then slowly increase the DC current and measures the voltage and current
along the way. As it assumes a normal unipolar PSU, it can not in advance know if the
device is tested as a fuel cell or as an electrolyser, it only detects this once it measures
the DC-current (and thus the sign). RFCcontrol assumes that the current through the
device is positive if the device is run as a fuel cell and negative if the device is run
as an electrolyser. Thus once the current is 5 times the minimum defined (the epsilon
value, refer section 6.2) it checks the sign, and if the current is negative the program
proceeds assuming that the device is run as an electrolyser (and thus that the device
voltage increases for increasing (numerical) current. If the current is positive the i-V
curve program assumes the device is tested as a fuel cell and that increasing the current
will result in a decreasing device voltage.

Once the i-V curve program determines that the current limit has been reached or that
the device voltage exceeds one of the defined limits (either electrolysis limit voltage or
voltagelimit iv, refer 6.2), the current is gradually decreased again towards no current

13 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

condition (OCV) and once the OCV condition has been reached the i-V curve program
exits.

An i-V curve can be started either from the rig main page or from a sequential program.

2.3 Setting up a sequential program

By pressing the ’Program sequences’ button, the user may set up a custom program of
sequentially executed commands. These commands may be changes in gas flows and/or
composition, temperature, DC current through the device or AC impedance measure-
ments (using the Elchemea c© software package running on a separate server). In figure
2.4 the program set-up page is shown.

Figure 2.4: Example of a sequential program setup page.

Apart from setting up new programs, it is possible to load old programs for new execution.
It should be noted, that a loaded program can be edited before execution and that all
executed programs are saved for later analysis/documentation. The text box on the left
shows the currently selected program and the buttons on the center of the page is for
adding the indicated actions with the parameters as defined by the right text fields.

If a program is already running, pressing the ’setup program’ button on the main page
(refer figure 2.3) a page resembling figure 2.5 will be shown. This page will show the
current program being run, and makes it possible to terminate the running program.

Only the impedance and TCP/IP socket call set-up will be addressed further as the rest of
the actions are self explanatory. In order to start an impedance, one must do the following:
First connect the Elchemea systems frequency response analyzer correctly to the device
under test. The exact set-up may wary, and it is always a good idea to run a manual
impedance sweep to ensure that all cables are connected properly before attempting
to run automated sequences including impedance sweeps. Once the connections are

14 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Figure 2.5: What the setup program page will look like if a program is already running.

approved (that is a continuous spectrum can be obtained), the Elchemea c© system must
be connected to the network (press the ’connect to net’ button on the Elchemea c© user
interface) and note the IP-address and the server port (default is 4040). Similarly, note
the session number and the Elchemea c© user name of the rig in question. These four
values: IP-address, Server port, user name and session number, must then be input in
the appropriate fields on the set-up page.

2.3.1 Custom TCP/IP socket calls

A special command is the TCP/IP socket call. This command enables the RFCcontrol
system to access other servers/systems through a TCP/IP socket. Apart from specifying
the IP / host-name and port of the external system, a command and potential arguments
must be specified. The actual transmission of the socket call is in the form of a command
string terminated with two newline characters. The command string consists of the
actual command and any arguments joined together with the tab character (thus making
it possible to send commands / arguments containing spaces). The external system then
has to parse the supplied command string and any response from the external system is
simply treated as text and is appended to the rig’s program log.

This functionality enables the RFCcontrol system to communicate with other systems if
they accepts command through a TCP/IP socket interface.

15 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

2.4 Setting up a test

In order to set up a test the configuration of the rig must first be completed (refer chapter
5 and 6). After the configuration is checked for errors (that is the automated system is up
and running and the servers are all running, refer chapter 8) the new test can be started
from the user interface with one important exception.

In order to make sure that the data logging system is always running, the GUI is not
responsible for running the data logging. Instead the data logging is run by cron. Thus
the crontab file for the rig in question must contain the following lines (the arguments to
the individual programs may be different as may be the time intervals):

Must always run

0 * * * * /usr/local/bin/CGI-server 12 > /dev/null 2>/dev/null &

PID control programs and custom alert triggers

* * * * * /usr/local/bin/celltest/PID_fast_control.pl 12 &

* * * * * /usr/local/bin/celltest/PID_slow_control.pl 12 &

* * * * * /usr/local/bin/celltest/Check_alert.pl 12 &

* * * * * /usr/local/bin/celltest/Adapter_update.pl 12 &

Watchdog programs, may not be nescesarry depending on test setup and/or

type of test station

#*/2 * * * * /usr/local/bin/vogt.pl 12 > /dev/null &

#*/2 * * * * /usr/local/bin/H2vogt.pl 12 current > /dev/null &

END

########## Data logging commands #####

*/15 * * * * /usr/local/bin/logfile.pl 12

*/15 * * * * /usr/local/bin/cnv.pl 12 60 > /dev/null 2> /dev/null &

END

Daily updates of web pages and graphs

31 1 * * * /usr/local/bin/cnv.pl 12 0 midnight > /dev/null &

32 1 * * * /usr/local/bin/jdata.pl 12 > /dev/null 2> /dev/null &

33 1 * * * /usr/local/bin/history-plot 12 > /dev/null 2> /dev/null &

34 2 * * * /usr/local/bin/get_all_impedance 12 > /dev/null 2> /dev/null &

END

To change the crontab file for a rig, go to the miscellaneous setup page (example shown
in figure 2.6) and then press the ’scheduler’ tab (upper right). This will bring the user to
an editor allowing the user to edit the crontab file (for further info on the crontab system,
run ’man cron’).

An example crontab file is located in /home/celltest/conf/crontab example.txt, however
remember to change all instances of the string ’XX’ with the correct rig number (for
instance 5 in case or rig5).

The crontab system can also be used to run I-V curves at specific times (for instance once
a day) or similar time dependent tasks, however to use this functionality, it is advisable
to know UNIX R© more than in a casual way.

16 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Figure 2.6: The rig miscellaneous setup page. Notice that this page does not concern
device configuration.

2.5 Creating standard test reports

The cell test software comes bundled with a powerful report generating functionality.
Unfortunately this report functionality only works for fuel cell / electrolyser tests and
not for normal electrode tests. In order to create a standard test report some knowledge
of UNIX commands are necessary!

A prerequisite for using the report generating scripts described below is that the device
naming convention described in section 5.15 have been used.

1. Log in as the rig in question. E.g. Log in as rig2 for running reports on rig2.

2. If necessary perform preformatting of the jdata file using format jdata.pl $rig $test.

3. Perform any necessary calculations using jdata conv.pl (For instance if the T center
temperature sensor has malformed data, it may be necessary to rename an other of
the temperature sensors to T center, in effect setting T center to the value of the
other sensor).

4. Run history-plot $rig $test to see if the jdata file contains excessive data after the
test has been finished. If so, delete the extra lines in the jdata file and rerun (Hint:
use /usr/bin/head and /usr/bin/tail to find and extract the usable part of the jdata
file). Rerun history-plot $rig $test and check that the plots now look as expected.

5. Create a preliminary list of I-V curves by running make iv curves.pl $rig $test where
$rig and $test are the rig number and test number in question Note that the program
checks that you are logged in as the correct user!

17 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

6. Once make iv curves.pl has finished, point your web browser of choice to the data
presentation part of the cell test user interface and check that all I-V curves has
been processed and that all the I-V curves has meaningful data in them. Some of
the processed I-V curves may have been aborted ones (e.g. if the power supply was
not connected due to a relay under voltage situation etc.) and in this case the ’max
current’ will be reported as 0. Note all the I-V curves which must be removed from
the final report (that is, note each I-V curve number that must be removed).

7. Make a backup of the ivcurvetimes file located in the tests directory (found in the
rig’s home directory. E.g. /home/rig2/2test45/ in the case of test 45 on rig2).

8. Edit the ivcurvetimes file and remove the lines that represent the I-V curves which
must be removed. It is a good idea to start at the bottom and work towards the
start, as the line numbers changes when deleting a line!

9. Rerun ’make iv curves.pl’ and check that the resulting I-V curve data all have
meaningful data in them, if not repeat step 8.

10. If the i-V curves still do not run properly, check the ’epsilon’ key in the ’IV control’
section in the configuration file (note the backed up version in the test directory,
not the main configuration file). This key specifies which current threshold is used
(the current threshold is the value below which the current is assumed to be 0, that
is the PSU is disconnected and the cell is in OCV). If this key have a too low a value
compared the the measured values of the current at open circuit conditions (as you
can never measure 0 A with a current shunt), the make iv curves.pl program can
not determine OCV and the calculations fail. To fix this edit the configuration file
and specify a more sensible value for ’epsilon’.

11. Run the make report program which generates the actual report. In the case of test
45 on rig 2 the command would be make report 2 45.

12. The make report program is interactive and at times asks for further information.
Most of this is self explanatory except the part where I-V curves must be selected
for the flow variation figures. In this case an Emacs session is started for both the
air variation and for the hydrogen variation and in each case up to three I-V curves
must be selected (by removing all the other) to be included. Note that in order
to make the figure keys consistent, the lines must be rearranged so that the flow
values is listed in increasing order. Note that the whole lines must be moved and
not only the flow values (thus maintaining the internal integrity of the lines)!

13. Finally the actual LATEX report is written (this is initialized when make report asks
about the author of the report). Supply the requested information. In some cases
Macro information may be supplied, and in this case writing the specified letter
followed by a colon will include the whole string represented by that letter (saves
typing). The manually input information is saved in the report information.txt file
in the tests public directory (/home/http/html/rig2/2test45/report information.txt
in the case of test 45 on rig 2). The information in this file may later be changed
and the report can later be updated with this new information by running the

18 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

remake latex report program with the –recompile option. Note that when changing
this file it is advisable to use the nano editor, as Emacs tends to handle the different
carriage returns wrongly (that is not displaying everything correctly).

14. Review the finished report from the user interface by pressing the ’search reports’
button and search for the specified test number.

15. If errors are found, manual edit can be necessary. The LATEX file is located in the
web directory of the test in question, and edit the file in order to fix any errors.
Note that at any time make report or remake latex report is run, the LATEX file is
overwritten, so it may be a good idea to save a edited LATEX file under a different
name! Also note that in order to be able to access any postscript file created by a
manually edited LATEX file, the resulting PS file must be moved to (and overwrite)
the PS file in the test directory in the rig’s home directory.

16. If only changes in the figures are necessary, the figures may be changed and a new
report created by running the remake latex report with the --recompile option (e.g.
remake latex report 2 45 --recompile in case of test 45 on rig 2, note two ’-’ in front
of ’recompile’ !).

17. Finalize the report by execute the set finish program so that other users knows that
the report is ready for wider circulation (e.g. set finish 2 45 in case of test 45 on
rig 2).

19 of 362 Implemented by Søren Koch

Chapter 3

Installation and system maintenance

This chapter describes how to install or upgrade a RFCcontrol system.

3.1 Requirements

In order to install the RFCcontrol system, the following must be available:

• A Red-hat based Linux operating system (Fedora, RHEL or CentOS). It is possible
that RFCcontrol - DTU Energy RFCcontrol control software will install on other
Linux operating systems, but it has not been tested.

• Perl version 5.8 or later.

• An Apache web server running with document root in /home/http/html. Note that
this is a non-standard location for document root on Red-hat based systems. As
it is an non-standard location, it is incompatible with the SE-Linux system, which
likely must be set to ’non-enforcing’ mode (refer your Linux manual as how to do
this). The reason for the non-standard location is that all measured data has to be
stored and accessible by the web-server and storing all that data in /var is likely
not advisable (as most backup utilities usually defaults to only backing up /home
on daily basis).

• Gnuplot version 4.0 or later.

• Gnu make or similar functionality

• an update locate database (to update the locate database manually run
/usr/bin/updatedb as root

• A functioning connection to the Internet. The reason for this is that the RFCcontrol
installer downloads and installs additional Perl modules from CPAN.org.

20

DTU energy RFCcontrol 5.5.4

3.2 Installation

3.2.1 preinstallation

As RFCcontrol uses a few non-standard settings as compared to a vanilla CentOS or
RHEL the following steps must be performed before installation of the actual RFCcontrol
software.

• Create the root RFCcontrol user (usually called sofc or rfc). Notice that as RFC-
control rig users user id’s are calculated as follows, no normal users may have user
id’s between 600 and 1000 (for Centos 7 this range is 1100 to 1500) as described
below: The user id for a rig user is the rig number + 600, thus rig25 wold get user
id 625. Usually the first normal user will get user id 500, so a few normal users
can be created before the RFCcontrol software is installed. If the ’base userid’ key
in the ’main’ section in the RFCcontrol configruation file is set, this value is used
instead of the default (600) Note that CentOS 7 reserves userids below 1000, thus
for CentOS 7 and later the default base userid is set to 1100, thus RFCcontrol rig
users will (as default) have ids in the range 1100 to 1500.

• Move the document root for the Apache web-server to /home/http (cgi-scripts will
thus reside in /home/http/cgi-bin and HTML documents in /home/http/html).

• Make Apache part of the group for the RFCcontrol user (edit /etc/group and add
apache to the correct group id).

• Edit /etc/httpd/conf/httpd.conf and make sure that the Apache server is set to
start as the RFCcontrol group (refer previous step). Also update the document
root specified in the file to point to /home/http.

• Disable SE-Linux. This is necessary due to the non-standard location of the
document-root of the Apache web server. This is necessary as data files are stored
in the HTML directory and in order to facility easy backup, data are only stored in
/home. Thus only this directory needs to be on backup. A result of this is that a
RFCcontrol system should never be directly accessible from the Internet but must
be protected behind a firewall.

• make sure that TCP:IP port 2020 and 4040 is open to connection (refer your op-
erating system manual). Port 2020 is used by the password server / ssl server and
port 4040 is used by the report server which also handles server intercommunication
regarding which rigs are on which servers.

• Reboot.

• Make sure that the server can send emails to users and administrators and that the
mail transfer agent and mail server allows this. It is possible to install RFCcontrol
on a server which is not allowed to send mail (or which may even operate without
a network connection). In this case, refer section 15.1.

21 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

• Make sure that the system which is to run RFCcotrol is not directly accessible
from the Internet but is protected by an external firewall (in addition to the one
bundled with CentOS/RHEL itself). The reason for this is that RFCcontrol is
not sufficiently hardened to be exposed to the Internet (and the data acquired
by RFCcontrol is potentially confidential themselves which in itself would exclude
direct Internet access). The system should however be able to contact the Internet
to download and install additional software during installation.

3.2.2 Steps to do before installation on a CentOS 7 system

As described in section 13.26 a number of things has changed between version 6 and
7 of CentOS, and before installing RFCcontrol on a centOS 7 system, run the ’cen-
tos7 CPAN configuration.bash’ script as root.

Notice that you need to log out of root before you proceed with the instalation as otherwise
the .bashrc file for root does not get rerun!

3.2.3 GPIB-server

If a Kepco power supply, Keithley scanning multimeter or a Keithley source meter is to
be used, install a NI-gpib communications card (refer the NI documentations regarding
driver installation).

After the NI-drivers have been installed (and verified that they work), download and
install the gpib-server software from http://www.elchmea.com/dist/

3.2.4 Install RFCcontrol

In order to install the RFCcontrol - DTU Energy RFCcontrol control software system do
the following:

1. Unpack the tar-ball in a suitable location, cd into the resulting RFCcontrol direc-
tory.

2. Run make.

3. Inspect the output of the make program and resolve any errors (specifically the
ch4 program may cause errors if the p2c package is not already installed. If not,
running make p2c as root will install this package, a pascal to c converter).

4. Also make sure that the web server (usually Apache) is running with document
root in /home/http/html.

5. Once all errors have been resolved, run make test followed by make install.

6. In order to ensure that all servers start upon system reboot, add the following line
to /etc/rc.local :
/usr/local/bin/celltest/start servers &

22 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

On a newly installed RFCcontrol - DTU Energy RFCcontrol control software system, no
rigs will be available, and each rig on the system has to be installed manually. To install
a rig, simply run the ./create rig.pl $rig script in the installation directory followed by
the script ./INSTALL RIG (the $rig argument must be an integer, for instance to install
rig15, run ./create rig.pl 15).

If the current system is to act as a list server (for a group of RFCcontrol servers), edit
the global configuration file (refer chapter 4) and make sure that the listserver key in the
servers section is the host name of the current system and add the host name as well as
any other host names of other RFCcontrol - DTU Energy RFCcontrol control software
systems in the cluster to the server names key (separated by comma). If the current
system is not intended to run as a list server, simply set the listserver key to the host
name of the listserver and leave the server names key blank.

3.2.5 Installing the password server

If the RFCcontrol system is used alone or the system is to act as a password server as
well, follow the steps given below in order to install and configure the password server:

1. edit the configuration file (/home/celltest/conf/celltest global.conf) and change the
’passwd server’ key in the ’paswds’ section to the hostname of this server

2. In the ’servers’ section, change the ’listserver’ key to the hostname of this server
(This is not absolutely necessary, as the listserver does not need to be the same
server as the password server, however it is usually convenient to have both on the
same server.

3. In the ’servers’ section, change the ’server names’ key to the hostnames on this
cluster (for a single server system, it will just be the hostname of this server).

4. Add the line ’/bin/su -c “/usr/local/bin/celltest/celltest-passwd-server –ssl &” -
sofc’ to the /etc/rc.local file to make sure that the password server starts upon
reboot.

5. make sure that your MTA allows the server to send mail (can be tested by running
’echo “Test mail” | mail -s “Test” user@foo.com’ , remember to substitute for a
proper email address).

6. Run the ’initialise passwdfile.pl’ script in the installation directory and note the
initial root password thus created.

7. Reboot the computer and it should be possible to log in using the password created
in step 6.

8. If it will not be possible to send emails from the server proceed to step 12.

9. Connect the computer to the Internet so that mails with new users passwords can
be sent.

23 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

10. Create at least a single non-superuser user for normal operation of the RFCcontrol
- DTU Energy RFCcontrol control software system and assign correct permissions.

11. Installation should be complete.

12. Use the script create user.pl found in the installation directory to create non-
superuser accounts (note the passwords assigned to each user).

13. Check that the created users thus created can log into the RFCcontrol system.

3.3 maintenance

Generally RFCcontrol requires little maintenance, however make sure that a proper
backup / restore procedure is in place, as any data logged by the RFCcontrol system
is likely costly in time and / or money and thus should not be lost by hardware or
software failures.

The RFCcontrol system includes a facility for automatic software updates. To enable
this, simply add the following line to root’s crontab file:

0 8 * * 1 /usr/local/bin/celltest/celltest updateer.pl ≫ /root/update log.txt &

This will update the system once every Monday (thus leaving several working days to
fix things if anything went wrong). The automatic update system then fetches any new
version which may have been deployed within the last week and installs this if it passes
the software test (make test). Thus it will not install any new software if mangled
configuration files exists, or if the new software version is incompatible with the existing
configuration files.

Additionally it may be advisable to add the following line to sofc’s crontab:

0 1 * * * /usr/local/bin/mail errors.pl

This will ensure that all users listed in the errormails key in the global section in the
global configuration file (refer chapter 4) will receive a mail each day if errors were
logged during the previous day. The mail will contain an extract from the error file
(/home/celltest/error.txt).

24 of 362 Implemented by Søren Koch

Chapter 4

Global configuration

The global configuration of the RFCcontrol - DTU Energy RFCcontrol control software
contains site wide configuration values which are not rig specific. Below is a section by
section description of the configuration file which should only be changeable by the site
administrators.

4.1 Global

SECTION global

logoutdelay = +10min

splineinterpol = /usr/local/bin/splinterpol

splineinterpoldata = /home/celltest/convert-tables

CGI_baseaddress = 2000

CGI_host = localhost

GPIB_host = localhost

logfile = /usr/local/bin/celltest/logfile.pl

errormails = foo@foo.bar

access_mode = celltest

account_number_regexp =

Only set allow_exec to yes if you really want users to be

able to execute arbitrary system commands!

allow_exec = no

proxy=http://proxy.foo.bar:proxy_port

account_number_regexp = ^\d{5,}\s+\w\-\w+

remote_equipment_database = https://foo.bar.baz/cgi-bin/log.cgi

ENDSECTION

This section defines global variables and file locations. The individual keys are used
internally and should normally not be changed unless you are VERY sure about what
you do! The access mode key specifies two things and can have one of two values: ’celltest’
and ’electrodetest’. It defines what information is necessary to start a new test (less in case
of an electrode test) as well as which user access parameter is used for user authentication
for the rigs. The account number regexp key specifies which regular expression (if any) is

25

DTU energy RFCcontrol 5.5.4

to be used for verification when a user is starting a new test. If no value is specified, the
default regular expression ’\w+’ is used The allow exec key specifies if it is possible to run
custom designed programs from the ’set-up program’ page (section 2). Only programs
placed in the directory /usr/local/bin/celltest/user exec are allowed to be executed due
to security considerations. A default installation only supplies one program ’test.bash’
which can be used to test the option, but it does nothing. All other programs must
be custom designed. CAUTION: Any program placed in this directory can be
executed by one of the rig users if allow exec is set to true, so any program
must be designed with security in mind so it can only do what is intended
and not be ’hijacked’ to do something else. The default setting of this key is
’no’ as allowing the execution of arbitrary programs is a potential security risk (consider
what would happen if the program executed was just a wrapper for ’rm -rf .*’). Also
notice, that any programs placed in /usr/local/bin/celltest/user exec must only contain
alphanumeric characters and the ’.’ and ’-’ character in the filename (this is necessary
for security purposes as the remote program parser rejects any commands that contains
anything other than those characters). The CGI host and GPIB host keys may be absent
and in this case the default is localhost. In most cases the localhost setting is correct, but
in some network configurations it may be necessary to set the fully qualified host name
instead (e.g. foo.bar.com) The proxy key specifies the hostname and port of a web proxy
(if such a system is used) and the account number regexp key specifies if users should be
forced to use a particular format for project/account numbers when starting a new test.
If so, use an appropriate regular expression and define it here.

The remote equipment database key is used if a remote equipment database can be used
for storing user log entries. The value must be the website address which can handle input
of user log entries. The script is called with the following variable parameters: name -
username, pass - session token, rig - rignumber, test - testnumber, equipid - ID on the
remote system (refer section 6.1), description - string supplied by user. In addition the
following fixed paramteter values are also supplied: actionn̄ew maint log, typeT̄estlog

4.2 Admin

SECTION admin

system_mail_users = foo@foo.bar

ENDSECTION

The admin section contains a key with a comma separated list of email addresses of the
site administrators who is to receive system error mails.

4.3 Passwords

SECTION passwds

passwd_server_port = 2020

passwd_server = host.domain

26 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

force_encryption = no

NB only used in standalone mode

passwdfile = /home/celltest/passwd

passwdlock = /home/celltest/pwd.lock

ENDSECTION

The passwd section contains the information necessary for user authentication. Two
modes of user authentication exists. Either a local password server must be running
(using a very primitive flat file database using the Perl Tie module, described below) or
a full fledged RDBMS database must be running which handles user authentication. In
the first case the software is included (must be configured to run at system boot up) and
in that case the passwdfile and passwdlock entries must contain valid file locations. The
passwd server key contains the DNS name of the server running the password server. The
passwd server port key contains the port number of the server program (must correspond
to the port the password server program binds to especially in the case of an external
authentication server). The force encryption key (if set to yes) specifies if RSA encryption
is to be used at all times (both by any server running, but also by any client calls to a
potentially remote password server (refer section 4.3.4).

Irrespective of authentication method (either local flat file database or full RDBMS) the
authentication of user login proceeds as following:

1. User initializes a new session and supplies user-name and password.

2. If user-name and a hash of the supplied password matches the hash stored in the
database (not no plain-text passwords are stored) log-in proceeds otherwise the
user is not authenticated. Note that it is only for new sessions that the actual user
password is needed as explained in the following steps.

3. A hash is calculated based on the stored password hash and a randomly generated
string (session key). This hash is returned to the application and is used as a session
key unique to this session and the user in question. The random session string is
stored in the password server.

4. All further session traffic is validated against this session hash as the password
server can calculate what the hash should be and compare with the user supplied
session hash.

5. If the user logs out, or too long time passes before a new command is passed,
the session key is deleted and a new session has to be initialized as all further
authentication with the old session hash will not validate.

Earlier versions of RFCcontrol used the crypt() function, but from 4.6.1 onwards, the
local password server uses the bcrypt() function which uses the EKS-Blowfish algorithm
as the crypt function is no longer secure.

Irrespective of user authentication method, the active password server must honor all the
commands in list 4.3.2 through TCP-IP socket calls: arguments must be separated by a

27 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

tab character and requests terminated by two newlines as shown in the example below
where the actual string transmitted is shown (in the case of a server which does not use
encrypted communication, see 4.3.4):

Client sends:

isuser\ttest\n\n

And the server would send back something like

34\n\n

assuming user test had user id 34.

4.3.1 Single sign on from multiple test stations

If single sign on is to be used, all the servers which uses this must be configured to use
the same password server. Since the communication between the client and server can be
encrypted, it is possible without exposing user-names and/or passwords assuming that
the web-server only uses ssl (that is that users can only access the test station using
https).

In order to configure multiple test stations for this, make sure that all the test stations
are configured to use the same server for password authentication. Additionally they
should properly also use the same list-server for convenience.

One thing to remember is that for single sing-on to work reliably, the network configura-
tion for the individual test stations should be set up to use proper individual DNS host
names (so not all systems identify themselves as ’localhost’).

4.3.2 List of password server commands

• new session: Initializes a new user session, arguments: username password. Returns
a session token if successful, 0 otherwise

• checkuser: Checks that the user is properly logged in, arguments: username token.
Returns the user-id if OK, 0 otherwise. Updates the ’last login’ field so that the
users session is extended.

• checkuser sso: Arguments: username token. This command works like the checkuser
command except it allows the option of using single-signon in collaboration with
Non-RFCcontrol systems (refer section 4.3.6). Thus if the user is not logged in to
RFCcontrol, but is logged in to some remote system which can be used for single-
signon, and the password server can verify that the supplied user credentials are
valid (username and token is valid), a new local RFCcontrol session is created. If
the user is authenticated by at least one of the remote resources the userid as well
as a new session-token is returned. The session token is used in the same way as

28 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

the ones returned by new session. If single-signon is not enabled, this command
returns -1 (user denied access).

• pwdstatus: Checks if a session is valid and returns ’RESET’ or ’EXPIRED’ instead
of the user-id if the session is valid but the user password has been reset or too long
time has passed since last password change, arguments: username, token.

• is logged in: Checks if a user is already logged in, arguments: username. Returns
1 if user is logged in, 0 otherwise. A user is logged in if the users record in the
password database has a session key set and that it is not too long since the user
performed an action which required validation through the checkuser command.

• logout user: Logs out a specific user, arguments user-name. This command removes
the users session token, thus making all further uses of that token invalid

• get users: Returns a list of users on the system, arguments: username token.

• is user: Checks if a specific user exists, arguments: username. Returns user-id if
the user-name exists, 0 otherwise.

• is admin: Check is the user is an administrator, arguments username token. Re-
turns 1 if user is administrator and session is valid, 0 otherwise.

• adduser: Adds a new user to the system, arguments: username, real name, [opt
email]. If no email address is specified, the default address will be username@dtu.dk.
After user creation a new password will be sent to the users email.

• adduser nomail: Adds a new user to the system, but instead of sending a email with
the new password it is returned to the caller. Arguments: user-name, real name.

• deleteuser: Deletes a user from the system, arguments: administrator username
token, username. Notice that the user record is not deleted, the user is merely set
inactive (and is thus unable to log in).

• root access: Sets or removes superuser status for a user, arguments: administra-
tor username, token, user-name, status. Status is 1 for root access and 0 for normal
user.

• user auth: Sets use permission for a specific key for a specific user, arguments:
administrator username, token, username, key, permission.

• changepwd: Changes the users password to a new value, arguments: username,
token, new password.

• resetpwd: Resets a users password, arguments: administrator username, token,
username.

• checkauth: Checks if a user has permission for (one or more) specific key(s), argu-
ments: username, token, [key, min permission]... Returns the user-id if the user has
at least the requested permission for the specified keys.

29 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

• multiauth: Checks for a uses permissions for multiple keys, arguments: username,
token, [key, min permission]... As opposed to checkauth, multiauth returns a list
with success status for each individual check (each check separated by newline).

• email: returns the mail address for a specified user, arguments: username.

• exit: Shuts down the password server.

• get per: Checks if a user has permission for a specified key, arguments: username,
token, key, min permission. Returns the user-id if the user has at least the requested
permission for the specified key.

• get admin: returns the administrator status for a specified user, arguments: ad-
ministrator username, token, username.

• debug: turns debug on or off.

• ping: Returns a string containing the server name as well as other information.

• check task status: Checks the status for a user in respect to a particular safety
regulation (refer section 4.4), arguments: user-name, task-id.

• check task cert: Checks if a user is certified in respect to a particular safety regula-
tion (refer section 4.4), arguments: user-name, task-id. A certified user is allowed to
authorize other users to the same regulation and is automatically also authorized.

• is ssl: Returns 1 if RSA cryptography is to be used for password server communi-
cation. Note can be used unencrypted (does not expose secret information).

• public key: Returns the RSA public key for the server. Note that this command
can only be used unencrypted (as it is necessary to know the public key before
encryption can proceed).

• logout delay: Returns the maximum number of seconds between actions before uses
are automatically logged out. Note can be used unencrypted (does not expose secret
information).

4.3.3 Additional local password server commands

In addition to the above commands, the local password server (/usr/local/bin/celltest/
celltest-passwd-server) also accepts the following commands for manipulating safety reg-
ulations:

• new task: Creates a new safety regulation. Arguments Name of regulation.

• task name: Gets or changes the name of a safety regulation: Arguments: user-
name, token, id, [opt new name].

30 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

• task valid: Gets or changes the valid status of a safety regulation: Arguments:
user-name, token, id, [opt new status]. Users can only be validated against valid
regulations (validation against an invalid regulation always fails).

• get tasks: Returns a list of safety regulations (id numbers) separated by newlines.
Arguments: user-name, token.

• get task names: returns a list of safety regulations separated by newlines, each item
contains the id number and a tab-character followed by the nam e of the regulation.
Arguments: user-name, token.

• set task cert: Sets a particular user to be certified for a specific safety regulation.
Arguments: user-name, token, user-name of user to certif y, regulation id. returns
1 on success, 0 or -1 on failure.

• set task auth: Sets a particular user to be authorized for a specific safety regula-
tion. Arguments: user-name, token, user-name of user to autho rize, regulation id.
returns 1 on success, 0 or -1 on failure.

• rev task cert: Removes the certification for a user for a specific safety regulation.
Arguments: user-name, token, user-name of user to remove, regulation id. returns
1 on success, 0 or -1 on failure.

• rev task auth: Removes the authorization for a user for a specific safety regulation.
Arguments: user-name, token, user-name of user to remove, regulation id. returns
1 on success, 0 or -1 on failure.

• list cert: Returns a list of user-names which is certified for a specified safety regu-
lation. Arguments: user-name, token, regulation id.

• list auth: Returns a list of user-names which is authored for a specified safety
regulation. Arguments: user-name, token, regulation id.

4.3.4 Encrypted communication

It is possible to use encrypted communication between the password server and the clients.
To enable this, start the password server with the –ssl argument. The reason for this
is that the password server handles information which must remain secret (namely the
users passwords) and thus greater protection is warranted.

If encryption is enabled, some additional steps are added to all all communication between
the password server and any clients (irrespective of origin, even local requests will be
encrypted):

1. If the ’force encryption’ key (refer section 4.3) is set to yes, proceed to step 3.

2. check if server is using encryption: This is performed by doing an unencrypted
’is ssl’ request. If The ’is ssl’ call returns anything but 1, encryption is disabled
for this transaction and communication proceeds according to section 4.3.2 with
plain-text strings.

31 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

3. The client checks if it knows the public key of the server. This is done by look-up
in the known hosts file. If the key is known, proceed to step 5

4. Get the servers public key and store it in known hosts. The key is retrieved by
issuing an unencrypted ’public key’ request (no need for encryption to get the public
key as it is intended to be known to the public).

5. If the server request string is shorter than 32 characters in length, proceed to step
11

6. Create a random string containing 32 chars and use this as a key for the AES
symmetric cipher.

7. Encrypt the server request using Crypt::CBC (using AES) and this key and base64
encode the resulting ciphertext.

8. Encrypt the AES key using Crypt::OpenSSL::RSA and the servers public key and
base64 encode the resulting encrypted key.

9. Create the transmit string the following way: first the encoded key, then an un-
derscore and then the encoded command followed by two newline characters (an
underscore is used as separator as the RFC 2045 used by MIME ensures that this
character can not by accident be included in a base64 string).

10. Transmit this string to the server and proceed to step 13.

11. Encrypt the real server request string using Crypt::OpenSSL::RSA and the servers
public key.

12. Base64 encode the resulting string and send it to the server (to make sure that
transfer over the network does not mangle the binary string resulting from the
encryption).

13. The server checks if it knows the public key of the client, if so proceed to step 16

14. The server does a reverse public key request. This must be serviced by either
the password server if a local request is serviced or the RFCcontrol-ssl-server if a
remote request is serviced (one of the two servers must run on a RFCcontrol server
if encryption of password server intercommunication is used).

15. The server stores the client’s public key in the servers known hosts file.

16. the server examines the string and determines if an underscore is present, if not
proceed to step 20

17. The string is split up in two parts by the underscore, the first part is the key, the
second part is the command.

18. The server reverses the base64 encoding on the key and decrypt it using it’s private
key.

32 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

19. The server reverses the base64 encoding on the command and decrypts it using the
decrypted key and the Crypt::CBC module (using AES), then proceed to step 21

20. The server reverses the base64 encoding and decrypts the message using it’s private
key.

21. The server processes the resulting request according to section 4.3.2.

22. If the result is less than 32 chars in length, proceed to step 28

23. Create a random string containing 32 chars and use this as a key for the AES
symmetric cipher.

24. Encrypt the result using Crypt::CBC (using AES) and this key and base64 encode
the resulting ciphertext.

25. Encrypt the AES key using Crypt::OpenSSL::RSA and the clients public key and
base64 encode the resulting encrypted key.

26. Create the transmit string as in step 9.

27. Transmit this string to the client and proceed to step 30.

28. The server encrypts the response using the clients public key.

29. The result is base64 encoded and transmitted back to the client.

30. the client examines the string and determines if an underscore is present, if not
proceed to step 34

31. The string is split up in two parts by the underscore, the first part is the key, the
second part is the result.

32. The client reverses the base64 encoding on the key and decrypts it using it’s private
key.

33. The client reverses the base64 encoding on the result and decrypts it using the
decrypted key and the Crypt::CBC module (using AES),then proceed to step 35

34. The client reverses the base64 encoding and decrypts the message using the clients
private key.

35. The client returns the decrypted response to the user or program requesting the
information.

Notice that the key exchange only happens once for each client. Once the public key
has been retrieved, it is used for all future requests. Thus if for some reason a server
has to be reinstalled or otherwise changed, remember to delete the corresponding entries
in known hosts or communication will fail! (This is similar to how the ssh program
behaves). The is ssl request is also cached and is reused if the client program needs to do
more than just a single request to the server. However each new invocation of a program

33 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

or script which uses the password client function in RFC::Main will call ’is ssl’ at least
once, except if the ’force encryption’ key is set to yes, in which case the ’is ssl’ request is
unnecessary and is skipped.

Also notice that if encryption is enabled on the password server, only the three last
commands in list 4.3.2 can be used without encryption!

As encrypting an empty string results in gibberis upon decrypting, the server responds
with a single space if the true request result in no response or the empty string (the space
character will be encrypted following the above description however) and the client will
detect this single space and return an empty string instead.

4.3.5 How to run a local password flat-file database server

In order to run the local flat-file password server distributed with RFCcontrol - DTU
Energy RFCcontrol control software, the following steps must be followed:

1. If no previous password server has run, execute the initialise passwordfile.pl script
found in the installation directory. Caution: Executing this script will erase any
prior password file! Note the initial password assignet to the root user!

2. Start the celltest-passwd-server script found in /usr/local/bin/celltest/.

3. log in using the password generated in step 1

4. change the root password to something suitable.

5. Create the normal users and assign them correct permissions (usually celltest -
modify). Creation of users can be done from the GUI only if the server is connected
to the network and is allowed to send mail! If this is not the case, use the
terminal program create user.pl found in the installation directory RFCcontrol.
The password for the new user will then be printed out in the terminal instead of
sent by mail (which would never arrive).

6. add the line /usr/local/bin/celltest/celltest-passwd-server & to /etc/rc.local

4.3.6 Single sign-on in collaboration with non-RFCcontrol sys-
tems

It is possible to use RFCcontrol in a single-sign-on mode in collaboration with Non-
RFCcontrol systems. In order to do this the following prerequisites must be met.

• All remote systems types in the collaboration must supply some form of remotely
accessible user verification in order to verify if a specific user has a valid log-in
session active.

34 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

• A special program must be made for each type of system which accepts a user-
name and a password-token as arguments and which returns either 0 (user not
authenticated) or a true value (usually a user-id) in case the user has a valid session
based on the supplied credentials. These programs must be placed in the directory
/usr/local/bin/celltest/sso/.

• The RFCcontrol password server must be started with the special switch –sso, which
enables the single sign-on option (note 2 dashes).

• All links to RFCcontrol from the external sources must supply a ’name’ parameter
(the user-name) as well as a ’pass’ parameter (which contains the session token from
the external system) and these two parameters must be sufficient to verify that the
user in question is authenticated.

If these prerequisites are met, it will be possible to make direct links from external web-
pages to RFCcontrol without the user having to log in to RFCcontrol (assuming the user
has a valid active session on the external system).

Upon receiving a request originating on one of the external systems, RFCcontrol will
first try and validate using the local password server system (which will fail) and then a
checkuser sso request will be issued to the password server.

This request will try all the programs in /usr/local/bin/celltest/sso/ to check if one of
them returns a true value. If so, the user is assumed to be authenticated by the system
related to that program and a new local session is created and the user can proceed as if
he / she had just logged in normally on RFCcontrol.

Notice that this feature can be used to completely bypass all security if
by some means a program or script is placed in /usr/local/bin/celltest/sso/
which returns a true value (for instance a simple echo command will do this!).
Thus the single-sign-on option has to be explicitly enabled by the –sso switch
when starting the password server and the /usr/local/bin/celltest/sso direc-
tory must only be writable by root to prevent such attacks.

Troubleshooting

If encrypted communication is used for the password server, and one or more of the remote
systems uses a similar communication scheme as the RFCcontrol password server (Other
RFCcontrol clusters for instance) situations could arrive in cases where a ’checkuser sso
command’ is recieved and one of the programs used to check remote systems forces a
reverse public key request. In this case a deadlock occour as the reverse public key
request can not be processed as long as the current request is running (and that can not
finish before the reverse public key has been recieved).

To prevent this, issue a ’isuser’ command using the password client raw() function in the
RFC::Main.pm library to each of the systems from each of the other systems in order to
load all public keys to and from the relevant systems.

35 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

4.4 User authentication control based on rig permis-

sions

SECTION safety_task_access

rig6 = 18

rig35 = 8,1

rig36 = NONE

ENDSECTION

The safety task access section is only to be used if individual access rights for partic-
ular rigs are to be used. A further condition is that the password server honors the
’check task status user-id task-id’ request as well as the ’check task cert’ request. In the
case this is not met, remove all entries in this section!

If an entry is found for a rig, the number(s) for that rig is the task-id(s) in the remote
database for which the user must be authorized before he/she can change any parameters
for the rig in question (current, gas flows etc.). In the example above, in order for a user
to change process parameters for rig 6, he/she should be authorized to use safety task
number 18. If the user is authorized for the rig in question, the access rights are set as
if the user had ’create’ rights in the global access system if the user had less than create
rights in the global system (note the global access rights are NOT changed permanently,
only for the current session). If the special key ’NONE’ is found for a specific rig (in
the example above for rig 36) the system assigns implicit access rights to all users for
that rig as if they had use rights assigned by the remote database (without checking the
database). This can be used for overriding the access rights if problems is encountered
and it for some reason is not possible to change user permissions in the external database.

if more than one number is found (in the example above for rig 35, then all skids must
return a valid authorization for changes to be allowed. Additional, only the first task id is
checked for certification status (certified users are allowed more freedom in configuration
than merely authorized users).

Thus in order to be certified the user must be authorized for all task id numbers listed as
well as be certified for the first task id listed. If no entry is found for the rig in question,
the global access mode is used instead. The permission which the system checks for is
the one defined by the ’access mode’ key in the ’global’ section.

If no such key is defined, the default is to check for ’celltest’ and ’celltest admin’ (the
administrator part is always generated by appending ’ admin’ to the access mode key, so
if the access mode key is electrodetest, then the admin-key will be electrodetest admin.
Thus make sure that the password server has the specified access keys defined.

4.5 Server section

SECTION servers

listserver = foo.bar

list_server_names =

36 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

server_names = host.domain.tld,host2.domain2.com

ENDSECTION

The servers section defines how many servers share the system software so that internal
navigation between different servers is possible and as painless as possible. It also includes
the listserver key, which specifies which server is to be used as a list server. This makes
server farm maintenance easier, as each server only needs to know the name of the list
server as well as which rigs are valid on the local system. Only the list server needs
to know the names of all servers. It is also possible to use more than one list server
(with each list server maintaining it’s own list of known serves). In this case use the
list server names key and supply a comma separated list of list server names. Notice that
each list server need not know all servers.

4.6 Test rig control on server

SECTION celltest

rigs = 6,35,36,37

rigs_host.domain.tld = 6,35,36,37,40

start_test_mail_users = foo@foo.bar,foo2@foo.baz.bar

ENDSECTION

The celltest section defines the number and names of rigs on the server as well as a list
of users who get a system mail each time a new test is started on one of the rigs. Notice,
that if a rig is physically unavailable / removed, but the data is still intended to be on
line and available, make sure that the rig number is removed from the rigs key, but not
from the rigs ... key. In the above example rig 40 will not be available to control, but
the data will still be on line and available.

4.7 Gas factors

SECTION gas

This section is for gas factors for Brooks mass flow controllers

n2 = 1

o2 = 0.988

h2 = 1.008

co2 = 0.773

co = 0.995

ch4 = 0.763

air = 0.998

d2 = 0.995

he = 1.386

ar = 1.395

ne = 1.398

kr = 1.382

xe = 1.383

37 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

no = 0.995

no2 = 0.758

n2o3 = 0.443

n20 = 0.752

ext_anode = 1

ext_cathode = 1

chx = 1

backup = 1

ENDSECTION

The gas section contains the gas factors for all the gasses which the system knows about.
If a new gas type is added to one of the rigs, make sure that the corresponding gas factor
is defined in this section! (refer section 6 and 12.5).

4.8 Impedance acquisition control

SECTION impedance

standard_compensation_files = /home/http/html/*.i2b

current_plot_frequencies = 10000:100:1

remote_client = /usr/local/bin/remote-client

comp_program = /usr/local/bin/hio_korr

ENDSECTION

The impedance section contains various information necessary for running automated
impedance using the Elchemea c© software package in conjunction with a Solartron R©
1260 or 1255B. The standard compensation files key contains the location of the com-
pensation files. If the standard compensation files key is empty or not defined, then
the impedance compensation files for all impedance compensation is assumed to be in
the directory imp comp in the main web directory for the individual rigs: In case of
rig 5 the directory would be /home/http/html/rig5/imp comp/ assuming standard file
locations. If the key is specified, it is possible to include limited pattern match like
shown above. In the example displayed above, only files ending with .i2b is included.
The current plot frequencies key contains the frequencies to be displayed in the overview
figures showing impedance data versus time for impedance spectra obtained during con-
stant current. The comp program key contains the location and name of the impedance
compensation program.

4.9 Report generation

The following configuration sections are all concerned with report generation as well as
graphics generation.

SECTION resistance_calc

minimum_relative_current_Rmin = 0.2

ENDSECTION

38 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

The resistance calc section contains only one key that define the relative current above
which the software algorithm tries to determine the minimum cell resistance found during
an I-V curve (only used when making reports).

SECTION GNUPLOT

output_type = ps

postportterm = post port enh color

postportsize = 1,0.5

multmargin = set lmargin 10;set rmargin 10;set bmargin 2

size = 1,1

halfsize = 1,0.5

quartersize = 1,0.25

location = /usr/bin/gnuplot

impedance_time_plot_type = points

ps-size = 0.5,0.5

png-size = 0.5,0.5

ENDSECTION

The GNUPLOT section contains location and default margins and terminal types for
automatically generated report figures using Gnuplot.

SECTION MDRIVE

location = M:/Path/To/Data/

mountloc = M:/Path/To/Mounting/Photos/

unm_loc = M:/Path/To/De-Mounting/Photos/

stringsize = 39

ENDSECTION

The MDRIVE section contains default path descriptions for cell data (only used when
making reports and specific for the network environment and Windows/Samba shares in
which the server and clients are located)

4.10 Global IV curve control

SECTION iVcurves

minimum_cell_voltage_for_iv = 400

maximum_cell_voltage_for_iv = 1600

minimum_current_step = 0.05

current_limit = 50

ENDSECTION

The iVcurves section contains absolute maximum and minimum cell voltages for i-V
curves. If an i-V curve exceeds one of these values, an emergency shut-down of the i-V
curve occurs. Note that the values are in mV! The minimum current step key specifies
the minimum stepsise (in A) for current changes during i-V curves. before changing this,

39 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

please refer to the specifications of the attached DC power supplies as the value in this
key should not be lower than the resolution of the PSU’s! If the key does not exist,
the default value of 0.05A is used instead. The current limit key defines the maximum
allowable DC current. Default is 40 A, set this value to something appropriate to the
devices under test.

40 of 362 Implemented by Søren Koch

Chapter 5

Device description and philosophy of
device design

The RFCcontrol - DTU Energy RFCcontrol control software system uses a number of
logical and physical devices. Common to all of them is that they can be queried for their
status (by using the read function, refer section 12.1). Some devices are read only whereas
others are controllable. Below is a general description of the main types of devices.

5.1 Simple channel

The most basic device type in the RFCcontrol - DTU Energy RFCcontrol control software
system is the simplechannel. This device type is typically connected to a AD converter
(digital voltmeter typically) and is a read-only device type. Whenever the device is
queried (read) the voltage or current is measured and returned. The simplechannel device
type is used by a lot of the more complex device types in the RFCcontrol - DTU Energy
RFCcontrol control software system.

5.2 Control relay device

This device type is basically a Boolean device which usually is controlling a physical relay
which in turn can be used to control magnetic valves, switching relays or digital input to
other physical devices (PLC’s etc.). If the status of the relay device is on, then a read
will result in a ’1’ whereas a off state will result in a value of ’0’. Note, that if the relay is
controlling a normally open magnetic valve, then a status of ’on’ will actually be a closed
valve! As with simplechannel (refer section 5.1) the relay device is used internally by a
lot of the more complex device types.

41

DTU energy RFCcontrol 5.5.4

5.3 Analog output device

This type of device is used to control DA converters (notice, do not confuse this with a
power supply). The actual physical device may be either a voltage source or a current
source (but not both at the same time!). In RFCcontrol - DTU Energy RFCcontrol
control software an analog output device is usually used to control analog mass flow
controllers or similar devices with only analog input.

5.4 gas device

The gas device is logically a gas tube with a flow measuring and/or flow control device
attached. This control device may range from a fully automatic and electronically con-
trollable device to a fully manual needle-valve (in which case the logical gas device only
remembers the value that the user specified he/she had set the flow to). The name of
the gas device may either be the gas name or a logical name (in this case it must be
configured which gas is actually being controlled/measured).

Figure 5.1: Logical overview of a gas device. The control device may be a simple valve, a
pressure controller, a electronic mass flow controller or even a more complex flow control
device (possibly composite including parts of a multiplexer device (refer section 5.7).

A gas device may be configured as manual or automatic, if it is automatic, then a MFC
(or derived) device is attached to control the flow or the pressure. Notice that a single
gas device can have the flow rate or the gas pressure controlled, but not both at the same
time! This is the reason for pressure control devices to emulate the MFC interface. If both
flow rate and pressure for a gas is to be controlled (physically in different controllers),
one gas device controls the flow and an other the pressure.

For example, the gas device ’h2’ would be set up to control the hydrogen flow rate and
the gas device ’h2 pressure’ would be used to control the pressure. The two devices would
then report data in L/hour and barA respectively.

5.4.1 Multiline devices

A special type of gas device is the multiline device. This device is a parallel connection of
two other gas devices (usually with different flow ranges) making it possible to accurately
control the gas flow over wider ranges than is possible with a single gas device as usually
the accuracy of a gas control device can only be trusted over a single order of magnitude.
Warning: never mix gas devices configured to control flow rate with gas
devices configured to control pressure in a multiline device as the result would
be unpredictable! Also be careful not to create circular links as such a link
will render the system unresponsive due to deep recursion.

42 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Figure 5.2: Logical diagram of a multiline gas device. M1 to M3 are magnetic valves
and MFC 1 to 3 are mass flow controllers with different flow ranges (in this example it
is assumed that MFC 1 has the lowest flow range and MFC 3 the highest). The grey
boxes containing a valve and a MFC indicate a primitive gas device (normal gas device as
according to section 5.4). The box labeled Multiline 1 is a multiline gas device consisting
of MFC 1 and 2 (in addition to the associated valves). This device itself behaves ’from
the outside’ as a primitive gas device, and can be used as such in other multiline gas
devices as it is in this example where the complete figure indicate a multiline gas device
consisting of a primitive (MFC 3 + M3) and a multiline device (multiline 1).

43 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

5.5 Gas group device

A RFCcontrol - DTU Energy RFCcontrol control software gas group device is a purely
logical device, and is used to group several gas lines into a single logged value depending on
the status of some control relay. The principle is described in figure 5.3 where the status
of a electronically controlled cross-over valve is used to control if gas line 1 or 2 is shunted
to the sample under test (this is usually only used in cases where gas concentrations has
to be changed fast as a step function).

Figure 5.3: Logical overview of a 2 gas group devices. Device 1 is MFC 1 and 3 (both
hydrogen) and device 2 consists of MFC 2 and 4 (both nitrogen). However depending on
the status of the cross-over valve only MFC 1 and 2 or MFC 3 and 3 can supply gas to the
sample. Thus for each gas group, only the flow of one of the MFC’s should be counted as
supplied to the sample. To solve this, each gas device (MFC + magnetic valve) must be
assigned a control relay (the relay device controlling the cross over valve) and a control
value so that the gas group device knows which gas line to include upon a read request
depending on the setting of the cross over valve.

All RFCcontrol - DTU Energy RFCcontrol control software gas group devices are read-
only devices as the flow of the individual gasses are controlled by themselves as is the
status of the cross-over valve.

5.6 Mass flow controller

The mass flow controller device is a composite device. Logically it consist of a cutoff
valve, a flow control device and a bypass valve (refer figure 5.4). Only the control device
is mandatory however. The reason for this is that most automatic flow control devices
(mass flow controllers) usually can not close completely, and thus the MFC device can
include a cutoff valve which can close the gas flow completely. The bypass valve is used

44 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Figure 5.4: Logical overview of a MFC device. The only mandatory device is the MFC
(flow control device). The optional valve (A) is a cutoff valve to ensure that no gas can
flow and the valve (B) is a three-way valve (may be implemented as a normally open
and normally closed valve pair). The port of the three-way valve which is open upon
activation is connected to the system exhaust and the port open upon no valve activation
is connected to the test setup. Note that the complete MFC-device (one MFC and up to
2 magnetic valves) constitute the flow control device shown in figure 5.1.

in case no overshoot of the gas flow is acceptable. In this case a three-way magnetic valve
should be mounted as shown in figure 5.4 and this valve will open for a short while if the
gas flow is to be turned on (from an off state). After the gas flow has stabilized (and any
overshoot has been vented through the aux output) the valve returns to normal and the
gas flow continues as normal. A RFCcontrol - DTU Energy RFCcontrol control software
MFC device must be connected to a corresponding gas device and therefore it is usually
advantageous to initially configure all gasses before starting to configure MFC devices.

5.7 Multiplexer device

The RFCcontrol - DTU Energy RFCcontrol control software multiplexer device is a logical
device consisting of a number of relay devices (refer section 5.2) used to control which gas
line is selected as shown in figure 5.5. Only one gas line is allowed to be selected at any
time, however the gas control valves used by the multiplexer device must NOT be confused
with the control valves used by the MFC devices as described in section 5.6 (physically
it is possible that the same magnetic valve may be used as both a multiplexer valve and
a cutoff valve though, but logically inside the RFCcontrol - DTU Energy RFCcontrol
control software system they must be different devices!).

5.8 Power supply device

The power supply device is used to control power supplies (usually DC). This must not
be confused with the analog output device described in section 5.3. As opposed the
the analog output device it is possible to specify both the current output as well as
the voltage output and depending on the physical device these values will usually be

45 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Figure 5.5: Schematic overview of a gas multiplexer device. The three different magnetic
valves control which gas (H2, N2 or Ar in this case) is allowed to be passed on. The output
in this case would be the input of a MFC device. This enables a single MFC device to
control multiple gasses (although only one at a time)!. Note that only mass flow control
er devices and not pressure controller devices can be connected to a gas multiplexer.

maximum values meaning that the PSU may operate as both a constant voltage source
or a constant current source.

For instance if the current is set to 10 A and the voltage is set to 5 V, then depending on
resistance of the sample being tested the output will be either 5 V (in case of a sample
resistance above 0.5 Ohm) or 10 A (in the case the sample resistance is below 0.5 Ohm).
In either case the voltage or current may be below the specified values, but never above.

A PSU device may also include a relay device to completely disconnect the power supply
from the sample under test (full open circuit conditions). In this case the relay device
must be connected to a large power relay capable of handling the voltages and currents
possible by the Power supply in question (and this may be several hundreds of amperes
in some cases!).

Notice that RFCcontrol defines the positive current direction as seen from
the device under test. Thus if a battery is discharged or a fuel cell is supplying
current as through a resistive load, then the current is positive. Similarly if a
battery is charged or an electrolyser is supplied power to generate gas, then
the current is negative.

5.9 Temperature logging device

The temperature logging device is a composite device usually consisting of one or more
simpeldevices as shown in figure 5.6. The primary input device usually measures a ther-
movoltage from a thermocouple and then converts it (using the appropriate conversion
tables) to a temperature by using the cold junction temperature determined by the val-

46 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

ues of the secondary channels (refer figure 5.6). If accurate temperature measurements
are to be made up to 3 measurements may be needed (one voltage measurement and 2
resistance measurements). However, if more than one thermovoltage are to be measured,
the cold junction measurements can be shared as long as the screw terminals in question
are in thermal contact (and can be assumed to be at the same temperature).

All RFCcontrol - DTU Energy RFCcontrol control software temperature logging devices
are read-only devices.

Figure 5.6: Logical overview of a temperature logging device. The actual temperature
measured is the temperature at the thermocouple junction at the right. The screw ter-
minals on the left is assumed to be at normal temperatures and be connected to a AD
converter by normal Cu-wires. As the measured thermovoltage depends not only on the
temperature of the thermocouple junction but also of the ’cold junction’ (where the com-
pensation cable is connected to normal uncompensated cables) this temperature must be
known as well. This is best achieved by measuring the resistance of a Pt-1000 resistor
in thermal contact with the screw terminals. However in order to accurately measure
this resistance it is necessary to compensate for the resistance in the wires from the AD
converter and to the screw terminals, and this can be done by measuring the resistance
of a simple short circuit (below the Pt-1000 shown in the figure).

5.10 Temperature control device

A RFCcontrol - DTU Energy RFCcontrol control software temperature control device is
connected to a temperature controller and is used to set the temperature set point and
ramp rate. The physical temperature control device must be configured to only work
by accepting a ramp rate and a set point, and any changes in set point must result in
the controller ramping from the current set point to the new one by the current ramp-
rate. Notice that a lot of commercially available controllers can be configured to run
autonomous programs, however this option should NOT be used in conjunction with the
RFCcontrol - DTU Energy RFCcontrol control software system.

47 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

5.11 Filter devices

A special virtual device class called filter is also available. The device is purely virtual
and works by converting the read value of a normal device to a calculated value based on
the filter device type and settings. A filter device passes all commands sent to it to the
underlying device. The only influence is on the return value of a read request (and hence
readstring requests). If a read request is passed to the filter device, the underlying device
processes the read request and returns the value to the filter device. Depending on the
type and internal settings of the filter device, the returned value is then mathematically
transformed and the transformed value is then returned to the caller instead of the raw
read value from the underlying device.

The most common filter is a spline interpolation which allows conversion according to a
(potentially non-algebraic) monotonic function specified by a spline table.

One specific feature of a filter device is that it will masquerade as the same device type as
the underlying device. Thus if a simplechannel device is filtered, the resulting filter device
will itself be available as a simplechannel device and if a gas device is filtered, the resulting
device will be available as a gas device! Any filter device will also be available as a filter
device however (for configuration and explicit invocation). The reason for letting filter
devices masquerade as the underlying device type is to allow the filter devices to work
between simple and complex devices. For instance if an analog MFC device measures
a specific flow, a filter device can be configured to correct the measured flow (from the
simplechannel device) according to a calibration table before the flow is calculated based
on gas factors, thus resulting in a higher accuracy than without filtering.

Warning: One side effect of the ability of filters to masquerade is that it
is possible to accidentally create circular links in the configuration for a rig.
Therefore whenever filters are used, be extremely careful that no circular links
are crated, as just one such link will render the whole system unresponsive
(due to deep recursion)!

5.11.1 Summing devices

A special filter device is the Summing device. This device operates on more than one
input (all of which must be of the same type). Whenever the read operation is performed
on an instance of this device type, the result is the arithmetic sum of the read function
call on the input devices. This device can thus be used to get the sum of gas flows for
specific control situations where for instance feed-forward is needed for a PID control
device to operate properly. Additionally any setflow command performed on one of the
inputs is forwarded to the output device (if it is defined) but with the sum of the inputs
as argument instead of the original command input. As with the logic devices described
in the next section, whenever summing devices are used, a detailed schematic should be
maintained for better operator overview of the control system as a whole.

48 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

5.11.2 Typecast devices

A final special filter device type is the Typecast device. This device type can convert an
underlying device to an other type (as viewed from observers on the typecast device).
The benefit of this is that it makes it possible to use for instance the DC current as a gas
flow (with the proper conversion according to Faraday’s law of electrolysis).

However typecast devices are NOT necessary for simply logging gas flows
and/or DC-current load for later processing, only in special cases such as active
control of gas flow as a function of DC current load might a typecast device be necessary
(chapter 14 has an example of a situation where typecast devices are necessary).

5.12 PID devices

An other special device type is the PID device. This virtual device operates on two other
devices, an input device and an output device, and the PID device tries to correct the
output device so that the input device measures a specific value (normal PID regulator).

A PID device can operate in two modes, fast and normal. In fast mode, the control
loop is as tight as possible (1 second delay between each iteration, may take longer if the
devices themselves are slow or queuing prevent fast measurements) whereas the normal
mode an iteration is only performed once a minute.

Due to the nature of a PID regulator, be careful that the settings are appropriate, as
otherwise unstable operation may result.

Normally it is good practice to wait with PID devices until such time as it has been
proved that they are necessary.

5.13 Virtual (pure software) devices

RFCcontrol supports a number of purely virtual device classes. These devices exists only
as logical connection between other devices which is connected to the actual physical
devices.

Common to all the pure virtual devices is that they do not do any data logging by
themselves (specifically the readstring function returns undefined). The reason for this
is that the underlying devices (which actually controls or reads from physical devices)
should handle this.

Pure virtual devices can operate on input and / or output devices depending on type and
configuration.

Although pure virtual devices does not contribute to the data logging, they only work
correctly if they are enabled ad opposed to most other types of devices which would get
auto-vivified if they are needed by other devices.

49 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

5.13.1 Logic devices

These virtual devices operates on one or more input devices, each of which must be of
either relay type, logic type or the special filter device type ’Schmidt trigger’.

The logical devices can have a optional output device (which must be of a relay type)
which is intended to convey the result of the logical operation to the rest of the rig control
system (usually physical relays). If a output device is configured, it is automatically set
to be read-only, as control of the output relay state should be exclusively through the
logic device and not directly through the user interface.

The different types of logical devices implements the normal Boolean operators (AND,
OR, XOR etc.) and allows for cross linking control signals between devices (for instance,
closing a specific gas may force the opening of a valve on an other gas line entirely etc).

Whenever it is intended to include logical devices in a rig’s control system, it is an
extremely good idea to have detailed schematics of the intended control system prepared
with unique names for all logical operations as well as all other devices. If no such detailed
schematics are available, it is far too easy to create an other logical control system than
intended, and it may even be possible to create circular references which would render
the complete rig control system inoperable!

5.13.2 Arithmetic devices

An other special device class is the arithmetic devices. These virtual devices operates on
one or more input devices.

The different types of arithmetic devices implements the normal arithmetic operators
(plus, minus, multiply etc) and allows for cross linking signals between devices.

As with logic devices, whenever it is intended to include arithmetic devices in a rig’s
control system, it is an extremely good idea to have detailed schematics of the intended
control system prepared with unique names for all logical and arithmetic operations as
well as all other devices. If no such detailed schematics are available, it is far too easy
to create an other control system than intended, and it may even be possible to create
circular references which would render the complete rig control system inoperable due to
deep recursion!

Arithmetic devices implements the observer pattern on their inputs and thus forwards
any commands to any devices which listens on the arithmetic device.

5.13.3 Adapter devices

Adapter devices encapsulate other devices in a manner similar to filter devices. As
opposed to filter devices, adapter devices supply functionality which the encapsulated
device itself does not supply. For instance, a normal gas device does not support slowly
ramping the gas flow to the new set point, but by applying a ramp rate adapter to a gas
device this can be accomplished.

50 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

5.13.4 Alert devices

Alert devices are intended to be used to create custom watchdog programs. Each alert
device monitors a single device (which can be of any type except an other alert device)
and if the value (the result of a read operation) exceeds a specific threshold an alarm
event is raised (which as a minimum sends an email to the rig operator / owner but
potentially also takes corrective action).

5.14 Order of device configuration when setting up

a new test rig

In order to avoid errors when setting up a completely new rig, one should configure the
devices in the following order:

1. Simplechannels (all basic measurements including devices which will be used inter-
nally by other more complex devices).

2. Simple gas devices (Initially all simple gasses should just be configured as manual).

3. Multiline gas devices (should just refer to simple gas devices configured above).

4. Analog output devices (usually used internally in more complex devices).

5. Relay devices (usually but not always used by more complex devices).

6. Power supply devices.

7. Temperature control devices

8. Any potentially necessary filter devices (Note some filter devices may be necessary
to configure later if the underlying device has not yet been configured)!

9. Temperature logging devices (will be simple if all the input devices was configured
in step 1).

10. MFC devices

11. Reconfigure gas devices to account for MFC’s if necessary.

12. Gas multiplexer devices. Notice that only gasses that are enabled can be
configured as part of a multiplexer!

13. Reconfigure MFC devices to account for multiplexers (select relevant multiplexer
and set gas change to automatic) Remember to set the correct possible gas names
in the gasses list as only those in that list is avaliable when configuring the gas
multiplexer in the next step.

14. Reconfigure gas multiplexers to set correct relay devices / port numbers to the
corresponding gasses.

51 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

15. Gas group devices.

16. Logic devices if necessary (caution, do not create more complex control
systems than necessary!).

17. PID devices if necessary.

In all cases, remember to setup any filter devices at at the same time as the normal
devices (e.g a filter device operating on a simplechannel device should be configured at
the same time as the normal simplechannel devices).

5.15 Note on gas and simplechannel names for ease

of reporting

In order to facilitate easy reporting of fuel cell or electrolyser tests using the reporting
system distributed with RFCcontrol, a number of device names has special meaning.

Notice that it is only for reporting purposes that the following device names are special
and for normal operation and control they are irrelevant and can even be non-existent.

For historical reasons (The first fuel cell test using the predecessor to RFCcontrol was
ran in 2001 and more than 1000 test has been run since then), some of the device names
described in the following sections contain capital letters In order for reporting to proceed
properly, this capitalization must be preserved.

5.15.1 Simplechannel device names for current, voltage and
pressure

The following simplechannel names are used for special calculations during reporting.

• cell voltage: A simplechannel with this name is assumed to report the fuel cell /
electrolyser cell voltage in mV and must be positive when anode is in contact with
reducing gas and cathode is i contact with air or other oxidizing gas!

• O2 in: A simplechannel with this name is assumed to represent the voltage mea-
sured across a zirconia based pO2 sensor measuring on the anode gas (reducing gas)
stream before the fuel cell. The reported value is assumed to be in mV and value
must be negative when reducing gas is used.

• O2 out: A simplechannel with this name is assumed to represent the voltage mea-
sured across a zirconia based pO2 sensor measuring on the exhaust of the anode
gas. The reported value is assumed to be in mV and value must be negative when
reducing gas is used.

• current: A simplechannel directly measuring the DC current through the device
in A. Notice that positive current direction is when the device is run as a fuel cell
(meaning that a negative current is observed when a device is run as an electrolyser).

52 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

• pressure: A simplechannel directly measuring the gas pressure in atmospheres.
Note that if no pressure logging device is defined (no device called pressure) the
reporting scripts assumes a pressure of 1 atmosphere, so a pressure measuring device
is only needed for situation where experiments are performed in anything else than
atmospheric pressure.

5.15.2 Gas device names

• backup: gas stream measuring the flow of diluted hydrogen (9% hydrogen in nitro-
gen) to the anode.

• h2: gas stream measuring the flow of pure hydrogen to the anode.

• o2: gas stream measuring the flow of pure oxygen to the anode (to combine with
H2 before the cell to make water vapor).

• co: gas stream measuring the flow of pure carbon monoxide to the anode.

• co2: gas stream measuring the flow of pure carbon dioxide to the anode.

• ch4: gas stream measuring the flow of pure methane to the anode.

• h2: gas stream measuring the flow of pure nitrogen to the anode.

• ar: gas stream measuring the flow of pure argon to the anode.

• he: gas stream measuring the flow of pure helium to the anode.

• h2o: gas stream measuring the flow of water to the anode. Note that the flow is
to be reported in L/hour gas at 0 C, NOT liquid flow!

• air: gas stream measuring the flow of air to the cathode (assuming 21 % oxygen in
nitrogen).

• o2 cathode: gas stream measuring the flow of pure oxygen to the cathode.

• n2 cathode: gas stream measuring the flow of pure nitrogen to the cathode.

Notice that if other gas device names for the above gas streams are used reporting will
likely involve quite some manual data processing!. However additional gas device names
can be used without problems (as only the ones described above are used for reporting
purposes). If other gasses than the above mentioned is used, make sure that they do
not contain reactive species which can influence the fuel or oxygen utilization as this
will render the calculations performed by the reporting scripts invalid! For instance if an
other gas string containing hydrogen is used (let’s call it ’external h2’), the fuel utilization
calculation will only be based on the value found in the ’h2’ column and the hydrogen
from the external source will be disregarded and not included resulting in completely
wrong calculation.

53 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

5.15.3 Temperature logging device names

• T center: A device measuring the temperature of the fuel cell/electrolyser cell at
the center of the cell (in Celsius).

• T corner: A device measuring the temperature of the fuel cell/electrolyser cell at
the corner of the cell (in Celsius).

• T in: A device measuring the temperature of the anode gas stream where the O2 in
sensor is placed (in Celsius).

• T out: A device measuring the temperature of the anode gas stream where the
O2 out sensor is placed (in Celsius).

• T air flow: A device measuring the temperature of the cathode gas stream (in
Celsius).

5.15.4 water bottle device names

• bottle temp: For historical reasons the water bottle connected to the H2 / backup
gas stream has been named this. Notice that only the pure hydrogen and diluted
hydrogen (h2 and backup) is assumed to pass this water bubler, NOT the rest of
the anode gasses (n2, o2, ar, co, co2 or ch4).

54 of 362 Implemented by Søren Koch

Chapter 6

Rig configuration

Each rig has it’s own configuration file. The file is divided into sections which allows
individual configuration values to have identical identifiers as long as they are in different
sections.

In order to configure a rig, go the rig device configuration page. This can be accessed from
the main page (shown on figure 2.3) and then pressing the ’setup iv curve parameters’
tab and then pressing the ’rig configuration’ tab. This will bring yo to a page resembling
figure 6.1 or 6.2.

Figure 6.1: Example of what a device configuration page may look like. If no device
is selected, only the top line is shown (device type and name as well as the new device
button). In this example, a mass flow controller device is selected.

Each device will have it’s own configuration page like the ones shown in figure 6.1 or 6.2.

Only fields which is active (that is used) in the current device configuration is shown
on the page, thus changing one value may add or remove displayed fields if the change

55

DTU energy RFCcontrol 5.5.4

Figure 6.2: An other example of the device configuration page. In this example, a mass
temperature log device is selected.

activates or disables other fields.

The different data fields will either have a fixed set of possible values (all of which will be
selectable from a drop down menu), or will be a floating point, integer or free text field
(indicated by having no drop down box).

At the bottom of each device configuration page, a check box is displayed which can be
checked to include the device explicitly in the data logging (that is, the device will get an
explicit column in the raw data file with the name of the device and the value (determined
by the read function (refer chapter 11). It is good practice only to add a device to the
explicit data logging once it is fully configured to avoid communication errors or other
inconsistencies to interfere with the automatic data logging. At the bottom is also two
buttons, one for testing the device (useful for debugging as well as configuration) and
an other for device monitoring. Pressing the monitor button will bring up a small page
displaying continuous measurements using the selected device.

6.1 Main section

The top section is the ’main’ section of which an example is shown here:

SECTION main

gas_names = h2,o2,air,o2_cathode,n2_cathode,ch4,co2,ch4,co,ar,n2,backup

temp_names = T_center,T_in,T_out,T_corner,T_air_flow

simple_channel_names = cell_voltage,current,O2_in,O2_out,inplane_V_hydrogen

relay_names = relay1,relay2

water_names = bottle_temp

56 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

gas_group_names = H2,N2

automatic_flowcontrolers = 1,2,3,4

cell_area = 16

vogt_gasses = h2,co,ch4

additional_vogt_gasses_cutoff = co2

additional_gas_trip_program =

warning_message = Warning to be displayed on the main control page

warning_mails = foo@foo.bar,foo2@foo.bar

number_of_plot_cols = 4

main_page =

legacy_mode = no

set_zero_output_start_test = yes

equipmentid = 0

ENDSECTION

This section defined the number and names of gasses, flow controllers, water bublers, volt-
age channels etc. Each of the gasses, voltage channels etc. will have it’s own configuration
section defining the specific set-up of that node as specified in chapter 12.

Only thew keys which should be manually manipulated (either through manual edit or
through the ’miscellaneous setup’ page in the user interface) is discussed here.

The cell area key specifies the cell area for the particular fuel cell / device under test and
is only used for reporting purposes (to calculate area specific resistances for instance).
The vogt gasses key specifies which gasses is monitored for gas trips (refer chapter 7.1).
At least one of the gasses in the list must be above the cut-off value specified in that gas’
configuration section (refer section 12.7) unless a gas trip is initiated (refer chapter 7.1).
The ’aditional vogt gasses cutoff’ key which is optional specifies which gasses in excess
of those specified for monitoring should be set to 0 in the case of a gas trip.

It should be noted, that there may be spelling errors in the configuration key or section
names and that one should be VERY careful about correcting them, as they are hard
coded into the application (OK so sue me, English is not my native language and spelling
is not important for variable names inside an application).

Any line starting with a hash (#) is considered a comment and is ignored by the appli-
cation. Additionally, the order of the sections and individual keys within the sections is
arbitrary and does not influence the application as long as no duplicate key names exists
in the same section!

The warning mails key specifies which email addresses are to receive mail notifications in
case of other a voltage trip or a gas trip (refer chapters 7.1 and 7.2). Note that this key
can be absent, in which case the corresponding addresses found in the global configuration
are used instead (in effect, this key overrides the global value if it exists, refer chapter 4).

The number of plot cols key specifies the number of columns in the daily plots (default
is 3 if no value is specified).

The warning message key may be missing but if it exists, the value will be displayed on
the main control page for the rig in question.

57 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

The main page key specifies if a custom designed rig main page is to be used instead of
the default (refer section 2.1). The default is for this key to be empty or not exist. If it
exist and contains the name of a file located in /home/http/cgi-bin/celltest/, this file will
be used instead of rig main.cgi.

The legacy mode key is used to enable all configuration tags for some devices which in
previous versions of RFCcontrol included implicit creation simple devices. This mode of
configuration is deprecated and is strongly discouraged as it is much harder to debug and
configure than the normal configuration order as described in chapter 5 and specifically
in section 5.14. However for backwards compatibility setting this key to ’yes’ will enable
the full configuration options.

The set zero output start test key determines if gas flows as well as DC output for all
controllable devices is to be set to zero upon starting a new test. If the key is not present,
the default value of ’yes’ is used. In most cases it is desired to set all gas flows and DC
output to zero upon starting a new test so as to have a known start state, however in
some cases (such as controlling pressures as shown in section 14.3) it may be better to
leave settings as they are.

The equipmentid key is used only if a remote database is used for storing user log entries
(refer section 4) and should be set to th ID number for this rig in that database.

6.2 IV curve control

In order to correctly control how an I-V curve is run, the system needs to know which
channels to use for voltage and current measurements respectively.

SECTION IV_control

current_label = current

voltage_label = cell_voltage

pressure_label =

temp_label = T_center

voltagelimit_iv = 600

ivpause = 5

currentstep1 = 0.25

currentstep2 = 1

currentstep3 = 0.1

epsilon = 0.01

currentlimit = 40

diff_current_limit = 0.5

OCV_measure_number = 5

electrolysis_limit_voltage = 1400

allow_caching = No

iv_control_names =

ENDSECTION

Most of the keys can be manipulated from the ’miscellaneous setup’ interface or the ’setup
iV curves’ interface (refer figure 2.6 and 6.3).

58 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Figure 6.3: The setup iv curve page.

The current label key specifies which channel label is to be used for measuring the current
through the device (usually one of the voltage channels configured to measure the voltage
across a shunt resistor and thus report the current). Similarly the voltage label key
specifies which device label is used for voltage measurements. In both cases, note that
it is only the label name (usually one of the simple channels, refer section 12.1) that is
to be specified, NOT the internal channel numbers or similar. The ’temp label’ specifies
which device is used for the cell temperature which is printed in the i-V table and is not
used in any calculations so this label is only for information. The ’pressure label’ specifies
which device data is used for the gas pressure used in any calculations so this label is only
for reporting purposes. If experiments are only ever performed at atmospheric pressure,
this label can be left blank. The voltagelimit iv is the minimum cell voltage for an i-V
curve (normally run that is). The ivpause is how many seconds to wait between each
current step. The currentstep1 to 3 is the size of the current steps (for explanation as to
when each step size is used refer figure 6.3). The currentlimit is the maximum current
allowed for the i-V curve and the diff current limit key specifies how large the deviation
between the set current and the measured current is allowed to be before the i-V curve
is aborted (useful for detecting under voltage trips). The ocv measure number is the
number of OCV measurements to be made before and after the actual i-V curve. The
electrolysis limit voltage is similar to the voltagelimit iv key except in the case of a fuel
cell mode i-V curve the result of a cell voltage above this limit results in a emergency
shut-down of the i-V curve (the reverse is the case in a i-V curve run in electrolysis mode,
there a cell voltage below the voltagelimit iv will force an emergency shutdown). If the
I-V curve is run in electrolyser mode, this value works as a normal I-V curve voltage
limit. It should be noted that all the voltage limits is in mVolt and not in Volt! The
’epsilon’ key is discussed in section 2.5. The ’allow caching’ key specifies if caching is
allowed during i-V curves (refer section 6.2.1). If no key or value is found the default

59 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

behavior is ’No’.

The ’iv control names’ key specifies which PSU’s are to be used for controlling the current
through the device under test during I-V curves. If only one PSU exists (as it will do
in most cases), this key can be omitted. Usually only one PSU should be listed in this
key, but in some cases multiple PSU names can be configured (separated by comma).
The most common case for multiple PSU names to be configured in this key is if several
devices are tested in parallel within the same rig (each with it’s own PSU).

6.2.1 Caching of values during i-V curves

From version 4.8.1 and onwards, it is possible to allow caching during i-V curves. This
enables some speedup as cached values can be used instead of measured ones. For instance
the temperature of a screw terminal block can likely be assumed to change only little
during an i-V curve making it feasible to measure it only at start and then reuse that
value for the rest of the i-V curve.

The way caching works is that During normal (non-caching) operation, a file is kept up to
date with the latest measured values for the devices which honors caching (not all RFC
devices do, for instance all filter devices as well as PID regulator devices can never use
caching). Once a caching situation occurs (during i-V curve acquisition) the values for
the devices configured to use caching is loaded from that file instead of being physically
measured.

Caching is dangerous though. First of all, if caching is allowed for a physical value
which actually do change during the i-V curve, none of the changes will be logged or even
observed (meaning potential loss of relevant data)! Secondly, If the last (non-caching)
measurement resulted in an error (for instance a loose connection or communication
error), an incorrect value will be stored and all subsequent caching reads will use this
wrong value. This is normally not a problem, as in normal operation only one data line
containing the erroneous value will occur (and this can then later be discarded), however
if caching is used all lines for that i-V curve will contain the erroneous value.

For this reason the default behavior is for caching to be disallowed, in other words it has
to be explicitly enabled. Both under i-V setup and in the individual device configura-
tions where the user has to decide which devices can safely be cached during i-V curve
acquisition.

6.3 Datalog section

The datalog section controls if additional commands must be run at each normal data
acquisition (that is for each execution of /usr/local/bin/celltest/logfile.pl).

The ’additional log program’ key specifies which program (if any) is to be run and the
’log program arguments’ specify which (if any) arguments must be passed to the program.
The system expects the output from any programs thus called to conform with the normal
format of the logfile program. Thus for each item to be logged, the result must be a string

60 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

containing 4 items separated by spaces, the first item being the name of the item, the
second the time the logging was performed (formatted as yyyy:mm:dd:hh:mi:ss), the third
the time as an integer (utime) and lastly the value.

An example of a single item is shown below:

bottle_temp_1 2015:07:15:18:02:46 1436976166 28.556

The datalog section may be completely absent in which case it is ignored and the config-
uration of this section can be accessed from the miscellaneous setup interface (refer figure
2.6).

It should be noted that only programs located in the directory
/usr/local/bin/celltest/logprograms/ can be accessed in this way and they must be exe-
cutable by the rig user(s)!

6.4 Control logic section

The ’control logic’ section contains setup information for the vogt programs (refer sec-
tion 7.1 and 7.2). The ’voltage limit vogt’ key specifies the minimum cell voltage (in mV)
below which a voltage trip occurs. Similarly the ’electrolysis limit vogt’ key determines
the maximum voltage (in electrolysis mode). This section also contains the setup infor-
mation for any additional gas and/or voltage trip programs as well as the channel name
for temperature adjustment.

All these keys are defined and modified through the miscellaneous setup interface (refer
figure 2.6).

6.5 Thermocouple calibration

The RFCcontrol - DTU Energy RFCcontrol control software system also allows for the
use of custom calibration tables for thermocouple operation for data acquisition purposes
where accurate temperature measurements are necessary.

Figure 6.3 show the tab used to access the page shown in figure 6.4 where it is possible for
rig administrators to add calibration data.. Only system rig administrators can access
this page, but once a data file has been loaded, it will be available to all rigs on the
system for temperature logging purposes (refer figure 6.2).

In order to load a calibration file for a specific thermocouple, a list of calibration values
must be prepared with one data point on each line containing the voltage (in mV) followed
by the corresponding temperature separated by space (an example can be seen for the
selected file in figure 6.4). This list must then be added in the text area on the right and
a proper file name must be added in the text field above. Once both file name and data
has been entered, a ’load’ button will appear and the data can be loaded. To view the
uploaded data, select the file in the drop down menu on the left and a graph should show
up displaying the loaded data as shown in figure 6.4.

61 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Figure 6.4: Thermocouple calibration input page. The page shows what it looks like once
a calibration file has been input and selected. The graph in the center shows a plot of
the data uploaded and can be used for sanity checks of the data (the data should show
a continuous line with no sharp bends and/or singularities).

6.6 User interface

This section defines which data to present on the main rig screen (that is which data
channels to measure and show as ’on-line data’. The four keys are shown below, and each
key contains a comma separated list of the names to display. The temp manes will be
devices instances of one of the ’Temperature log’ classes, the gas names must be devices
instances of the ’Gas’ class and the voltage and current names must be devices instances
of one of the ’Simplechannel’ classes (for class definitions, refer chapter 12).

SECTION user interface

temp = T_center,T_corner

gas = h2,o2,air,co2,co,ch4

voltage = cell_voltage,O2_in,O2_out

current = current

pO2_voltagerange = 300,1400

ENDSECTION

The current key also specifies if the rig in question is a normal cell test rig or a single
electrode test rig. If an identifier is mentioned in the ’current’ key, the rig in question
is a cell test rig, whereas if the current key is empty the rig is an single electrode rig.
The distinction is only important in the start of a new test and in case of controlling DC
current through the device under test, which is only possible in the cell test mode. The
’pO2 voltagerange’ key is only used for the history plots and has no influence on tests
being run. It is only used to specify the voltage range displayed on the cell voltage and

62 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

pO2 plots of the reports and overview figures. The key can be missing in the configuration
file and in this case the default values are used. The default value used in cell test mode
is 300 1400 mV and -100 1400 mV in electrode test mode.

All the keys can be manipulated from the ’miscelaneous setup’ interface (refer figure 2.6).

63 of 362 Implemented by Søren Koch

Chapter 7

Alarms

It is possible to setup email notifications if certain process parameters passes defined
thresholds. RFCcontrol defines two pre-defined trigger alarms which can be enabled
from the crontab interface. These predefined alarm systems are the gas trip described in
section 7.1 and the voltage trip described in section 7.2.

In addition to the two pre-defined alarms, each rig can be configreud with a number of
alarm devices each with it’s own alarm level. The configuration of these alarm devices is
done in the same way as normal data logging or control devices. The only difference is
that any enabled alarm device is not logged durring nromal data logging, but is checked
each minute if the trigger threshold has been passed. It should be noted, that the status
of the alarm devices is only checked once a minute, thus it is possible for the system to
be in a state which should trigger an alarm (and potentially correcting commands) for
up to one minute before the alarm actually occours.

If an alarm occours, an email notification is sent by the rig to the recipients defined in
the warning mails key (refer section 6.1).

Notice however that it is only possible to recieve email notifications if the server on
which RFCcontrol is installed is allowed to send mail (some MTA’s does not allow emails
to be forwarded from unknown users, so check your local system administrators as to
how this is configured for your organisation). Additionally, the alarm device system can
potentially be misused to email-spam unsuspecting users, so take care in how the system
is configured (normally a system running RFCcontrol should never be directly accessible
from the internet).

7.1 Gas trip

The definition of a gas trip is when the security box determines an unsafe condition and
shuts down the H2, CO, O2 etc. and switches the anode gas stream to 9%H2 in N2

(backup gas). This is detected by the application if the flows of all the ’vogt gasses’ is
below the respective cut-off values (cutoff set configuration value for the gas) and in this
case a ’gas trip’ occurs in the application. The vogt gasses is defined as the gas names
listed in the vogt gasses key on the miscelaneous setup page.

64

DTU energy RFCcontrol 5.5.4

If a ’gas trip’ is detected, the H2vogt.pl program reacts by setting gas flows to 0 and a
system mail is sent to the administrators. The rationale for this is a precaution to prevent
accidental addition of CO, O2 etc. to the anode when the safety circuit is reset manually
(the safety circuit may be a relay based safety box or a PLC or similar). The gasses
which are shut down in response to a detected gas trip is the gas names listed in the keys
’vogt gasses’ and ’additional vogt gasses’ in the main section of the rigs configuration file
(it can be changed under ’miscelaneous settings in the user interface). Notice that only
the gas names in ’vogt gasses’ are monitored!

It is also possible to execute an additional program when a gas trip occours, the program
executed is listed in the ’additional gas trip program’ key in the main section of the rigs
configuration file and can be changed in the miscelaneous setup. Only programs placed in
the directory ’/usr/local/bin/celltest/logprograms’ are avaliable, and any program placed
in that directory must accept a single argument (the rig number). Usually only the
system administrator (root) has access to place program in that directory, as any program
placed there can be executed by the users of the system, and thus could cause undefined
behaviour if they are not properly designed and verified!

Notice that the additional gas trip program is only activated once when the gas trip
condition is detected (and the warning mail is sent) as is the commands to the gas
controlers.

To disable the gas trip survaliance program, coment out the H2vogt.pl program in crontab
(refer the manual for the crontab scheduler).

7.1.1 Using generic alert device for gas trip monitoring

From version 5.3.1 it is possible to use alert devices in combination with logic devices to
achieve better control of a gas trip situation.

Figure 7.1 shows a diagram of how this can be set up. The basic principle is that an
Or-gate is connected to the gasses which must be monitored and if one of the gasses
has a true value (that is the gas flow is above the cutoff report value as specified in the
configuration for that gas), then the alert device will recieve a true value (1).

Figure 7.1: Gas trip survaliance control system using a generic alert device. The alert
device must be configured with a threshold value of 0.4 and a reset value of 0.6.

If more complex situations are to be monitored, it is possible by inserting other logic
and/or gas devices in the control system. Once the alert device recieves a false value (0)

65 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

it will then execute the configured commands deemed nescesarry to correct the gas trip
or prevent damange to the device under test (for instance by switching off any DC power
supplies).

The usage of alert devices for gas trip monitoring allows for a much more diverse control
than the basic H2vogt.pl program allows, as any command which can be executed by the
alert device can be used for handling the gas trip situation.

Additionally other input devices than gases can be used for the monitoring systemde-
pending on acutal system setup which is not possible with the H2vogt.pl program.

7.2 Voltage trip

The definition of a voltage trip is that either an external level relay has determined
an under voltage / over voltage situation and shut down the power supply, or that the
application has determined that an under voltage / over voltage situation occurs (outside
an I-V curve).

In order to use the software control, enable the vogt.pl program to run every 2 minutes
(use the crontab interface for this). The vogt.pl program determines the threshold volt-
ages in the following way. If a voltage limit is specified (after the obgigatory rig argument)
that limit is used (and only for fuel cell mode). If not, the configuration value asociated
with the voltage limit vogt key in the control logic section is used. If this value does not
exists, the default value of 600 mV is used. In the electrolysis case, the configuration key
is electrolysis limit vogt and the default is 1e30 mV (effectively no limit).

In case the vogt.pl program determines an under/over voltage situation, the power supply
is shut-down automatically and a system mail is sent to the administrators. In the case
of an external level relay is responsible for the power supply shut-down, no system mail
is sent, as the application is unaware that a under voltage event has occurred. Thus it is
advisable to set the level of any external level relay below or above the threshold of the
voltage limit vogt or electrolysis limit vogt keys in the control logic section of the rigs
configuration file (the voltage limit can be changed under ’miscelaneous settings in the
user interface).

As with a gas trip, it is possible to execute an additional program when a voltage trip
occours, the program executed is listed in the ’additional voltage trip program’ key in the
control logic section of the rigs configuration file and can be changed in the miscelaneous
setup. Only programs placed in the directory ’/usr/local/bin/celltest/logprograms’ are
avaliable, and any program placed in that directory must accept a single argument (the
rig number). Usually only the system administrator (root) has access to place program in
that directory, as any program placed there can be executed by the users of the system,
and thus could cause undefined behaviour if they are not properly designed and verified!

Notice that the additional voltage trip program is only activated once (when the voltage
trip first occours and a warning mail is sent) as opposed to the OCV command to the
power supplies which is sent whenever the trip condition is met.

To disable the voltage trip survaliance program, comment out the vogt.pl program in

66 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

crontab (refer the manual for the crontab scheduler).

67 of 362 Implemented by Søren Koch

Chapter 8

Server structure

The programs mentioned in italics below all reside in the /usr/local/bin/celltest directory
but some of them have symbolic links to /usr/local/bin. Most of the programs are written
in Perl, but the GPIB-server is written in C.

8.1 CGI-server

The CGI server (CGI-server) is responsible for parsing all user commands to the cell
test system proper. Each rig runs it’s own CGI server as user ’rig#’ where the # is
the rig number (e.g. 1 or 13 etc..). The CGI server accepts the following commands
only (in order to avoid direct execution of possibly damaging commands like ’rm -rf’ or
similar, refer Leslie Stein’s excellent book CGI.pm for further reading on the subject of
web security).

• IV’: This command starts an I-V curve using the program iV curve.pl.

• ’stop iv’: This command removes the semaphore file telling the IV curve.pl program
to stop the current iV curve and return to OCV.

• ’measure’: Performs a complete measurement using logfile.pl.

• ’custom’: Starts the currently selected program using custom prog.pl (refer section
2.1). Arguments are the program name to execute (only one program can be running
at a time for a given rig!).

• ’stop custom’: Stops the currently running program by sending an SIG-INT to the
process in question. The custom prog.pl program then shuts down cleanly and stops
any running I-V curve.

• ’cmdlog’: Dumps the rest of the input as a comment in the command log.

• ’logbook’: Dumps the rest of the input as a comment in the command log as well
as in the rig loogbook.

68

DTU energy RFCcontrol 5.5.4

• ’impedance ok’: This command is used for for notifying the rig that delayed
impedance has finished (use in conjunction with multiplexed impedance analyzer
where the individual impedance requests are put in queue).

• ’debug’: Turns debug on and off

• ’touch file’: Touches a file, arguments: file name to touch. Note that only files in
the user directory for the rig can be touched!

• ’crontab read’: Gets the content of the rigs crontab.

• ’crontab file’: Sets the rigs crontab to the content of the specified file, arguments:
file name

• ’quit’: Shuts down the CGI-server, do not use unless necessary as it could ruin
other peoples work!

• ’timeslot begin’: Marks that a requested time slot is starting. Removes the
semaphore used for waiting for time slot allocation and sets the semaphore indicat-
ing a running time slot.

• ’timeslot end’: Removes the semaphore used to indicate a running timeslot. Used
by the shared resource to indicate that a reserved time slot has expired and thus
ensures that no new commands indicated to be run during a reserved time slot is
executed.

• ’set mailfile’: This command sets the mail file which blocks further error mails
form being sent (to avoid mail bombs inn case the error condition persists). This
command is deprecated and will be discontinued in the future!

• ’unlink mailfile’: This commands removes the file telling the system that an error
mail has already been sent (in the case of a voltage trip, refer section 6). This
command is deprecated and will be discontinued in the future!

• ’set H2mailfile’: Similar to ’set mailfile’ but for another file. This command is
deprecated and will be discontinued in the future!

• ’unlink H2mailfile’: Similar to unlink mailfile, but for the H2mailfile instead. This
command is deprecated and will be discontinued in the future!

• ’current’: This command sets the DC current through the device. Arguments are
’ocv’ for open circuit condition or the current to be set (ex. 10.5 for 10.5 A). If more
than one DC current device is found in the current configuration, a second argument
is necessary, this being the name of the device to control. This command is
deprecated and will be discontinued in the future!

• ’voltage’: This command sets the DC voltage to the device. Arguments are ’ocv’
for open circuit condition or the voltage to be set (ex. 2.5 for 2.5 V). If more than
one DC current device is found in the current configuration, a second argument
is necessary, this being the name of the device to control. This command is
deprecated and will be discontinued in the future!

69 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

• ’set temp’: This command sets the temperature set point for the furnace controller,
arguments are temperature (C) and device name to control. I only one furnace
controller is part of the configuration, the device name can be omitted. This
command is deprecated and will be discontinued in the future!

• ’set ramp’: This command sets the temperature ramp rate for the furnace controller,
arguments are ramp rate (C/hour) and device name to control. I only one furnace
controller is part of the configuration, the device name can be omitted. This
command is deprecated and will be discontinued in the future!

• ’relay’: Sets the status of a relay device, arguments are name of device and status
to be set (0 for off and 1 for on). This command is deprecated and will be
discontinued in the future!

• ’gas’: Sets the gas flow for a single gas. Arguments are: gas name, flow. This
command is deprecated and will be discontinued in the future!

• ’water’: Sets the status of a water bubler using water.pl. Arguments are:
bubler name, status. This command is deprecated and will be discontinued
in the future!

The CGI-server is usually accessed directly from the control system (via the web-pages)
but in order to facilitate direct access the CGI client.pl program is available.

Notice, that if timeslot begin, timeslot end, cmdlog, logbook or impedance ok
commands are to be recieved from external systems, the corresponding port
for the CGI server in question must be open and not blocked by the local
firewall! (refer the operating system manuals for firewall setup).

The CGI client.pl program has the following usages (based on the above list):

CGI_client.pl $rignr IV

CGI_client.pl $rignr stop_iv

CGI_client.pl $rignr measure

CGI_client.pl $rignr custom $programname

CGI_client.pl $rignr stop_custom

CGI_client.pl $rignr cmdlog $text_to_be_logged

CGI_client.pl $rignr logbook $text_to_be_logged

CGI_client.pl $rignr impedance_ok $ip:$port $user $mode $session $fileid

CGI_client.pl $rignr debug

CGI_client.pl $rignr quit

CGI_client.pl $rignr timeslot_begin

CGI_client.pl $rignr timeslot_end

CGI_client.pl $rignr crontab_read

CGI_client.pl $rignr crontab_file $filename

CGI_client.pl $rignr touch $filename

CGI_client.pl $rignr set_mailfile

CGI_client.pl $rignr unlink_mailfile

CGI_client.pl $rignr set_H2mailfile

CGI_client.pl $rignr unlink_H2mailfile

70 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

CGI_client.pl $rignr current $current

CGI_client.pl $rignr voltage $voltage

CGI_client.pl $rignr relay $name $status

CGI_client.pl $rignr gas $gasname $gasflow

CGI_client.pl $rignr water $bublername $status

In the list above all words beginning with a ’$’ is a variable (and the exact value must
be determined and substituted).

8.2 Report server

The report-server program is used when accessing test reports as well as synchronizing
access to test rigs on different servers. It accepts the following commands:

• ’quit’: Shuts down the report-server.

• ’version’: Reports the version of RFCcontrol running on this server.

• ’search’: Search for test reports on a target system, search, value to match.

• ’is ssl’: Returns 1 in encryption is to be used. Similar to the correspoknding com-
mand for the password server (refer section 4.3.4).

• ’public key’: Returns the servers public key. Similar to the correspoknding com-
mand for the password server (refer section 4.3.4).

• ’servers’: Returns a list of valid server names (if the server is specified as being
a list server, that is the server-names key is in the servers section of the global
configuration file is specified (refer section 4).

• ’list servers’: Returns a list of valid list server names (if the server is specified as
being a list server, refer section 4).

• ’rigs’: Returns a list of valid rigs on the system. It first searches for an entry in
the global configuration file section ’servers’ named ’rigs $hostname = ...’ and if it
exists, returns the rigs mentioned here. If no such line is found, it returns the rigs
listed in the ’rigs’ key in stead (simmilar to the call to ’active rigs’ listed below).
The reason for this difference is that a specific rig may be decommissioned (thus no
longer possible to control), but the data should still be accessible. Thus by using
the ’rigs’ request one could get a list of all possible rigs that have recorded data at
some point, even ones which may no longer be operational.

• ’active rigs’: returns a list of active rigs on the system (that is rigs where commands
are possible).

• ’last user’: Returns the username of the last (real) user which executed a command
on the specified rig number. This command does not report the system users
(’warning system’, ’custom prog.pl’ etc.) but only real user commands.

71 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

• ’is report’: Returns a string if the rig and test corresponding to the specified argu-
ments has had a report generated and if it has been finalized. The returned string
contains the cell name followed by either ’REPORT’ or ’PDF’ if a report has been
prepared (depending on format being postscript or pdf respectively) followed by
’FINISHED’ if the report has been finalized. Arguments: Rignumber, testnumber.
The reason for returning the cell number as part of this call is that it is the only
part of the report file name which can not be determined by the rig and test number
directly.

If the report server is started with the –ssl option or the ’force encryption’ key is set to
’yes’ in the passwds section of the server configuration file (refer section 4.3), only the
’is ssl’ and ’public key’ commands can be used without encryption. If encryption is used,
the communication between the clients and the servers are similar to the one for the
password server communication described in section 4.3.4.

The report server can be accessed through the report-client as follows:

report-client $IP_or_hostname search $value_to_match

report-client $IP_or_hostname quit

report-client $IP_or_hostname is_ssl

report-client $IP_or_hostname public_key

report-client $IP_or_hostname servers

report-client $IP_or_hostname rigs

report-client $IP_or_hostname active_rigs

report-client $IP_or_hostname is_report $rig $test

The report server then returns a list with the tests that matched the given search term. It
only searches the data found in the file /home/celltest/info table.txt on the target system!

8.3 Serial server

The serial server handles all communication to the serial devices (one server must be
running for each serial device used). The server must be run as root, as only root has
access to the hardware devices (/dev/ttyS0 etc.). The server assumes that all modules
communicate with baud rate 9600 except in the case of the power supplies which operates
at 4800 baud. The serial server accepts the following commands only:

• ’quit’: Shuts down the serial server, do not use unless you intend to shut down the
serial devices.

• ’debug’: Toggles the debug information on/off: If any arguments are passed, the
argument specifies if debugging is to be on or off (accepts enable/disable).

• ’temp’: This command communicates with an Eurotherm R© controller using the
bisynch protocol: Arguments: mode, address, tag, [opt. new value]. Where mode
is either ’R’ or ’W’ for read or write respectively.

72 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

• ’modbus’: This command communicates with an Eurotherm R© controller using the
modbus protocol. Arguments: mode, address, tag number, [opt. new value] where
mode is one of the following: ’R’ for raw read, ’RI’ for integer read, ’G’ for floating-
point read, ’W’ for integer write, ’P’ for floating-point write and ’H’ and ’HC’ for
communicating with a Honeywell temperature controler (refer the Honeywell.pm
module for further information).

• ’omron’: This command communicates with an Omron R© controller using the mod-
bus protocol. Arguments: mode, address, tag number, [opt. new value] where
mode is one of the following: ’R’ for integer read and ’W’ for integer write.

• ’brooks’: This command is used for communication with a Brooks R© S-type mass
flow controller. The command assumes that the controller is working with a baud
rate of 19200 and a parity of ’odd’. Arguments: tag number, action, [opt value]
where action is one of the following: INIT, READFLOW, SETFLOW, OVERRIDE.

• ’mks’: This command sends the specified command string to a MKS R© mass flow
controler and returns the response string. The command assumes that the controler
is working with a baud rate of 9600, 8 data bits, 1 stop bit and no parity. Arguments:
address, command string. The server automatically calculates the checksum bytes,
so they should not be included in the command string.

• ’bronkhorst’: This command is for communication with a Bronkhorst R© mass flow
controller. Arguments: command, [opt value] where command is one of the follow-
ing: string, readflow, setflow, readset. Note that no address argument is necessary
as the server assumes only one device on the serial port (Direct RS232 communi-
cation)!

• ’init’: This command initializes a DC power supply (of type Delta Elektronika R©
daisy chained through RS232). Arguments: 31 RS232 box address, max voltage.
Note that it is necessary to remember the initial argument ’31’ (for historical reasons
this argument is maintained although it is not used)!.

• ’current’: This command sets the DC current for the power supply. Arguments: 31
RS323 box address, current where current is either ’OCV’ for open circuit operation
or the current to be set. Note that it is necessary to remember the initial argument
’31’ (for historical reasons this argument is maintained although it is not used)!.

• ’delta’: This command supersedes the current command described above. It is
used for Delta Elektronida PSU’s. Arguments: mode, address, [optional arguments
depending on mode], where mode is one of the list: (raw, idn, init, current, volt,
measure volt, measure current, ocv, on).

• ’elektro’: This command is used for controlling Electronic loads (EL 9160 300 HP
and similar). Arguments: mode, address, [optional arguments], where mode is
one of the following list: (idn, ocv, on, remote, read, write, read values, raw, hex,
raw byte read, raw byte write).

73 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

• ’relay’: Sets the status of an ICP-con R© relay box (model 7064 or 87064 or com-
patible). Arguments are: address, relay number, status where status is 1 for closed
and 0 for open.

• ’icptest’: Performs a test of the ICP-module (all models that accepts the ’$AA2’
command) on the address specified, the return value is the string returned by the
module.

• ’icp raw’: passes the argument directly to the RS232/RS485 bus, used for setting
the configuration if ICP modules. Please read the documentation for the ICP-con R©
modules for further info.

• ’icpmultiread’ Reads the status of a ICP-con R© analogue to digital data acquisition
module returning a string containing all the measured values separated by newlines.

• ’multiplex’: This command has a umber of sub commands as following. All com-
mands regards ICP-con R© relay modules model 7064 or 87064 or compatible.

– ’SET SINGLE’: This command sets all the relays except one in the off po-
sition (Note relay numbers starts with 0). Arguments: module address, re-
lay number.

– ’SET MULTI’: This command sets all relays to the specified state. Arguments:
module address, relay-status. The relay status string is in binary representa-
tion (ex. ’10010110’).

– ’READ’: This command returns the status of the relay module in the form of a
binary representation string (ex ’10010110’). Arguments are module address.

– ’READ RAW’: Returns the raw status string from a relay module. Arguments:
module address.

• ’volt set’ or ’flow’: These commands sets the output voltage of a ICP-con R© multi-
channel analogue output module (model 7024 or 87924 or compatible). Arguments:
module address, channel number, output voltage. Range of output voltage depends
on module configuration, refer ICP-con R© module manual.

• ’strgr’: This command read the voltage of the input of a ICP-con R© strain gauge
module (model 7016 or compatible). Arguments: module address.

• ’strgs’: This command sets the output voltage of a ICP-con R© strain gauge module
(model 7016 or compatible). Arguments are: module address, output voltage (Note
only positive voltages can be set!, range depends on module configuration).

• ’da’: Sets the output voltage of a ICP-con R© module. Arguments: module address,
output voltage, This command may be incomplete, use at own risk!.

• ’icp7017read’: This command reads the analog values of a ICP-con R©-7017 mod-
ule and returns the values as a carriage return delimited list. Arguments: mod-
ule address

74 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

• ’relay crc’: Identical to ’relay’ except it uses CRC checksum for serial communica-
tion.

• ’icptest cc’: Identical to ’icptest’ except it uses CRC checksum for serial communi-
cation.

• ’icp raw crc’: Identical to ’icp raw’ except it uses CRC checksum for serial commu-
nication.

• ’icpmultiread crc’ Identical to ’icpmultiread’ except it uses CRC checksum for serial
communication.

• ’multiplex crc’: Identical to ’multiplex’ except it uses CRC checksum for serial
communication.

• ’volt set crc’ or ’flow crc’: Identical to ’volt set’ and ’flow’ except it uses CRC
checksum for serial communication.

• ’strgr crc’: Identical to ’strgr’ except it uses CRC checksum for serial communica-
tion.

• ’strgs crc’: Identical to ’strgs’ except it uses CRC checksum for serial communica-
tion.

• ’da crc’: Identical to ’da’ except it uses CRC checksum for serial communication.

• ’icp7017read crc’: Identical to ’icp7017read’ except it uses CRC checksum for serial
communication.

The server is started with the two arguments: the serial device to bind to (ex. ttyS0)
and the baud rate. In case of a baud rate of 4800, the server assumes that it is directly
connected to a RS323 daisy chain of power supplies (refer figure 6). If an optional
third argument is used, then the server emulates the tty given as this argument. Thus
serial-socket-server-9.0.pl ttyM0 9600 ttyS20 will bind to /dev/ttyM0 but pretend to be
/dev/ttyS20. The serial server is usually accessed only by the command system through
the web pages (refer section 9), but the serial-socket-client-1.2.pl program can access the
serial server directly. The serial client has the following usages (based on the list above):

serial-socket-client-1.2.pl $tty quit

serial-socket-client-1.2.pl $tty debug [opt. $mode]

serial-socket-client-1.2.pl $tty relay $address $relay $status

serial-socket-client-1.2.pl $tty icptest $address

serial-socket-client-1.2.pl $tty icp_raw @args

serial-socket-client-1.2.pl $tty icpmultiread $address

serial-socket-client-1.2.pl $tty multiplex SET_SINGLE $address $relay

serial-socket-client-1.2.pl $tty multiplex SET_MULTI $address $statusstring

serial-socket-client-1.2.pl $tty multiplex READ $address

serial-socket-client-1.2.pl $tty multiplex READ_RAW $address

serial-socket-client-1.2.pl $tty flow $address $channel $value

serial-socket-client-1.2.pl $tty volt_set $address $channel $value

75 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

serial-socket-client-1.2.pl $tty strgr $address

serial-socket-client-1.2.pl $tty strgs $address $value

serial-socekt-client-1.2.pl $tty icp7017read $address

serial-socket-client-1.2.pl $tty da $address $value

serial-socket-client-1.2.pl $tty relay_crc $address $relay $status

serial-socket-client-1.2.pl $tty icptest_crc $address

serial-socket-client-1.2.pl $tty icp_raw_crc @args

serial-socket-client-1.2.pl $tty icpmultiread_crc $address

serial-socket-client-1.2.pl $tty multiplex_crc SET_SINGLE $address $relay

serial-socket-client-1.2.pl $tty multiplex_crc SET_MULTI $address $statusstring

serial-socket-client-1.2.pl $tty multiplex_crc READ $address

serial-socket-client-1.2.pl $tty multiplex_crc READ_RAW $address

serial-socket-client-1.2.pl $tty flow_crc $address $channel $value

serial-socket-client-1.2.pl $tty volt_set_crc $address $channel $value

serial-socket-client-1.2.pl $tty strgr_crc $address

serial-socket-client-1.2.pl $tty strgs_crc $address $value

serial-socekt-client-1.2.pl $tty icp7017read_crc $address

serial-socket-client-1.2.pl $tty da_crc $address $value

serial-socket-client-1.2.pl $tty temp r $address $tag

serial-socket-client-1.2.pl $tty temp w $address $tag $value

serial-socket-client-1.2.pl $tty modbus r $address $tagnr

serial-socket-client-1.2.pl $tty modbus ri $address $tagnr

serial-socket-client-1.2.pl $tty modbus g $address $tagnr

serial-socket-client-1.2.pl $tty modbus w $address $tagnr $value

serial-socket-client-1.2.pl $tty modbus p $address $tagnr $value

serial-socket-client-1.2.pl $tty modbus h $address $cmd_type $byte_count @args

serial-socket-client-1.2.pl $tty modbus hc $address $cmd_type @args

serial-socket-client-1.2.pl $tty omron r $address $tagnr

serial-socket-client-1.2.pl $tty omron w $address $tagnr $value

serial-socket-client-1.2.pl $tty brooks $tagnr init

serial-socket-client-1.2.pl $tty brooks $tagnr readflow

serial-socket-client-1.2.pl $tty brooks $tagnr setflow $value

serial-socket-client-1.2.pl $tty brooks $tagnr override $value

serial-socket-client-1.2.pl $tty mks $adr $cmdstr

serial-socket-client-1.2.pl $tty bronkhorst string $cmdstr

serial-socket-client-1.2.pl $tty bronkhorst readflow

serial-socket-client-1.2.pl $tty bronkhorst setflow $value

serial-socket-client-1.2.pl $tty bronkhorst readset

serial-socket-client-1.2.pl $tty init 31 $address $max_volt

serial-socket-client-1.2.pl $tty current 31 $address $value

serial-socket-client-1.2.pl $tty delta idn $address

serial-socket-client-1.2.pl $tty delta raw $address [@args]

serial-socket-client-1.2.pl $tty delta ocv $address

serial-socket-client-1.2.pl $tty delta on $address

serial-socket-client-1.2.pl $tty delta volt $address $voltage

serial-socket-client-1.2.pl $tty delta current $address $current

serial-socket-client-1.2.pl $tty delta measure_volt $address

serial-socket-client-1.2.pl $tty delta measure_current $address

serial-socket-client-1.2.pl $tty delta init $address

76 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

serial-socket-client-1.2.pl $tty elektro idn $address

serial-socket-client-1.2.pl $tty elektro remote $address [on/off]

serial-socket-client-1.2.pl $tty elektro ocv $address

serial-socket-client-1.2.pl $tty elektro on $address

serial-socket-client-1.2.pl $tty elektro read_values $address

serial-socket-client-1.2.pl $tty elektro read $address $tag

serial-socket-client-1.2.pl $tty elektro write $address $tag $value

serial-socket-client-1.2.pl $tty elektro raw_byte_read $address $tag

serial-socket-client-1.2.pl $tty elektro raw_byte_write $address $tag [@args]

serial-socket-client-1.2.pl $tty elektro raw $address $mode $length [@args]

serial-socket-client-1.2.pl $tty elektro hex $address [@args]

As for the CGI client.pl program in the above list all stings beginning with a ’$’ is
variables and any string beginning with a ’@’ is an array of variables (described in more
details previously).

8.4 GPIB-server

Although the GPIB server is not distributed with NAME it is described briefly here, as
any keithley device (simple channels for instance) assumes a functioning GPIB-server to
work up against. The GPIB-server handles all communication with devices attached to
the GPIB controller (Keithley multichannel multi meters mainly). The server version
2.9+ accepts the following commands:

• ’I’: This command initializes the channel definitions (is automatically run at server
start-up and is only intended if changes have been made to the channel definitions).

• ’D’: Turns debug information on and off (printed on standard out, so redirect this
somewhere sensible).

• ’R’: This command reads from the specified device address. Arguments:
device address.

• ’W’: This command writes a command string to the specified device. Arguments:
device address, command string (remember quotes!).

• ’T’: This command sets the GPIB communication delay to the specified number of
milliseconds (default is 1 ms).

• ’C’: Combined write and read command.

• ’K’: This command reads a channel on the Keithley 2700 multimeter. Arguments:
address:board number channel number (the set-up is found in the channel defini-
tions). Note that no space between the gpib address, the colon ’:’, the board number
or channel number. Example: measure channel 4 on board 1 on gpib 16: gpibclient
K 16:104

77 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

• ’B’: Same as K, but in a burst mode instead with an additional argument specifying
how many consecutive measurements to perform. Note that this blocks the keithley
and gpib bus until the measurements has been performed and the result returned!

• ’V’: Same as ’K’ except that the channel set-up must be specified as an additional
argument.

• ’Q’: This command forces the server to quit gracefully (no core dump).

The channel definitions are located in the directory /etc/gpib/ The gpibclient program
can be used to directly access the gpib-server: usage:

gpibclient I

gpibclient D

gpibclient C $address $command_str

gpibclient R $address

gpibclient W $address $command_str

gpibclient K $address:$channel

gpibclient T $delay

gpibclient B $address:$channel number_of_measurements_in_a_row

gpibclient V $address:$channel $set-up

gpibclient Q

Although the true GPIB server is not distributed with NAME, an small dummy server
is, it can be found in the dummy gpib server directory in the distribution directory,
and can be compiled and installed by running the make and make install commands in
that directory. This small dummy server emulates a true GPIB server, and has some
of the functionality described above. Specifically it honors the D,T,I and K commands
(although the K command only returns a fixed value, -32768). This dummy server is
included in order to test the system and to provide a harness for developers in case the
normal GPIB server is not available.

8.5 Custom program parser

The custom prog.pl program is used to parse the program sequence generated by the set-
up user interface described in section XX. The parser recognises the following commands
(the colon before the descriptive text is NOT part of the command!):

• exit: This command exits the program thus ignoring all following lines.

• wait = XX: This command lets the program wait for XX minutes before executing
the next item.

• gas:YY = XX: This command sets the gas flow for gas ’YY’ to XX L/hour.

• gas:ramp:XX YY ZZ QQ: This command ramps the flow for gas XX from the curent
level to the specified setpoint (YY) with a stepsize of ZZ and with QQ seconds in

78 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

between. The stepsize can not be less than half the accuracy of the gas flow controler
in question (which is usually 1 % of full scale) and the time between steps can not
be less than 1 second.

• current = XX [YY]: This command sets the DC current to XX. In order to set open
circuit conditions uses the value ’OCV’ instead of a number. If the YY argument
is added it must be the name of the controler to be used. If an analog controler is
to be used, the second argument must be specified.

• current:ramp:XX YY ZZ QQ: This command ramps the DC current for PSU or
analog output XX from the curent level to the specified setpoint (YY) with a
stepsize of ZZ and with QQ seconds in between. The time between steps can not
be less than 1 second.

• voltage = XX YY: This command sets the DC voltage to XX on device with name
YY. In order to set open circuit conditions uses the value ’OCV’ instead of a number.

• water = X: This command sets the status of the water bubler, use 1 for enabled
and 0 for disable (e.g. bypass).

• m leak: This command runs three normal measurements (using logfile.pl) and sets a
mark in the program logfile (proglog) that a ’leak measurement’ has been performed.
Note that a leak measurement is nothing more than a normal measurement except
for the mark in the proglog file.

• iv: This command starts an iV curve by forking and thus imediately executes the
next line in the program. Usually this command is not used.

• ivwait: This command runs an I-V curve and waits until the I-V curve is finished
before the next line is executed.

• killiv: This command kills any running I-V curve (started by the command ’iv’ in
the case the I-V curve is still running by the time this command is reached, usually
after an appropriate wait command).

• temp = XXX: This command sets the furnace setpoint to XXX C

• ramp = XX: This command sets the ramp rate of the furnace to XXC/hour.

• addjust temp XXX YY: This command tries to adjust the temperature setpoint
so that the measured temperature is close to the target. The algorithm uses the
temperature for the first temperature channel defined in the main section! XXX is
the target temperature and YY is the maximum temperature offset allowed before
the algorithm aborts trying to adjust. Note that this function waits 3 hours before
the adjustment in order to allow the temperature to stabilise and to avoid oscilla-
tions if more than one adjustment are called. Also note, that this function uses a
feedback loop, thus if it measures/reads garbled values, it may set the temperature
completely erroneous!

79 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

• text = xxxxxx... : This command simply appends the string after the equals sign
to the program logfile (proglog) of the current test.

• measure: This command runs two measurements using logfile.pl with a 10 second
wait in between.

• c stepY = XX: This command updates the configuration file (specifically the ’cur-
rentstepY’ value in the corrent section (refer section 4.7)) The current step value is
set to XX A. This command is valid for current step 1 through 3.

• c limit = XX: This command updates the configuration file similar as c step and
sets the current limit value to XX A.

• v limit = XX: This command updates the configuration file similar as c limit and
sets the voltage limit value for i-V curves to XX mV (Used in i-V curves run in fuel
cell mode!).

• e limit = XX: This command updates the configuration file similar as c limit and
sets the electrolysis voltage limit value for i-V curves to XX mV (Used in I-V curves
run in electrolyser more!.

• ivpause = XX: This command updates the configuration file similar as c step and
sets the wait tome between current steps in I-V curves to XX seconds.

• gas multiplexer XX YY: This command changes the setting of gas multiplexer XX
to use gas YY. The program waits 10 seconds before executing the next command.

• relay:X = Y: This command sets the status of a relay output with name X to status
Y. Note that the relay name X must be defined in the rig configuration file. The
status value is either ’Yes’ for on or ’No’ for off.

• PID:YY = XX: This command sets the setpoint for PID device ’YY’ to XX.

• impedance XXX.XXX.XXX.XXX:YYYY ZZ AAAA BBBBBBB...: This command
runs an impedance on an external Elchemea c© system found at IP address X and
port Y run by user A and using configuration for session Z. Finally the resulting
file is compensated (by complex subtraction) using the file found at location B (*).

• potsweep XXX.XXX.XXX.XXX:YYYY ZZ AAAA: This command runs an poten-
tial sweep on an external Elchemea c© system found at IP address X and port Y
run by user A and using configuration for session Z (*).

• chrono XXX.XXX.XXX.XXX:YYYY ZZ AAAA: This command runs an chronoam-
perometry/potentiometry on an external Elchemea c© system found at IP address
X and port Y run by user A and using configuration for session Z (*).

• current impedance XXX.XXX.XXX.XXX:YYYY ZZ AA: This command runs an
impedance in constant current mode (utilising the external shunt). Options are
similar to impedance command above except that the compensation is done auto-
matically with out specifying which file) (*).

80 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

• change channel XXX.XXX.XXX.XXX:YYYY A: This command changes the mea-
sure channel on the remote Elchemea c© system at IP-address X and port Y to
channel A (valid values are 0, 1, 2 and 3). Note that this command can only be ac-
cessed through the manual edit functionality (*). If a relay device is found with the
name ’multiplex channel’, the status of this relay (which should be a manual (e.g.
virtual) relay) is set to the channel value. This is usefull for data procesing pur-
poses as the selected channel number will be logged by the dala logging subsystem
for later referencing. For instance it can be included in the ’relay names ivtable’
key in the report section (refer section 6) in which case it will bee displayed in the
impedance tables.

• socket X:YYYY [args]: This comand sends a TCP/IP socket call to the specified
host (X) and port (YYYY). Any additional arguments (seperated by the tab char-
acter) is passed on to the remote server. As opposed to the impedance, chrono and
potsweep family of commands, the host value for this command can either be a
TCP/IP address or a normal hostname. The returned text string form the remote
system is appended to the proglog file directly.

• mail: user.name@domain.address message to user: This command attempts to send
the message to the specified email address. A message is logged that the mail was
sent or in the case of error, that no mail could be sent. Note that only alphanumeric
characters are supported in the address (that is a-z, A-Z, underscores, punctuations
and 0-9 is allowed) both as user name and as domain name and that this command
can only be accessed through the manual edit functionality (note remember the
colon after the mail command!).

• function device type device name function name [arguments]: This command calls
the specified member function on the RFC::BaseDevice derived instance with the
specified type and name. If no device instance is returned by $rig→get device()
an error is raised and the same happens if no function matches the specified func-
tion name for the device instance in question. Notice that this command could
potentially leave the RFCcontrol rig instance in an undefined state as blindly call-
ing member functions on a device could result in unwanted (or indeed undefined)
behaviour! Thus this function should only be used if no other option is found for
achieving the desired result. Also note that only already initialised devices are
avaliable as this command does NOT attempt to initialise new devices not already
loaded as part of the rig instance initialisation.

Remember that some member functions require objects and / or references as ar-
guments, and as the function command can only supply strings and / or numbers
as arguments, any call to a member function expecting a reference or object will
fail (Refer capter 11 for descriptions of the avaliable member functions).

• timeslot start XXX.XXX.XXX.XXX:YYYY ZZZ: This command is used to initiate
and wait for a time slot of duration Z minutes on a shared resource on IP X and
port Y (could be an impedance multiplexer for instance). The command sends a
timeslot request to the shared resource and waits untill the timeslot wait semafore

81 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

is removed (by a reverse callback to the CGI-server, refer section 8.1). Once the se-
mafore is removed the program continues. However any commands executed before
the corresponding ’timeslot end’ command will only execute if the ’timeslot start’
seafore exists! The format of the timeslot request string which is send to the shared
resource is: add item timeslot $time $rigname $ip address where $time is the time
in seconds!, $rigname is the rig name (’rig1’ for rig 1) and $ip address is the ip-
address of the current system so that the remote server knows where to send the
reverse callback once the timeslot is due. Note that this command is only accesible
through the manual edit functionality.

• timeslot end: This command marks the end of a time synchronised sequence (a
time slot on a shared resource as described above). Note that this command is only
accesible through the manual edit functionality.

Note that some of the commands in the above list is only accessible through the manual
edit functionality whereas others are directly accessible through the GUI shown in figure
2.4. All commands marked with an asterisks (*) are ONLY available in conjunction with
an external Elchemea impedance control system. An example of a custom program file
is shown below:

wait = 1

gas:o2 = 0.5

wait = 15

current = 0

measure

current_impedance 10.0.17.119:4040 2 rig1 comp:

current = OCV

ivwait

wait = 1

gas:o2 = 2.5

wait = 15

current = 0

measure

current_impedance 10.0.17.119:4040 2 rig1 comp:

current = OCV

ivwait

wait = 1

gas:o2 = 4

wait = 1

gas:o2 = 6.1

wait = 15

current = 0

measure

current_impedance 10.0.17.119:4040 2 rig1 comp:

current = OCV

ivwait

wait = 1

gas:o2 = 3

wait = 1

82 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

gas:o2 = 0.5

text = End of non synchronised program

timeslot_start 10.0.10.120 4041 60

current_impedance 10.0.10.120:4040 2 rig1 comp:

timeslot_end

mail: foo@foo.bar Program is finished

83 of 362 Implemented by Søren Koch

Chapter 9

Web service

RFCcontrol includes a number of ways for other systems to interface with it as well
as a number of rig and device functions through the web interface implemented by the
rig ajax run.cgi and ajax interface.cgi scripts.

9.1 Remote interface

The ajax interface.cgi script exposes a number of information which can be accessed from
external systems which needs to interface with RFCcontrol.

Section 8.2 describes the TCP:IP socket interface which can be used for some of the
interaction (mainly between individual RFCcontrol servers who is part of a cluster and
where confidential information could be transmitted).

The web service interface described in this section can only expose public information,
and is primarily designed for interfacing with ElchemeaAnalytic.

Detailed information regarding the usage of the web interface can be obtained by pointing
your browser at host.domain/cgi-bin/celltest/ajax interface.cgi where the web service
script in lack of any parameters will print a page describing the expected input parameters
and different available functions.

The way to limit information to only be available to authorized users is to add a .htaccess
file in the root directory (test directory) of the data which is to be kept confidential (Refer
the Apache documentation as to how to properly configure Apache to restrict access by
using .htaccess files).

If such a file is located in the test directory, all web service calls which could transmit
any information from within such a directory merely return an empty string.

9.2 Ajax callback interface

In addition to the remote web service interface, RFCcontrol also has a number of functions
which is intended to be called by Ajax callback through the rig ajax run.cgi script.

84

DTU energy RFCcontrol 5.5.4

The following sections describe each of the individual functions exposed by this interface
as well as the parameters which must be specified for the specified function to run.

A common parameter for all the functions described is this section is the ’rig’ parameter
which must contain an integer corresponding to the rig number that is to be accessed /
controlled.

A second parameter which must also always be specified is the ’ajax’ parameter which
must have a true value.

A third parameter is the ’action’ parameter which controls which action is to be taken.

9.3 Functions which can be called without log-in in-

formation

The first list of functions can be called without log-in information.

9.3.1 get imp data

This function returns the impedance data from an impedance file where the file name
matches the specified name. The parameters are:

• ’ajax’

• ’rig’

• ’action’ - action parameter, must be: ’get imp data’

• ’testno’ - The test number of the test to access.

• ’file’ - The filename to access.

If a .htaccess file exists in the test directory no information is exposed unless the ’name’
and ’pass’ parameters are also supplied (and the user in question has a valid log in session
and is authorised to access data for the rig in question, refer section 9.4).

9.3.2 show log

This function returns the content of the current program log for the specified rig. Pa-
rameters are:

• ’ajax’

• ’rig’

• ’action’ - action parameter, must be: ’show log’

85 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

If a .htaccess file exists in the test directory no information is exposed unless the ’name’
and ’pass’ parameters are also supplied (and the user in question has a valid log in session
and is authorised to access data for the rig in question, refer section 9.4).

9.3.3 show info

This function returns the content of the current test log for the specified rig. Parameters
are:

• ’ajax’

• ’rig’

• ’action’ - action parameter, must be: ’show info’

If a .htaccess file exists in the test directory no information is exposed unless the ’name’
and ’pass’ parameters are also supplied (and the user in question has a valid log in session
and is authorised to access data for the rig in question, refer section 9.4).

9.3.4 show error

This function returns the content of the current error log for the specified rig. Parameters
are:

• ’ajax’

• ’rig’

• ’action’ - action parameter, must be: ’show error’

If a .htaccess file exists in the test directory no information is exposed unless the ’name’
and ’pass’ parameters are also supplied (and the user in question has a valid log in session
and is authorised to access data for the rig in question, refer section 9.4).

9.3.5 is iv

This function returns 1 if an i-V curve is running, 0 otherwise. Parameters are:

• ’ajax’

• ’rig’

• ’action’ - action parameter, must be: ’is iv’

86 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

9.3.6 get callibration file

This function returns the content of a custom thermocouple calibration file for the spec-
ified rig and file name. Parameters are:

• ’ajax’

• ’rig’

• ’action’ - action parameter, must be: ’get callibration file’

• ’filename’ - The name of the file containing the calibration data, located in /home/celltest/convert-
tables/userfiles/

9.3.7 plot callibration file

This function returns a link to an image file (a png file) which shows a plot of the
contents of a thermocouple calibration file. The returned link is a relative link beginning
with celltest/png Parameters are:

• ’ajax’

• ’rig’

• ’action’ - action parameter, must be: ’plot callibration file’

• ’filename’ - The name of the file containing the callibration data, located in /home/celltest/convert-
tables/userfiles/

9.4 Functions requiring a valid log in session

The following functions require a valid log-in before they can be accessed, and in addition
the the ’rig’ and ’ajax’ parameters must also be called with the ’name’ parameter (the
user-name) as well as the ’pass’ parameter (which does NOT contain the password but a
session token).

In addition to a valid log-in session, the user must also be authorized to change parameters
on the rig in question (refer section 4.4).

9.4.1 list caching

This function returns a list of devices for which caching is enabled (refer section 6.2.1).

The parameters are:

• ’ajax’

87 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

• ’rig’

• ’name’ - User name

• ’pass’ - Session token

• ’action’ - action parameter, must be: ’list caching’

9.4.2 start iv

This function starts an i-V curve for the specified rig. Notice that only one i-V curve can
be running at the same time for a particular rig.

The parameters are:

• ’ajax’

• ’rig’

• ’name’ - User name

• ’pass’ - Session token

• ’action’ - action parameter, must be: ’start iv’

9.4.3 stop iv

This function stops an i-V curve for the specified rig.

The parameters are:

• ’ajax’

• ’rig’

• ’name’ - User name

• ’pass’ - Session token

• ’action’ - action parameter, must be: ’stop iv’

9.4.4 get programs test

This function returns a list of previously run programs for the specified rig and test
number.

The parameters are:

• ’ajax’

88 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

• ’rig’

• ’name’ - User name

• ’pass’ - Session token

• ’action’ - action parameter, must be: ’get programs test’

• ’session’ - The test number to access. If the current test is to be accessed, this
parameter can be omitted.

9.4.5 set imp

This function attempts to start an impedance scan on an external Elchemea (or compat-
ible) system. Notice that an impedance scan can only be started using this function if
no user programs are running.

The parameters are:

• ’ajax’

• ’rig’

• ’name’ - User name

• ’pass’ - Session token

• ’action’ - action parameter, must be: ’set imp’.

• ’server’ - IP address of the Elchemea system to access.

• ’port’ - TCP port to contact (default is port 4040 for a normal Elchemea system).

• ’impuser’ - User-name on the Elchemea system.

• ’session’ - Elchemea Session number from which to use the configuration.

• ’comp’ - File name of compensation file. If standard compensation is used the value
must be ’DEFAULT’ and the compensation files ’short.i2b’ and ’shunt.i2b’ located
in the web directory ’imp comp’ for the rig in question is used. First by subtracting
the the measured file with ’short.i2b’ file and the by multiplying the ’shunt.i2b’ file
(the data that is, not the files themselves).

9.4.6 set multiplex

This function sets a particular gas multiplexer to the specified gas.

The parameters are:

• ’ajax’

89 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

• ’rig’

• ’name’ - User name

• ’pass’ - Session token

• ’action’ - action parameter, must be: ’set multiplex’

• ’dev’ - Device name of the multiplexer.

• ’gas’ - Name of the gas to enable.

9.4.7 set relay

This function sets a particular relay to the specified value.

The parameters are:

• ’ajax’

• ’rig’

• ’name’ - User name

• ’pass’ - Session token

• ’action’ - action parameter, must be: ’set relay’

• ’dev’ - Device name of the relay.

• ’status’ - Device value to set.

9.4.8 set gas

This function sets a particular gas to the specified flow rate.

The parameters are:

• ’ajax’

• ’rig’

• ’name’ - User name

• ’pass’ - Session token

• ’action’ - action parameter, must be: ’set gas’

• ’dev’ - Device name of the gas device.

• ’flow’ - Flow rate to set.

90 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

9.4.9 set pid

This function sets a particular PID device to the specified set-point.

The parameters are:

• ’ajax’

• ’rig’

• ’name’ - User name

• ’pass’ - Session token

• ’action’ - action parameter, must be: ’set pid’

• ’dev’ - Device name of the PID.

• ’setpoint’ - New Set-point.

9.4.10 set current

This function sets a particular DC power supply or analog output device to the specified
current output.

The parameters are:

• ’ajax’

• ’rig’

• ’name’ - User name

• ’pass’ - Session token

• ’action’ - action parameter, must be: ’set current’

• ’dev’ - Device name of the multiplexer.

• ’current’ - New value.

9.4.11 set voltage

This function sets a particular DC power supply or analog output device to the specified
voltage output.

The parameters are:

• ’ajax’

• ’rig’

91 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

• ’name’ - User name

• ’pass’ - Session token

• ’action’ - action parameter, must be: ’set voltage’

• ’dev’ - Device name of the multiplexer.

• ’voltage’ - New value.

9.4.12 add info

This function add the specified test string to the info file for the current test of the
specified rig.

The parameters are:

• ’ajax’

• ’rig’

• ’name’ - User name

• ’pass’ - Session token

• ’action’ - action parameter, must be: ’add info’

• ’comments’ - The text string to append.

9.4.13 run device function

This function runs a specified member function on a RFC::BaseDevice derived class in-
stance. Although this function is merely intended for getting data, it can be misused. To
minimize damage, it can only be called by logged in users.

The parameters are:

• ’ajax’

• ’rig’

• ’name’ - User name

• ’pass’ - Session token

• ’action’ - action parameter, must be: ’run device function’

• ’type’ - Device type

• ’dname’ - Device name

92 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

• ’function’ - Name of the device instance member function to call (refer chapters 11
to 12 for full documentation on device member functions).

• ’arguments’ - List of arguments to the specified member function. If the member
function can be called without arguments, this parameter can be omitted. The
actual number of arguments vary depending on which member function is used
(refer chapters 11 to 12 for full documentation on device member functions).

93 of 362 Implemented by Søren Koch

Chapter 10

System command interface
(command line)

Although RFCcontrol is designed to be used primarily through the web interface, a lot of
command line tools are included in order to facilitate greater freedom in running complex
test sequences as well as system debugging in the case of malfunctioning hardware etc.
Below is a list of the most used command line tools for the cell test control system:

Most of the programs and scripts are located in /usr/local/bin/. However some are
located in /usr/local/bin/celltest/ and thus require full path for execution.

• CGI client.pl (discussed in section 8.1)

• celltest-passwd-client : command line interface to the password server, refer section
4.3 for details.

• gpibclient (discussed in section 8.4)

• serial-socekt-client-1.2.pl (discussed in section 8.3)

• make iv curves.pl (discussed in section 2)

• make report (discussed in section 2)

• set finish $rig $test (discussed in section 2)

• remake latex report (discussed in section 2)

• test rig conf.pl $rig : This program runs the test script for a particular rig. This
script runs through all devices initialized based on the current configuration file.
If the configuration file is somehow been corrupted, this script can sometimes help
find the inconsistency / error (depending on how mangled the configuration is).

• list uninitialised devices.pl $rig : This program list any devices which is defined in
a rig’s configuration but which with the current configuration is uninitialised. Note
that uninitialized devices is not necessary unused at all times!

94

DTU energy RFCcontrol 5.5.4

• OCV corr : This program has a lot of command line options and is used primarily
for correcting fuel cell resistances for conversion impedance. For a complete list of
options, run the command: OCV corr –help.

• iV curve.pl $rig [opt –debug] : Runs an i-V curve for the rig in question. If the
–debug option is specified, information is printed to std-out during operation. Usu-
ally this program is called from the GUI or as part of a programmed sequence. If
called from the command line it tries to show the resulting i-V curve graph in a
separate window (requires X11-forwarding), if no X11 forward is possible a harmless
’Graphics::GnuplotIF : cannot find environment variable DISPLAY’ will be shown).

• gas.pl $rig $gas $flow : This program sets the gas flow for a particular rig and gas
to the specified value. This program is deprecated and will likely be excluded from
future releases.

• set current $rig $value: Sets the DC-current for a rig. This program is deprecated
and will likely be excluded from future releases.

• set voltage $rig $value: Sets the DC-voltage for a rig. This program is deprecated
and will likely be excluded from future releases.

• potentiostat.pl $rig $voltage [opt $range opt $istep opt $psuname] : Emulates po-
tentiostatic control for a constant current controlled power supply. The program
is intended to be run from the scheduler (crontab). If no power supply name is
specified, the first item in the list of PSU’s is used (only advisable if only one power
supply is attached to the rig!). This program is deprecated and is no longer
supported. Use the functionality described in chapter 14 instead.

• water.pl $rig $name $status : Sets the status for the water bubler for a particular
rig. This program is deprecated and will likely be excluded from future releases.

• cnv.pl $rig [opt delay] : this program updates the web-pages displaying the current
data for the rig in question. Note that only the figures for the data for the current
day are updated! If a delay is specified, the program waits the specified number of
seconds before creating the graphs (intended to be used when called from crontab to
allow the logfile.pl program to finish before plotting commences). Should normally
only be called from the crontab interface.

• relay-socket-server-1.0.pl $virtual tty $remote host $remote port : This program is
used if the hardware set-up requires more serial ports than can physically be fitted
to the control computer. In this case a slave server is set up with the real serial
server and the relay server is started with the correct parameters and RFCcontrol
can use the remote serial port as if it was on the local computer. Notice that
using this makes the RFCcontrol system vulnerable to network failures
which it it otherwise would not be!

• jdata.pl $rig $test : This program creates the jdata file from the raw measured data.
If passed the optional ’raadata’ argument the raadata file is not recreated (if it has
been edited to remove excessive data lines which could for instance be at the start
before heating).

95 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

• format jdata.pl $rig [opt $test] : This program is used to reformat an existing jdata
file if changes in the number of columns and / or order of alignment has occurred
during the test. If no test argument is specified, the current test is assumed. Notice
that for tests with large data files this program may take a while to run!

• jdata conv.pl $rig $test “$func” $output col $input col 1 .. $input col n: This pro-
gram can be used to do columnar calculations on a jdata file. It can be compared
to awk. Unlike awk it does not work on column numbers, but on column names
(jdata file format), thus if the jdata file changes the order of alignment during a test,
jdata conv.pl will handle this correctly. jdata conv.pl only has limited calculation
capability and no loops etc. To get a more detailed description run jdata conv.pl
without arguments. Notice that for tests with large data files this program may
take a while to run!

• get all impedance.pl $rig [opt $test] : This program tries to create impedance and
bode plots of all impedance files located in the impedance directory
(/home/http/html/rig1/1test34/impedance) in the case of test 57 on rig1. If the
test argument is omitted the latest test is used as default

• impedance multiplot.pl $rig $test $options $file1 $title1 $fileN $titleN : This
program creates an impedance plot with multiple scans on the same graph. For a
complete list, run impedance multiplot.pl without any options.

• hio korr $mode correction file [files to be corrected] : This program is used to do
impedance correction (for for instance inductance). The modes are one of -A, -
S, -M or -D for addition, subtraction, multiplication or division respectively. The
program does the full complex operation on all frequencies in all the files. It is
useful for correcting large amounts of impedance files. Note that it can only handle
files in the .i2b format.

• program iv.pl $rig $current : This program can be used to make programmed i-v
curves in the case a long term experiments is to be run where I-V curves are to
be acquired each day and the test is to be run in constant current otherwise. The
current argument is the steady state current to be applied between the I-V curves.
This program is intended to be run from crontab.

• leak [options] : This program can be used to calculate the leak current through the
cell if the gases is only hydrogen/water and air use the help option for a full list
of options. Note that this program is superseded by the OCV corr program which
can handle a much wider range of gas compositions.

• vogt.pl $rig [opt $limit] : This program is used to monitor the cell voltage and
disconnects the current from the PSU in case the predefined voltage limit is reached.
If the voltage limit is not specified the limit is acquired from the configuration file
for the rig in question. The program also sends an email to the recipients defined
in the system mail users key in the admin section in the global configuration file.
This program ins intended to be run by crontab

96 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

• H2 vogt.pl $rig : This program monitors the gas flows and safely shut off the current
form the PSU if it detects that no one of the gasses defined in by the vogt gasses key
in the main section of the rig is above the cutoff values. If so it also shuts down all
gasses defined in this list as well as gasses listed in the aditional vogt gasses cutoff
key which is also in the main section. As vogt.pl it also sends an email to the system
users. This program is intended to be run by crontab.

• logfile.pl $rig [opt test | conf | ignore | caching | debug] : This program handles
the actual data logging for the entire system. The program is intended to be run
by crontab (without the optional test argument) but if run with this argument is
also prints the result to standard out in additional to appending the result to the
normal data logging file. The logfile.pl program also contains the possibility to test
a configuration file. To do this, use the ’conf’ argument. The program will then
output additional information regarding the current configuration. Note that with
the ’conf’ argument no data logging is performed! the ’ignore’ argument changes
the behaviour of the file locking system for data logging. If this option is specified,
the logfile program does not exit if the i-V curve semafore is detected. Additionally
the program waits for the internal file lock insread of exiting if no lock could be
aquired. Notice that if custom designed data logging programs are to be used they
must implement a similar behaviour to avoid race conditions or out of processes
id errors (in case too many logging programs are started simultaneously). The
caching argument (introduced in version 4.8.1) specifies that the logfile program
atempts to use cached values for the devices which is set up to do so (refer section
6.2.1). A last option is calling the logfile program with the ’debug’ option which
enables debugging information. Additional debug information can be aquirired by
specifying a higher debug level (fo instance to use debug level 4 use ’debug=4’
instead of just ’debug’). If debug level 4 is used if so, all calls to external TCP:IP
socket servers are displayed (that is all calls to the serial servers, gpib-server etc. are
displayed). This is useful for debugging a malfunctioning configuration or if some
data suddenly looks strange, then it is possible to manually repeat all external calls
and directly inspect the results. To do so use the programs gpibclient and serial-
socket-client-1.2.pl in /usr/local/bin (the mentioned programs are simple wrappers
around the library socket communication functions).

• mail errors.pl : This program is intended to be run by crontab once a day. It
scans the error file (/home/celltest/error.txt) and emails any entries for the last
day to the recipients defined in the errormails key in the global section of the global
configuration file (refer section 6)

• load test data db.pl $rig $test : This program processes a specific test, and if the
make iv curves.pl program has been run, it uploads key informations regarding
the test, any i-V curves as well as any impedance spectra which has been aquired
to an external database. The database loacation and name is specified in the
database section in the global configuration file (refer section 4). This program
is only configured to access a database running on a Risoe Fuel cells and solid
state chemistry division Labsystem database version 2.1.10 or above with installed
celltest datamining database!

97 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

• test cluster.pl : This program can be used to test if all servers in a cluster is re-
sponding.

• get max gas.pl $rig $test : This script gets the maximum gas flows logged for a
specified rig and test. Normally used only for reporting purposes.

• format jdata.pl $rig $test : This script reformats the jdata file for a specified rig and
test making sure that the number and order of allignment of the diferent columns are
constant throughout the file. This may sometimes be nescesarry to do before post
test reporting is performed (for instance if additional channels have been configured
durring a test, then the number of collumns will not be constant throughout the
jdata file as most of the reporting scripts depend on).

• history-plot $rig $test : This program creates all the plots for the whole test history
for a given rig and test.

• PID fast control.pl $rig : This program handels PID control loop execution for PID
devices configured as ’fast’. The meaning of fast is that the system will run the PID
cotnrol once / second. Notice however that if multiple PID devices are configred as
fast, the response time for each loop may be significantly longer than 1 second as
hardware communication overhead may delay execution as only one PID device can
be serviced at a time. Should normally only be called from the crontab interface.

• PID slow control.pl $rig : This program handles PID control loop execution for PID
devices configured as ’slow’. The meaning of slow in this case is one iteration each
minute. Should normally only be called from the crontab interface.

• Check alert.pl $rig : This program handels watchdog survaliance and checks all
defined alert devices for the rig in question. Should normally only be called from
the crontab interface.

• custom prog.pl $rig $filename [opt $username] : This program executes the sequen-
tial programs set up as shown in section 2.3. Usually it is called from the GUI by
the CGI-server, but it is possible to exwecute it directly from the command line.
The filename is the name of the file containing the commands to be executed, and
the optional username is used to get the email address for sending an email in case
program execution stops unexpcted (if the process gets a SIG-INT or kill -2).

• fastlog type.pl $rig [–option...] [device names] : This program can be run from the
command line to do fast data logging of devices o the same type. The default device
type is simplechannels. The recognised options for this program are:

– –type=type : sets the device type.

– –intervel=interval : Sets the interval between measuremnts in seconds.

98 of 362 Implemented by Søren Koch

Chapter 11

Module specifications

This chapter contains the module specification for the perl modules supplied as part of
the RFCcontrol software suite. It includes function descriptions including number and
type of any function arguments. Some of the modules are object oriented (with only a
publicly accessable constructor) and in other cases the modues are function orientated.

In the case of function orientated modules, any functions exported by the module are
described, both for what it does, as well as number and types of arguments.

In the case of the object oriented modules, any inheritance is also described (usually
in the beginning of the module description). For the object instances, usually only the
member functions intended to be public is described (as perl does not have a true private
function decleration). Note that some of the opject orientated modules define more than
one class type, but as all the class types in this case behave similarly (polymorphic), only
the main class is described as the subsequent clas definitions imlements the main class
type behaviour.

Each module is described in it’s own section.

11.1 Debug

Use: my $id = Debug→new();

This class is intended to be a base class for other classes to derive from so that easy debug
functionality can be included.

Utility class for debugging. It contains the following member functions:

$id→debug() Sets or gets the debug level: level 0 is no debug, level
5 is complete debug including stack backtrace. This
class only uses level 0 (no debug), level 1-4 (debug
iformation displayed) and 5 , debug info displayed
with complete stack backtrace. The levels 1-4 lets
other modules define debug levels inbetween the ones
used here.

99

DTU energy RFCcontrol 5.5.4

$id→writedebug($,[$]) Writes the string to standard error if debuglevel is
1 or higher. If overide is specified (second argument
which is optional), debug level 5 is assumed for this
debug.

$id→die($) Appends stack backtrace to argument string and calls
CORE::die

$id→print setup() Prints out the complete current setup includ-
ing all member functions and data fields (uses
Class::Inspector).

11.2 SemaforeFile

Inherits from Debug (refer section 11.1).

This package makes file inout/output on multiprocess systems more easy by encapsulating
file locking. To define a new semaforefile use the new method:

my $id = SemaforeFile→new($filename,$lockfile);

my $id = SemaforeFile→new($filename);

If the lockfile is not specified, the default (/var/lock/SemaforeFile/SemaforeFile.lock or
/tmp/SemaforeFile.lock) is used instead. This form should generally notbe used however,
as in some cases /var/lock/SemaforeFile/SemaforeFile.lock can not be used and files in
/tmp/ will from time to time be deleted...

The package includes the following simple public methods on semafore files:

$id→readonly() Returns true if the file is readonly for the current user
$id→exist() Returns false if the file does not exists;
$id→chmod($) Sets the file permissions according to CORE::chmod
$id→filename() Returns the filename of the semafore file
$id→readlines() Returns the content of the file as an array with one

line in each element Note thet it removes any trailing
newline from the read lines!

$id→writeline(@) Writes the arguments to the file (NB: Overwrites file
and add a newline to each argument if they do not
already have it).

$id→append(@) Appends the arguments to the file (Also adds new-
lines if nescesarry).

It is not nescesarry to check for file esistence in readlines as an empty array is returned if
the file does note exist Note that the readlines function should only be used on small files
as it globs the entire content to memory! For large files, use the more advanced member
functions (see below). Also note that trailing newlines are removed from the individual
lines. If this are not desired, use the readline() method described below.

The module also includes the following methods for advanced use: Note none of these
functions check if the file exist before trying to open! The unsafe versions of open and

100 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

close does not lock or unlock (assumes the user does this explicitly!)

$id→lock ex() Locks file for exclusive use (Read, Write or Anppend)
$id→lock sh() Locks file for shared access (Read only)
$id→lock ex nb() Locks file for exclusive use non blocking (Check re-

turn status!)
$id→lock sh nb() Locks file for shared access non blocking (Check re-

turn status!)
$id→unlock() Unlocks file
$id→open read() Opens the file for reading (locks file shared if not

already locked)
$id→open readback() Opens the file for reading backwards (locks file shared

if not already locked)
$id→open write() Opens the file for writing (locks file exclusive if not

already locked exclusive)
$id→open append() Opens the file for appending (locks file exclusive if

not already locked exclusive)
$id→close() Closes the file and unlocks it
$id→open read unsafe()
$id→open readback unsafe()
$id→open write unsafe()
$id→open append unsafe()
$id→close unsafe()
$id→mtime() Returns the time of modification of the file as re-

ported by File::stat→mtime, returns 0 if the file does
not exist.

$id→readline() Reads and returns the next line from the file, assumes
an open file Raises an excpeption (die) if not.

$id→fh() Returns the underlying file handle for direct IO (Use
with care!)

Additionally the $id→debug($) member function (inherited from Debug.pm) can turn
debug information on and off $id→debug($level) turns debug on and $id→debug(0) turns
debug off ($level is the debug level, 1 - 5) This may be usefull if deadlock is encountered
(so that the individual file locking operations can be monitored! If $id→debug() is called
without arguments it returns the status (i-e if debug in on 1 is returned else 0.

11.3 ElchemeaConfig

Inherits from Debug (refer section 11.1).

Use:

my $id = ElchemeaConfig→new($filename);

my $id = ElchemeaConfig→new(SemaforeFile instance);

Or

101 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

my $id = ElchemeaConfig→new($filename,$lockfilename);

This class is intended to be used for accessing a file where the data is stored in the way of
key = value pairs inside sections delimited by SECTION $name - ENDSECTION pairs
(example below)

SECTION testsection
key1 = value1
key2 = value2
ENDSECTION

In the example above any leading ’#’ should be removed as they indicate comments
and the ElchemeaConfig package honors this convention making it possible to include
comments in the data file (configuration file).

The ElchemeaConfig module incorporates the possibility to use transactions.

All ElchemeaConfig instances honors the following member functions:

$id→debug() Sets or gets the debug level (inherited from De-
bug.pm).

$id→die($) Terminates current process with supplied string (with
stacktrace) as errorcode (Inherited from debug.pm).

$id→filename() Returns the filename of the configuration file.
$id→readlines() Returns the content of the file, only allowed outside

a transaction
$id→writeline(@) Write the supplied strings to the file (note owerwrites

file!), Only works outside a transaction.
$id→modtime() Returns the last time of modification for the file. Note

that when a transaction is initiated the time reported
will be the last time before transaction initiation!

$id→get config value($$) Returns the value associated with the specified key in
the specified section (arguments: $section, $key). If
called in a list context, returns a list of values based
on the value of the specified key (value split along
commas, ignores spaces around commas)

$id→get sections() Returns a list of the section names in the file.
$id→get keys($) Returns a list of key names for the specified section

name.
$id→is readonly() Returns true if the file is read only, false if the file is

writable.
$id→section exists($) Returns true if the specified section exists in the file.
$id→exists($$) Returns true if the specified key exists in the specified

section. Arguments: section, key

102 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

$id→change config value($$$[opt @values]) Changes the value associated with the spec-
ified section - key pair to the specified value. If inside
a transaction, the change is stored in an internal data
structure and the file itself is not changed. subse-
quent calls to get config value() with this pair as ar-
gument will return the new (not yet commited) value
instead of the value stored in the file. Required argu-
ments: $section,$key,$newvalue. If additional argu-
ments all the additional values as well as the first are
stored as a comma separated list (thus conforming
with get config value called in a list context)

$id→error() Returns the errorstring (returns an empty string if no
error).

$id→begin() Initiates a transaction.
$id→commit() Commits any changes (through calls to

change config value()) to the file. If the file it-
self has changed between the initiation of the
transaction and the commit, a warning is issued and
no changes is written, thus always check the return
status of commit (1 for succes, 0 otherwise). If an
error or warning orccours the error string is set.

$id→rollback() Discards any changes not yet committed.

Note that if a transaction is initiated and no commit is issued, aotumatic rollback occours
uppon instance destruction and/or program termination.

11.4 SocketClient

This module defines a number of communication functions used for accessing tcp:IP
sockets on local and/or remote systems. The functions defined are listed below:

socket client raw($$@) Base function used by all subsequent functions, han-
dles the raw tcp:IP cummunication. Arguemnts: server,
port, [additional args to server]. The server can either be
a ip-address or a hostname. Any additional arguments
gets serialised with tab characters and 2 newlines are
appended to the resulting string before transmission.

socket client($$@) Same as above, but catches any communication errors
in an eval guard.

socket client nocr($$@) Same as above, but do not append any newlines to the
transmitted string.

socket client raw nocr($$@) same as socket client raw() but do not append newlines.

103 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

serial client($@) communicates with a local serial server (which handles
hardware communication on the serial port. Arguments:
tty, args to server. The server is assumed to be the local
server (either localhost or the public IP address of the
server) and the port number is the tty number added to
202020 (Note wraparound!).

GPIB client() Communicates with the GPIB-server. Arguments are
passed to the GPIB-server serialised with tab characters
using socket client nocr(). The server is assumed to be
the local server (either localhost or the public IP address
of the server) and the port number is 12345.

serial client raw($@) Same as serial client() but without eval guard.
GPIB client raw() Same as GPIB client() but without eval guard.

11.5 RFC::Header

This module contains site wide file locations and similar global variables used by the
other modules supplied as part of RFCcontrol.

11.6 RFC::Main

This module exports a number of utility functions used by both the user interface, but
also by some of the other modules supplied by RFCcontrol.

The functions exported by default are

CGI client($@)

errorlog()

get cv($$)

If called in a list context it returns the value as an array split along any commas (ignres spaces before and
get uicfg($$)

print error()

get error()

104 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Additionally, the following functions are also avaliable through explicit function call.

config() Returns a ElchemeaConfig instance of the global configuration file
get rigs() Returns a list of valid rigs on the server
get servers() Returns a list of known servers (obtained form global configuration

file).
get user name($) Returns the user name from a given userid (note only usable from

local password server).
check rig nr($) Returns 1 if the rig specified is a valid rig 0 otherwise.
spline($$) Returns the splineinterpolated value based on filename specifying a

file containing the interpoation table and the value to interpolate.
Arguments: filename and value.

spline user files() Returns a list of valie filenames for spline interpolation. The list is
defined as the files found in the splineinterpolation directory (usu-
ally /home/celltest/convert-table/userfiles/)

passwd client(@) Returns the response from the password server when queried with
the specified arguments.

passwd client raw($$@) Same as password client, but the hostname and port number must
be specified as the first 2 arguments (before the real arguments
passed on to the password server).

mail($$[$]) Sends an email to the specified email address with the specified
message. An optional third argument will be used as subject. Ar-
guments: address, message, [subject].

get gasses() Returns a list of gasses for for which the gas factor is known.

11.7 RFC::RFCCGI

This module contains a number of utility functions for outputting properly formatted
html code for user interface generation. Thus it mainly extends the CGI.pm module by
Lincoln D. Stein. The module exports these functions in two groups.

The :html group exports these functions:

print header($[
print end() Prints the help button and ends the html output with

the proper tag.
not auth() Prints the information supplied to the user if the user is

nor authorised. Also prints a link to the log in page.
xss($) Wrapper for CGI::excapeHTML.
print hidden() Prints a number of hidden fields used to maintain state.

This includes user name and a cryptographic hash of the
users password.

print hidden rig() Same as print hidden(), but with the additional infor-
mation abut the active rig.

logout() Printys a logout button.

105 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

action($) Prints a hidden field with an action parameter with the
specified value which can be used for program control
flow.

RFC start html() A wrapper for CGI::start html. Any arguments (in the
form of a hash) are passed to CGI::start html. Auto-
matically appends a reference to the javascript source
file on the server.

js back() Prints the javascript for gping backwards (uses the
browser.back() fjavascrpt call).

get CGI value($) Retrieves the value of the specified CGI parameter (sup-
plied by the web browser.

get CGI value clean($) Same as get CGI value, but does pattern match on the
retrieved value and only returns the part that matches.
The pattern match is [\w\s\.\,\-]*. This has the benefit
of untainting the returned parameter value (For taint
checks in perl and web access, refer Lincoln D. Steins
book Official Guide to Programming with CGI.pm)

rig auth() This function returns 1 if the user is certified for the
rig in question. It only checks if the rig in question
is mentioned in the ’safety task access’ section in the
global configuration Where each rig is supposed to de-
fine which taskid(s) are connected with which rig. If
more than one taskid is connected with the rig (speci-
fied by a list of id numbers), the user has to be authen-
tificated for all taskids in the list for authentification
to occour. The definition is in the form: rig1 = 45,1
where 45 and 1 are the taskids to check against. Usage
is either with named rig argument or without any argu-
ment, if used without argument, the current rig number
is used as default. Usage: rig auth(), rig auth($rig) or
rig auth($rig,$taskidstring). If the last call method is
used the taskidstring must be a string of integers seper-
ated by comma.

rig cert() This function returns 1 if the user is certified for the
rig in question. It only checks if the rig in question
is mentioned in the ’safety task access’ section in the
global configuration Where each rig is supposed to define
which taskid(s) are connected with which rig. If more
than one taskid is connected with the rig (specified by
a list of id numbers), the user has to be certified for the
first in the list for certification to occour. The definition
is in the form: rig1 = 45,1 where 45 is the taskid to
check against. Usage is either with named rig argument
or without any argument, if used without argument, the
current rig number is used as default. Usage: rig cert()
or rig cert($rig).

106 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

The :cgi group of functions include the following:

get CGI value($) See above.
get CGI value clean($) See above.
rig cert() See above
rig auth() See above
action($) See above
not auth() See above
xss($) See above
login ok() Checks if the user supplied login credentials are ok. This

can be either against a small local database, or against
a full RDBMS.

menu button(@) Prints a menu button. Arguments: name, value, style.
The name will be the CGI parameter name, the value
vill be the text on the button and the style is a style
class name to use for displaying.

create menu field Prints the html tags to create a menu field.
top nav bar start() Prints the html tags to start the top navigation bar (ta-

ble specifications etc.)
top no button() Prints a no action button (goes nowhere) in the top

navigation bar.
top nav bar button() prints a top navigation button. Arguments: File, name,

value, style, [optional additional name, value and force
triplets]. The file is the cgi-script to be called upon
button press, the name,value and style arguments are
passed to menu button() and the additional optional
arguments are used to initialise and print hidden html
fields in the form of name-value pairs and a force argu-
ment (1 for force value, 0 for allow reuse of value).

tab newrow() Prints a new row in the top navigation bar.
top js return() Prints a top navigation return button (uses the

javascript printed by js back(), see above)
end top bar() Prints the end of the top navigation bar.
is logout time() Returns 1 or 0 depending on time since last action by the

current user (used for authentification purposes). Dep-
recated from version 4.6.2 onwrads!

is admin() Return 1 if the current user is an administrator (gets
explicit access)

user auth() Returns 1 if the user is authorised for the rig in question.
Some of the authentification is forwarded to rig auth()

get user() Returns the username of current user.
get pass() Returns the cryptographic hash of the current users

password.
logout delay() returns the number of minutes a user can remain inactive

before automatic logout occours.

107 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

An additional function which is often used (but which is not exported by default) is the
print js validate() function. This function prints a javascript function for client side input
validation. The function can check any number of fields (names specified in the arguments
list) and can either check if a field is filled out, OR check that if a field value is ’NEW’
then an other field must not be empty The syntax for this case is: ’name 1#name 2’
where name 1 is the name of the field which can be ’NEW’ and name 2 is the name of
field 2 which must not be empty. Another form of check is where a number of fields exists
and where not all fields can be empty to use this option use the ’:’ separator in the string:
’$field group name:$field1:$field2:...’.

Usage: print js validate($form name,[$field names...]) It is also possible to include reg-
ular expression tests in the validation. To do this use the format: ’name;”regexp”;[opt
$]Error message’. If the $ is the value of the input field is placed in front of the errormes-
sage!

11.8 RFC::Device

This module contains two types of functions: one set (prefixed list) returns a list of
possible device types of the specified master type. For instance, list GAS retrns a list of
possible gasses whereas list PSU returns a list of possible PSU classes. The list functions
never require any arguments except the list device types function which takes a type
argument and returns a list of possible sub types for the device type in question.

The other group of functions are factory functions createing and returning instances of
the specified type. For instance new GAS($name,$rig) returns a new RFC::Gas object.

The individual factory functions require a varying number of arguments, however common
is the first two (rig and name) which are compulsory. Most of the factory functions only
require the first 2 arguemnts.

The rig argument must be an instance of the RFC::Rig class or an object of a similar
type that at least honors the get cv() member function. (Some devices requires additional
memberfunctions to be honored by the rig instance, however all these memeber functions
are included in a RFC::Rig instance).

The name arguments is the name of the object to be created. Note that the name must
correspond to the name in the section in the configuration file where the device instance
data is defined!

Below is a complete list of the functions defined in RFC::Device.pm:

list device types($) returns a list of the possible subtypes of the specified
master type.

new($@) Returns a class instance of the specified type. Argu-
ments: type, rig, name, [optional subtype], where rig is
an instance of the RFC::Rig class.

new GasGroup($$) Returns a gas group instance, arguments: rig, name.
list GasGroup() Returns a list of possible gas group subtypes.
new GAS($$) Returns a gas instance, arguments: rig, name.

108 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

list GAS() Returns a list of possible gas names (that is, the names
of gasses where the gas factor is defined in the global
configuration file).

new TEMP($$) Returns a temperature controler instance, arguments:
rig, name, [opt. subtype]

list TEMP() Returns a list of possible temperature controler sub-
types.

new Multiplexer($$) Returns a gas multiplexer instance, arguments: rig,
name, subtype

list Multiplexer() Returns a list of possible gas multiplexer subtypes.
new MFC($$) Returns a gas flow controler instance, arguments: rig,

name, [opt subtype]
list MFC() Returns a list of possible gas flow controler subtypes.
new RELAY($$) Returns a relay instance, arguments: rig, name, [opt.

subtype]
list RELAY() Returns a list of possible relay subtypes.
new SimpleChannel($$) Returns a simple data aquisition instance, arguments:

rig, name, [opt. subtype]
list SimpleChannel() Returns a list of possible simple data aquisition sub-

types.
new Water($$) Returns a gas humidifier instance, arguments: rig,

name, [opt subtype]
list Water() Returns a list of possible gas humidifier device subtypes.
new Templog($$) Returns a temperature aquisition instance, arguments:

rig, name, [opt. subtype]
list Templog() Returns a list of possible temperature aquisition sub-

types.
new PSU($$) Returns a DC power supply device instance, arguments:

rig, name, subtype
list PSU() Returns a list of possible DC power supply subtypes.
new AnalogOut($$) Returns an analog DC output device instance, argu-

ments: rig, name, subtype
list AnalogOut() Returns a list of possible analog DC output device sub-

types.
new filter($$) Returns an filter device instance, arguments: rig, name,

subtype
list filter() Returns a list of possible filter device subtypes.
new PID($$) Returns an PID device instance, arguments: rig, name
list PID() Returns a list of possible PID device subtypes.
new logic($$) Returns an logic device instance, arguments: rig, name,

[opt subtype]
list logic() Returns a list of possible logic device subtypes.
new Math($$) Returns an arithmetic device instance, arguments: rig,

name, [opt subtype]
list Math() Returns a list of possible arithmetic device subtypes.

109 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

new Alert($$) Returns an Alert device instance, arguments: rig, name,
[opt subtype]

list Alert() Returns a list of possible Alert device subtypes.

11.9 RFC::Observer

Inherits from Debug (refer section 11.1).

This module implements the observer pattern and defines the member functions nesce-
sarry for this.

To obtain a device instancee call the constructor: my $id = RFC::Observer→new();

$id→attatch observer($[$]) Attatches a new object to the list of observers. The
first argument must be a reference to an object. The
second (optional) argument can be a reference to a
function to be called. In absence of this second ar-
gument, the default function to call is the observe()
member function of the observer. If a custom function
is specified it must accept at least 1 argument which is
a string describing which action triggered the notify.
Please note that only one reference to each object
is allowed (the same device can not attatch itself to
an other device more than once, any new invocations
of attatch observer to the same device will merely
overide the notify function name). This makes sure
that any notify of an object will only trigger once for
each action trigger (for instance a call to setflow on a
master device will only trigger one setflow command
on each slave). Usually a slave can only be slaved to
one device when the GUI is used, however it is pos-
sible to slave to more than one master device using
attatch obsever directly.

$id→list observers() Returns a list of observer devices (object references!)
$id→detatch observer($) Removes an object from the list of observers. The

argument must be an object reference.
$id→notify($[@]) This function notifies all observers of the action in

question (the first argument is a string describing
the action triggering the notify), any additional argu-
ments can be passed, however only the first is guar-
enteed to be passed to the observe functions. The
function returns a list of response values / messages
(if any) from the called functions.

110 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

$id→observe($[@]) Default function for callback in case of notification.
This function is intended to be overridden in those
cases where devices by design depends on the observer
pattern. Corresponds the the Update() function ac-
cording to GoF.

11.10 RFC::Rig

Inherits from RFC::Observer (refer section 11.9).

This class manages the complete setup ofr a RFCcontroll rig To obtain an instance call
the constructor:

$id = RFC::Rig→new($rignr)

Where $rignr is an integer.

RFC::Rig implements a type of singleton pattern in the way that only a single instance of
each rig number can exist at any given time. Thus two successive calls of new() with the
same argument will return the same object. However two calls to new() with different
arguments will return two different individual objects.

11.10.1 Public member functions

Each Rig instance has the following public member functions:

$id→lock control() Locks the semafore file asociated with the rig instance
control.

$id→unlock control() Unlocks the semafore for rig control.
$id→die($) Wraper for CORE::die, but dumps instance setup.
$id→config() Returns the configuration object of the current test

(An ElchemeaConfig instance).
$id→begin() Initiates a transaction.
$id→commit() Commits a transaction.
$id→rollback() Roll back a transaction.
$id→error() Returns the errorstring (if any).
$id→riglock() Returns the SemaforeFile object for the rig instance
$id→set warning($) Sets the specified string in the mailwarinig file used

to make sure that only one errormail is sent for each
warning condition.

$id→check warning($) Checks if the specified type is already in the warning
mail file.

$id→unset warning([$]) Removes the specified type from the warningmail file.
If called without argument, all warnigns are removed.

$id→is iv() Returns true if the iv in progress file exists
$id→iv start() Retruns 1 (true) if the iv in progress file does not

exist, and creates it in the process.

111 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

$id→iv stop() Removes the iv in progress file (effectively stopping
any programs / iv’s locked to the existence of this
file).

$id→iv in progress() Returns the SemaforeFile object representing the
iv in progress file. Can be used for using the file for
storing and retrieving process parameters.

$id→warning mail($type,$s,[$subj]) Sends a mail with content $s of type $type to the
recipients defined in the ’warning mail’ key in the
’main’ section of the rig configuration. If no recip-
ients are found the list defined in the ’errormails’ key
in the ’global’ section of the global configuration is
used instead. Note that the mail is only sent if the
$type is nor already defined in the warningmail file.
If a third argument is supplied, this becomes the sub-
ject of the mail, otherwise a default subject is used.

$id→kanaldata() Sets and gets the logged data (in conjnction with data
logging. If arguments are passed, they are assumed
to be in the form returned by the readstring member
function of a BaseDevice class instance.

$id→readstring([$]) Does a complete data logging by callng the read-
string member function on all asociated BaseDevice
instances (This includes derived classes). This func-
tion handles gracefully if a device instance dies while
measuring, in which case an error is logged and a
dummy value is returned for that device instead of
the real value. This is to ensure that datalogging will
proceed as much as possible. If an argument is passed
to readstring, it must be an instance of RFC::Cache.
Notice, that readstring does NOT write any data to
file, it only returns a text string containing all the
data. (Saving data to file can be handled by the nor-
mal Perl file handling functions).

$id→list sections() Returns a list of configuration sections (names). If a
argument is specified, only section names matching
the specified string are returned.

$id→config section exists($) Returns true if the specified section exists in the cur-
rent confiuration.

$id→config key exists($$) Returns true if the specified section and key exists.
$id→get cv($$) Returns the value asociated with the specified section

and key (returns undef if no no matching section is
found or if no matching key is found in the specified
section (Arguments: section,key). If called in a list
context, it returns an array which is the result of
splitting the configuration value along any commas
(Notice that the split ignores any spaces before and
after commas).

112 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

$id→get cv test($$$) Same as above, but for specified test number (defaults
to current test if no is specified). If called in a list
context, it returns an array which is the result of
splitting the configuration value along any commas
(Notice that the split ignores any spaces before and
after commas).

$id→get cv list($$) Same as get cv($$) except it returns a list of elements,
the list is the return value of get cv($$) split up along
any commas. If the configuration value does not exist
or is empty get cv list($$) returns an empty list. Note
that this function is deprecated from version 5.3.5 and
onwards, Users should switch to using get cv in a list
context as this will now behave as get cv list

$id→change config value($$$) Sets the value asociated with the specified section
and key to the specified value (arguments: sec-
tion,key,newvalue)

$id→modtime() Returns the modification time for the configuration
file fore the test specified (default is curent test).

$id→set debug($) Sets the debug level for the Rig instance as well as
all. device instances attatched to the rig instance.
Implemented using the Visitor pattern.

$id→debug() Sets or gets the debug level for the rig instance itself
(that is without setting it for all the device instances).
If called without arguments returns the current debug
level.

$id→init() Initialises (or reinitialises) the rig instance. This
member function loads all device instances which
according to the configuration file needs to be at-
tatched. On succes any call to error() returns an
empty string, otherwise the string returned contains
the name of the offending device which could not be
initialised and caused init to fail / die. If the init()
function is not called within an eval guard, it sim-
ply dies with an error indicating what went wrong.
The init() function is automatically called by the con-
structor (within an eval gurad).

$id→test() Returns 1 (true) if init returned no errors, 0 other-
wise.

$id→webdir([$testnr]) Returns the current web directory path if called with-
out argument. If an argument is specified (and it is a
valid test number) the directory path for that direc-
tory is returned instead.

$id→homedir() Returns the home directory path for the rig.
$id→hometest() Returns the home test directory path for the rig.
$id→get sessionlog($) Returns the testlog for the specified test (default is

the current test if no test is specified).

113 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

$id→get errorlog($) Returns the errorlog for the specified test (default is
the current test if no test is specified).

$id→name() Returns the Rig name (the integer passed to the
RFC::Rig constructor).

$id→type() Returns the string ’Rig’;
$id→session() Returns the current test number.
$id→proglog($[$]) Appends the specified string to the rig proglog for the

currnet test. If an atdditional argument is specified it
is assumed to be the username of the originating user
and the string is appended with this information, if
not a generic user identification is appended including
terminal of origin (usually ’rigX’ on /dev/pts/N). In
addition an entry is logged in the tracelog in this case.

$id→disable proglog([$]) Sets or gets the proglog disabled attribute. if
proglog disabled is set to true, all calls to proglog
simply return s withoug appending to the proglog.
Default is 0 (flase, logging enabled), and this setting
should only be carefully used.

$id→errorlog($[$]) Appends the specified string to the rig errorlog for the
currnet test similar to proglog. Note that all logged
errors are automatically appended to the proglog.

$id→tracelog($) Appends the specified string to the rig tracelog for
the currnet test. The logged string includes complete
stack backtrace

$id→print setup() Prints out the complete current setup includ-
ing all member functions and data fields (uses
Class::Inspector). Overloads the print setup() func-
tion in Debug.pm.

$id→test list() Returns a list of all devices. The returnes list is a
array of hashes (with each hash containing id and
name of a specific device).

$id→print config() Prints out the rig configuration
$id→check run() Forces an error if the current user number does

not match the rig number (as determined by
RFC::Main::get user number)

$id→check group() Forces an error if the current user is not part of the
RFCcontrol base group (the group the apache web
server is also part of).

$id→inc test($$) Increases the test number and reinitialises the rig in-
stance. The aruments are the additional test infor-
mation and the name of the user initialising a net
test.

$id→DESTROY() Object destructor.

A special function is the DESTROY() member function. In most object oriented pro-
gramming languages, the implementatiion ensures that the destructor is called in reverse

114 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

order on an object and it’s internal objects. Unfortunately the Perl GC does not guar-
antee this, as a result (and the often deeply nested object tree for a RFC:Rig instance),
if the rig’s destructor is not called explicitly before program termination, the default ob-
ject cleanup may result in attempts to de-refer already destroyed objects durring global
cleanup. In most cases this is a harmless error, but for some objects (PID’s in particular),
this will result in internal state not beeing saved (as the file object for saving the state is
already gone)

RFC::Rig also implements the Visitor pattern by suppliying the Accept() method.

$id→Accept($) Runs the Accept() function for all devices with the
supplied visitor as argument (behaves as a Composi-
teElement (GoF))

Rhe RFC::Rig class also implements the Gof Composite pattern (together with the
RFC::BaseDevice derived classes) with RFC::Rig acting as a Gof Component class as
will as the Gof Composite class.

Device management. Any RFC::Rig instance has a number of device instances asociated.
Some of these devices are read only devices (datalogging) while others may be control
devices.

The types avaliable are:

simplechannel
relay
gas (the plural of this is gasses)
gasgroup
MFC (Mass flow controler)
multiplex (plural multiplexers), used for gas multiplexing.
water (water bublers)
PSU (Power supplies, including electronic loads)
templog (Temperature logging only, not control)
tempcontrol (Temperature controller)
analog (Analog output devices)
filter (virtual device)
logic (virtual device)
math (virtual device)
Alert (virtual device)
Adapter (virtual device)
PID (Virtual control device for PID control systems)

and a list of device types can be obtained by calling:

$id→list types();

Each of these device types has different member functions, but common for all of them
is that they must be derived from BaseDevice.pm (which defines the base. member

115 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

functions on which RFC::Rig relies on). To get a device instance of a particular type,
call

$id→get device($type,$name);

The type must match one of the above defined types (otherwise the function merely
return undef). If no device exist of the type and name specified, undefined is returned
instead of a device instance, note that this function does NOT initialise or load new
device instances, it merely returns references to already initialised / loaded devices (This
is usually handles by the class constructor/init function).

It is also possible to use the init device function:

$id→init device($type,$name);

This function tries to initialise/load the device if it does not already exist.

It is possible to get lists of devices and avaliable devices (that is all possible devices of a
type, irrespectively of it is loaded or not) as well as supported device types by using the
following functions:

$id→list types() Returns a list of supported device types.
$id→list types nofilter() Returns a list of supported device types but excludes

filter types.
$id→get uiname($) Returns a human readable string describing the spec-

ified device type (intended for use on the UI).
$id→list devices($) Lists the devices of the specified type.
$id→list devices control($) Lists the enabled devices of the specified type which

is not readonly.
$id→list names($) Lists the devices of the specified type which will be

explicitly initialised during rig initialisation. Note
that this list does not include implicit devices or de-
vices initialised as part of other devices!

$id→list names tag($) Returns the tag name used for controling the enabled
status for the devices of the specified type (an enabled
device gets explicitly initialised).

$id→avaliable devices($) Lists the possible devices of the specified type.
$id→avaliable devices nofilter($) Lists the possible devices of the specified type but

excludes filter devices which may masquerade.
$id→device sectionname($) Returns the cofiguration section base name (identi-

fier) for the device type in question. returns ’chan-
nel ’ if called with the ’simplechannnel’ argument for
instance as the simple channel ’cell voltage’ is config-
ured in the ’channel cell voltage’ section.

$id→get devce($$) Returns a device instance of the specified type and
name.

116 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

$id→delete device($$) Removes a device instance of the specified type and
name. Use with extreme caution as used wrongly
may cause perl’s version of a NULL-pointer exception
lateron!

$id→register device($$) Attatches the specified device instance to the rig in-
stance. Note duplicate names not allowed. (results
in an error). Argu,ents are: type,name.

$id→set cache($$$) Saves a value for the specified device type and name.
Arguments: Device type, Device name, Value.

$id→get cache($$) Gets the cached value for the specified device type
and name. Returns undef if caching is not allowed or
if no value was found for the type and name specified.

$id→get cache time($$) Gets the cache time for the specified device type and
name. Returns undef if caching is not allowed or if
no value was found for the type and name specified.

$id→store cache() Stores the cached values in a file. Is called automati-
cally by the RFC::Rig destructor.

$id→load cache() Loads the stored cache values.
$id→clear cache([$$]) Clears the persistent cache. If optional parameters

are passed, only the cache for that composite key
(type and name) is cleared.

$id→allow cache([$]) Sets or gets if persistent caching is to be allowed. De-
fault is to not allow caching. If caching is disallowed
All calls to get cache() will return undef; Notice that
only if the ’allow caching’ key in the ’IV control’ is
set to ’Yes’ is caching allowed to be turned on (That
is, bu setting ’allow caching’ to no disables all persis-
tent caching durring iV curves irrespective of device
configuration).

$id→list caching() Returns a list of devices for which caching is enabled.
Notice that filter devicec can never be caching.

For all of the above functions the specified type must match one of the types returned
by $id→list types() or the functions returns undef.

A number of control functions are also defined. They each operate on one of the device
instances (depending on type).

$id→set temp($) Sets the specified temperature setpoint for the spec-
ified device name (if no device name is specified and
only one. temperatue control device is initialised,
that device is used).

$id→set ramp($) Same as above, but for temperature ramprate
(C/hour).

$id→current($) Sets the specified DC curent for the specified PSU (If
no PSU name is specified and only one PSU devce is
initialised, that one is used).

117 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

$id→voltage($) Same as above, but for the DC voltage.

11.10.2 Private member functions

Each RFC::Rig instance also has the following private member functions.

Perl does not enforce public / private declerations however, so the functions are avaliable.
The private member functions is not intended for normal use, only for advanced use by
system maintainers!

$id→load session nr() Loads the session number from the session number
file.

$id→create dirs() Checks the current session and creates the directories
asociated with the test if nescesarry.

$id→last read() Dummy function returning current time

Each device type has four handling functins described for the simplechannel class below.
The four types of handling functions for device type TYPE are:

$id→TYPEs();
$id→TYPE();
$id→init TYPE();
$id→avaliable TYPEs();
$id→register TYPE($);

$id→simplechannels() Returns a list of the current simplechannels.
$id→simplechannel($) Returns the Simplechannel class instance with the

specified name (if it exists, undef otherwise).
$id→init simplechannel($) Attempts to initialise a new simplechannel device

with the specified name, returns the device instance
created. Forces an error if the nescesarry configura-
tion section is not found in the configuration file.

$id→avaliable simplechannels() Returns a list of possible simplechannels (including
disabled simplechannels).

$id→register simplechannel($) Attatches the specified Simplechanel device instance
to the rig instance. Note duplicate names not allowed.
(results in an error).

Eeach type also has a constructor wraper function asociated with it which is a member
function of the rig instance:

$id→new AnalogOut($)
$id→new RELAY($)
$id→new SimpleChannel($)
$id→new PSU($)
$id→new Multiplexer($)

118 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

$id→new MFC($)
$id→new TEMP($)
$id→new GAS($)
$id→new Water($)
$id→new Templog($)
$id→new GasGroup($)
$id→new filter($)
$id→new Logic($)
$id→new Math($)
$id→new PID($)
$id→new Alert($)
$id→new Adapter($)

The new device functions are wrapper functions for the various Device.pm factory func-
tions. They are used by $rig→init() as well as to obtain an device node for a not enabled
device (For testing purposes when installing a ned hwardware/logical device)

11.11 RFC::Visitor

Inherits from Debug (refer section 11.1).

The RFC::Visitor module defines the base behaviour for visitors used together with
RFC::Rig and RFC::BaseDevice instances. The RFC::Visitor class is the base class, and
the RFC::VisitorClear class isused to clear the internal references to already seen visitors

The DummyVisitor class can be used to test the Visitor pattern on a RFC::Rig instance
(it merely count the number of devices).

To obtain an instance call the constructors:

my $v = RFC::VisitorClear→new(); - Clears the list of seen visitors

my $v = RFC::TestVisitor→new(); - Tests the devices it is called on

my $v = RFC::ConfigVisitor→new(); - Prints the device configuration.

my $v = RFC::DebugVisitor→new($debuglevel); - sets the debug level

my $v = RFC::MeasuretimeVisitor→new(); - Gets the last time measurements were done
for each device

my $v = RFC::DummyVisitor→new(); - Runs through the devices and counts instances

my $v = RFC::DisableProglogVisitor→new(); - Disables appending to proglog.

my $v = RFC::EnableProglogVisitor→new(); - Enables appending to proglog if this is
disabled.

All RFC::Visitor derived classes must implement the follwoing member functions:

$id→VisitSimple($) Must handle access to simple devices (such as sim-
plechannels)

119 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

$id→VisitComplex($) Must handle access to complex devices (such as
Temolog devices).

$id→result() Return the calcualted value or string for the visitor
in question

When designing new visitors it is advisable to make the visitor class name descriptive of
what the visitor in question actually does.

11.12 RFC::Cache

Inherits from Debug (refer section 11.1).

this module defines the RFC::Cache class. the RFC::Cache class is intended to be used
for caching device data in conjunction with objects derived from RFC::BaseDevice.

A RFC::Cache object can be obtained by calling the constructor:

my $id = RFC::Cache→new();

All RFC::Cache objects has the following public member functions:

$id→clear() Clears all data content in the data cache.
$id→dump() Returns a data dump of the cached data (using

Data::Dumper).
$id→stat() Returns some statistics for the cache (number of hits

as well and tries as well as a dump of the cache).
$id→set(@) Sets a data value to be cached. The first n arguments

must be key names and the last argument must be the
value to be set. Example: set(’ttyS0’,’icp’,’1’,453.56)
Note that all keys are converted to lower case to min-
imise typing errors!

$id→get(@) Returns the value asociated with the specified keys
(using the example above, get(’ttyS0’,’icp’,’1’) would
return 453.56 If a value is not found or the keys are
not encountered in the correct order, it returns undef.
Thus remember to check if the return value of get(@)
is defined before it is used!

$id→get time(@) Returns the time the data was set asociated
with the specified keys (using the example above,
get(’ttyS0’,’icp’,’1’) would return something like
1444130488.2388 If a value is not found or the keys
are not encountered in the correct order, it returns
undef. Thus remember to check if the return value of
get time(@) is defined before it is used!

120 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

11.13 RFC::Spline

Inherits from Debug (refer section 11.1).

This module defined the behaviour of a spline interpolation.

The intended use of RFC::Spline instances is to correct measured values according to a
callibration table and/or to convert a measured value to an other format (for instance
given a conversion table linking measured voltages to pressures a splineinterpolation can
be used to obtain the pressure given a measured voltage).

To obtain a RFC::Spline instance call the constructor:

$id = RFC::Spline→new($data);

where $data is a string containing a list of spline data. the list must be formatted in the
form of a number of lines with a single x and y cordinate on each line. The data must
represent a continious, single valued function (that is for each x there is one and only one
y and the function is without ’jumps’ like seen in the function 1/x). The x and y values
must be separated by space and/or tabs and lines must be separated by newlines. Note
that if more than 2 values are found on a line only the two first are used and only valid
lines are used (lines with less than 2 detected numbers are discarded!).

An RFC::Spline instance allows numbers to be converted according to the spline table.
Thus to convert a given value simply call the ’value’ public member function.

$newval = $id→value($oldval);

The following public member functions exists:

$id→value($) Returns the interpolated value based on supplied ar-
gument which must be a number!

$id→data() Returns the spline table used in the calculations.

If only 2 sets of numbers are given in the spline table, the relation is assumed to be a
linear one and no spline interpolation is performed. Instead a spmple linear interpolation
is used.

The same is the case for input values outside the defined data range. In those cases the
first or last 2 data points are used in a linear interpolation. Notice that in general it is
poor form to interpolate values outside the defined range!

Below is an exaple of how a spline table may look:

-0.5 -0.1

0 0.1

1 3

1.5 5.7

121 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

11.14 RFC::BaseDevice

Inherits from RFC::Observer (refer section 11.9).

This module defines a number of common functions for all RFC devices. Most of these
functions are virtual in that respect that they are overwritten by the individual class
definitions.

To obtain a device instancee call the constructor (in this case BaseDevice): my $id =
BaseDevice→new($name,$rig); Where $name is an identifier string (preferably unique)
and $rig is an instance of the RFC::Rig class. This second argument is required for
callback functionality used in a number of the device operations (mainly $id→read, but
in some cases also by the derived device constructors and/or init functions). Some device
constructors may require additional arguments (refer the individual class files for details).
The rig object must at least honor the following member functions (refer RFC::Rig for
details about the individual member functions):

get cv(section,key)

change config value(section,key,newval)

list types()

list types nofilter()

list devices(type)

list devices control(type)

avaliable devices(type)

avaliable devices nofilter(type)

get device(type,name)

init device(type,name)

register device(object)

warning mail(type,msg,[opt subj])

unset warning(type)

proglog(string)

errorlog(string)

get cache time(type,name)

get cache(type,name)

set cache(type,name,value)

clear cache(type,name)

All devices inheriting from RFC::Basedevice honors the folliwing member functions:

$id→type() Returns the type of the instance (usually the class
name)

$id→name() Rreturns the name of the instance.

122 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

$id→UIname() Rreturns the name of the instance to be used for user
interface purposes. Note that unlike names returned
by the name() function, names returned by UIname()
are NOT guaranteed to be unique even within device
types! The default is that name() and UIname() re-
turn the same string.

$id→mode() Returns the mode of the device (usually one of the
follwing Readonly, Automatic or Manual).

$id→sectionname() Returns the section name from which the device was
initialised.

$id→init() Initialises the device (not all devices require this).
$id→print config() Returns a string containing the setup information.
$id→print setup() Prints the contents of the current device data (soft-

ware only).
$id→title() Returns the title string for the device (if defined) or

an empty string.
$id→rig() Returns a reference to the attatched rig instance.#
$id→proglog($[$$]) Appends the supplied string to the attatched rig’s

program log If a second argument is specified that is
asumed to be the user name of the user originating
the action/logentry. If a third argument is specified
or disable proglog is set, no logging is performed (use-
full for i-V curves where lots of commands are given
during the i-V curve and logging all of them would
polute the program log.

$id→disable proglog([$]) Returns 1 if appending to the attatched rig’s proglog
is disabled. If an argument is supplied, sets the status
instead. Default is 0 (proglog enabled).

$id→errorlog($) Appends the suplied string to the attatched rig’s er-
rorlog.

$id→get conf($) Returns the configuration value for the specifiec key
Uses the rig instance for the actual configuration ma-
nipulation If called in a list context,returns a list
of values based on the raw configruation value split
along commas (ignores spaces arrounds commas).

$id→load conf() Loads all confifguration values from the rig instance.
Uses the list supplied by setup tags legacy() to get
the keys for which values to inport.

$id→change cv($$) Changes the configuration value for the specifiec key
to the new value (second argument) Uses the rig in-
stance for the actual configuration manipulation

$id→get default($) Returns the default setting for the specified configu-
ration tag.

123 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

$id→setup tags() Returns a list of setup tags which the divice under-
stands. setup tags() adds the common element ’com-
ments’ to the list defined by the individual device
classes, and this element is intended to be used for a
string containing commetns for the device.

$id→setup tags legacy() Same as setup tags() except it includes potential dep-
recated setup tags for the device.

$id→tag description($) Returns the description string asociated with the
specified tag. Hardcoded to return the string ”De-
scription for this device, not used for other purpose.
Do not use ’,’ in text as that character is used as
newline substitute.” if the supplied tag is equal to
’comments’.

$id→tag type($) Returns the type of the specified tag (Readonly or
read-write) Default is read-write.

$id→radonly value($) Returns the value of a specified (readonly) tag. Re-
turns undef if the tag is not readonly. Note to de-
velopers: This function needs to be defined for all
readonly tags for a given device type!

$id→get tag values($) Returns a list of possible values for a specific setup
key.

$id→ui fn names() Returns a list of function names which can be called
from the device configuration page in the user inter-
face Default is to return the empty list as most device
types vould usually not have nay functions which it
would make sense to call from the device setup user
interface as the interface only allows maximum one
argument to any function called from there (by using
the prompt() javascript function). If the last line of
the returned string from this function is the string
’RELOAD’, then the setup page will be refreshed
(as it is assumed that running this particular func-
tion will change the internal variables of the device
in question).

$id→ui fn args($) Returns the number of arguments which must be sup-
plied fo the function with the specified name. Is in-
tended to be sued in conjunction with ui fn names()
and only function names mentioned in that list will
be valid arguments (returns undef if no match). De-
fault value is 0, so if the function does not have any
arguments it is not nescesary to specify a value in the
’ ui fn args’ hash

$id→ui fn description($) Returns the description string asociated with the
specified function name. All functions listed by
ui fn names() must have a corresponding description
in the ’ ui fn desc’ hash

124 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

$id→list set functions() Returns a list of possible function names which could
trigger a notify event (such as setflow for a gas or
set voltage for a PSU) Returns an empty list for pure
input devices (default)

$id→readonly() Returns true (1) if the device is a readonly device
false (0) othervise. The default is for a device to be
controlable, thus false (0) is the default response.

$id→set readonly() Sets a device readonly (only use with caution as can
not be reversed).

$id→info string() Returns a string (potentially empty) containing in-
formation which the user may need for device config-
uration.

$id→persistent() Returns 1 if the persistent settings key is defined and
is set to ’Yes’. Returns 0 otherwise. Some device
types allow querying the physiccal device for some
settings. This can be done each time at device ini-
tialisation (default) or stored on file. The advantage
of storing those settings in the configuration file is
that device communication overhead is minimised.
The disadvantage is that if those settings change, the
RFCcontrol system will not know this and use the old
(and now wrong) settings. If the persistent settings
key is set to yes, the settings are read from the con-
figruation file (and have to be specified there).

$id→query settings() This function queries the device for the settings which
can be aquired directly from the physical device and
stores them in the configuration file. For most device
types this is a NOP. If defined for a device type, it
should be executable from the device configuration
user interface.

All devices also has the following special functions for data access:

$id→read([$]) Returns the value of the instance, this is dependent
on the type of device. If an argument is specified it
must be an object of type RFC::Cache. If the device
allows using cached values, the cache is first checked
and if a value is found this is returned instead of the
raw value. Noptice that if improperly used values too
far in the past can be returned! The caching is done
through the attatched RFC::Rig instance For some
device types caching is not possible and a raw read is
always returned.

125 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

$id→bool([$]) Returns the boolean value of the device. For devices
which already boolean values of read(), the the bool()
function is merely an alias for read() whereas for de-
vices returning non-bool values the default is to re-
turn 0 (false) if the value of read() is 0 or undefined
and 1 (true) otherwise.

$id→value() Returns the value of the device. This is obtained from
the read() function if the value() function is called for
the first time. Any subsequent calls to value() will re-
turn the internally stored value. unless clear cache()
has been called in which case the read() function is
called again. This function is intended to be used
when arithmetic opeartor overloading is used in orer
to speed up calculations.

$id→setpoint() Alias for read(). Can be overloaded for controlable
devices to return the last given setpoint.

$id→has ramp() Returns 1 (true) if the deivce has a ’set-ramp’ func-
tion (and thus is capable of ramping to a new set-
point). Default is to return 0 (false).

$id→read nocache([$]) Returns the value of the instance, this is dependent
on the type of device. If an argument is specified it
must be an object of type RFC::Cache. Unlike read()
this function does not check persistent cache even if
caching is allowed.

$id→last read() Returns the last time read nocache was called.
$id→read cache([$]) Returns the last read value. If an argument (time in

seconds) is specified, this forces a new call to read() if
the time since last call of read nocache is larger than
the specified difference. Any additional arguments is
passed on to read().

$id→is caching() Returns true if caching is configured to be enabled
for this device. Returns false otherwise.

$id→set cache($) Sest the specified value in the persistent cache (this
is done through the attatched RFC::Rig instance.

$id→clear cache() Resest the persistent cache (this is done through the
attatched RFC::Rig instance. It also clears the local
cache used by the value() function

$id→read names() Returns a list of valid read functions (most devices
only returns a list with the ’read’ function).

$id→read named([$]) Returns the value of the specified function. If no
function name is specifiecd, the read function is re-
turned(). Only function names listed in the response
from read names() are valid

$id→readstring([$]) Returns the value of the device, but with additional
time information. If an argument is specified it must
be an object of type RFC::Cache.

126 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

$id→readstring ignore() Sets or gets the variable determining if the read-
string function simply returns undef or the real re-
turn string. This is useful if calculations require a lot
of simple data values to calculate the desired variable
and one whishes to awoid ’poluting’ the data logging
with the raw data values of the intermediate vari-
ables. If called without arguments, returns the value
of the ignore variable. 1 disables readstring returning
a string, 0 enables it again. Default is 0 (readstring
enabled).

$id→get time() Returns the current time in format YYYY MM DD
HH MM SS Output is in the form of an array.

$id→test() Returns 1 or 0 depending on device status. BaseDe-
vice always returns 0 as it is meant to be overridden
by the derived classes.

$id→test string([$]) Returns the device status as a string (in some cases
the status of devices used by the device is included).
Intended to be overridden by derived classes. If the
optional argument is specified it should be an instance
of RFC::Cache (in some cases this will speed up exe-
cution as cached data can be used instead of having
to read new values from hardware).

$id→monitor() Returns the value(s) of the device. In most cases
this function is just a wrapper for the read() member
function, however in the case of devices with more
than one interesting value to read (for instance for
temperature controlers where one wants both the set-
point and the active setpoint) a string containing the
values as well as descriptions are returned instead.

$id→monitor rows() Returns a string identifying how many data rows
moitor() returns and which row numbers contain data
(as opposed to identifier strings) Default is the string
’2’ for a normal device which only returns a single
value and a time. For devices returning multiple val-
ues the string returned could be ’3,5’ for instance (as
rows 2 and 4 contain the strings describing the values
in row 3 and 5 respectively).

Both read and readstring accepts and additional argument. This argument must be an
object of type RFC::Cache (or any other object which has the the get() and set() interface
specified the way RFC::Cache does) and if this is specified, the read and readstring
functions first looks in this cache to see if they can find the requested data there. If
so, the already existing data is returned and if not the data is measured and stored in
the cache as well as returned. The advantage of this is that multiple relay instances can
share a read operation if they are on the same relay board (and the device has a bulk
read option as the ICP-Das modules all does).

127 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

To use this option the template below can be used:

my $data = RFC::Cache→new(); my $string = $id→readstring($data);

In this case a new empty cache is defined and it will then be populated by the readstring
function. any later calls to id→readstring($data) will thus reuse the stored data (only
for the same device or other devices using the same setup keys, refer the documentation
for RFC::Cache).

In order to test if the reference passed to readstring is of the correct type the following
function can be used:

$id→check cache($) Checks that the supplied argument is of type
RFC::Cache and if not, logs a warning and replaces
it with an object of the correct type.

It is also possible to use the observer pattern whith objects which derives from this base
class. To facilitate this, BaseDevice inherits from RFC::Observer.

RFC::BaseDevice also inplements the following member function which can be used when
overloading the observe() member function in derived classes:

$id→master() Returns the master device for a slave device. This
can be used to ensure that a master can not at the
samae time be a slave (which to some degree protects
against infinite recursions).

All device classes inheriting from BaseDevice also implements the Visitor pattern. Thus
all devices implements the Accept(RFC::Visitor) function.

$id→Accept($) Runs the VisitSimple or VisitComplex member func-
tion of the supplied visitor instance.

$id→Clear visitors() Special function which clears the list of already seen
visitors

the default Accept method derived from BaseDevise is to call the VisitSimple function.
All complex devices (containing internal devices) should implement their own Accept
method. As a RFC::Basedevice derived device may be used in more than one other device,
the Accept method keeps track of which visitors has already visited it and only calls the
VisitSimple/ VisitComplex function once for each visitor. For long runing programs
which may continue to create visitors, it may be nescesarry to call Clear visitor() on all
devices to clear the list (The special RFC::VisitorClear visitor will do this if passed to
the Accept function of a RFC::Rig instance)

As it is possible (and indeed recommended) that device classes inheriting from
RFC::BaseDevice conains other RFC::BaseDevice derived class instances, the BaseDevice
and inherited classes implements the Composite pattern as this works well with the Visitor
patern for traversing parts or the whole device structure.

128 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

11.14.1 Operator overloading

RFC::BaseDevice overloads the following arithmetic operators: + - * / and ** (exponen-
tiation) as well as unary minus and the string operator ”” and the concatanation (dot)
operator. Thus it is possible to do:

$dev = RFC::BaseDevice→new(@ARGS);

$val = $dev + 6.5;

and get the expected result.

Similarly it is possible to do:

print ”Device: $dev is active”

Note however, that simple assignment is NOT overloaded, thus using $val = $dev will
NOT set $val to have the value of $dev→read(). To get the value of a device use the
read function directly or the slightly cumbersome $val = $dev + 0 (not to mention the
truly ugly $val = -(-$dev) which uses unary minus, which IS overloaded). The advantage
of the read function (apart from beeing easier to understand) is that it can be passed a
cache argument which the overloaded arithmetic functions can not and which in many
cases can speed up runtime as the device can re-use already measured values (refer the
definition of the read function).

11.15 RFC::Simple

Inherits from RFC::BaseDevice (refer section 11.14).

This class defines simple dataloging (readonly) channel setup To obtain an instance of
this class call one of the constructors like:

$id = RFC::Simple→new($name,$rig)

In case of an RFC::keithley or RFC::SimpleICP instance, it can also be obtained by

$id = RFC::Keithley→new($name,$rig,$channel)

or similarly for a RFC::SimpleICP instance.

The reason for the last option is to allow the instantiation of a device without a separate
setup section.

The RFC::Simple module defines no new member functions. However all simplechannel
devices have the configuration option of using a scaling factor (effectively a number which
is multiplied with the raw physical value). For instance this enables a value to be reported
in mV even though it is measured in Volt by setting the scaling factor to 1000.

11.16 RFC::BaseRelay

Inherits from RFC::BaseDevice (refer section 11.14).

129 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

This class defines the behaviour of simple relays To obtain a relay instance use one of the
constructors like shown below:

my $id = BaseRelay→new($name,$rig);

The rig argument must be a RFC::Rig instance or a similar object honoring the get conf()
member function. The constructior can also be called with additional arguments:

my $id = BaseRelay→new($name,$rig,$tty,$address,$channel);

where the last 3 argmeutns specify the serial device, the module address and the channel
number of the relay (as most relay modules contains more than one relay.

All relay objects have the following member functions (excluding those derived from
RFC::BaseDevce and Debug.pm):

$id→set($[$][$]) Sets the status of the relay to the specified arguemnt
one indicates closed relay, 0 open. If an additional ar-
gument is specified, it is assumed to be the username
of the controlling user and that name is appended to
the string appended to the rigs proglog. an exception
to this is if a further argument is specified in which
case no proglog entry is appended!

$id→set noinfo($) Similar to set() except no proglog info is appended.

If no data can be read from the device attatched to the object, the read() function returns
-1 to indicate the error.

Notice that the bool() function returns 0 (false) in case the status of the relay can not
be determined!

11.17 RFC::Monostable

Inherits from RFC::BaseRelay (refer section 11.16).

This class defines the behaviour of monostable relays To obtain a relay instance use one
of the constructors like shown below:

my $id = Monostable→new($name,$rig);

my $id = PWM Mono→new($name,$rig);

The rig argument must be a RFC::Rig instance or a similar object honoring the get conf()
member function. The constructior can also be called with additional arguments:

my $id = Monostable→new($name,$rig,$device);

where the 3’rd argmument is the relay device instance to be used for the control. This
device must be an instance of RFC::BaseRelay or a derived class.

The difference between the two types of monostable relays is that the PWM version has
varialbe on time which is determined at runtime by using the read value from an other
device whereas the normal one has a fixed on time (determined by the configuration).

130 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Notice that it is possible to create a circular list of Monostable relays as RFC::Monostable
is polymorphic with RFC::BaseRelay! Do not attempt this as the whole system will be
inoperable due to infinite recursion!

The RFC::Monostable class derives from and emulates RFC::BaseRelay but overloads the
$id→set function.

$id→set($[$][$]) Triggers the the relay to shortly send a close com-
mand followed by a wait duration and then a open
command irrespective of the first argument If an ad-
ditional argument is specified, it is assumed to be the
username of the controlling user and that name is ap-
pended to the string appended to the rigs proglog. an
exception to this is if a further argument is specified
in which case no proglog entry is appended!

If no data can be read from the device attatched to the object, the read() function returns
-1 to indicate the error.

11.18 RFC::AnalogOut

Inherits from RFC::BaseDevice (refer section 11.14).

This class defines simple analog output devices (D-A converters, not power supplies) To
obtain a analog output instance call onw of the constructors:

$id = RFC::AnalogOut→new($name,$rig);

$id = RFC::AnalogICP87024→new($name,$rig);

$id = RFC::AnalogICP87028→new($name,$rig);

$id = RFC::ManualAnalogOut→new($name,$rig); (A virtual, software only, device)

The rig argument must be a RFC::Rig instance or a similar object honoring the get conf()
member function. The constructiors can also be called with additional arguments like
shown below:

$id = RFC::AnalogICP87024→new($name,$rig,$tty,$address,$channel);

where the last 3 argmeutns specify the serial device, the module address and the channel
number of the output module (as most modules contains more than one output channel).

All analog output objects have the following member functions (excluding those derived
from RFC::BaseDevce and Debug.pm):

$id→set($) Sets the output voltage/current of the device to the
specified argument. the format for sending numbers
to the devices supported (i87022/24/26) is the engi-
neering unit DD.DDD according to the manual. The
driver uses sprintf to make sure that the supplied
number is in this format.

131 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

$id→current($) Sets the output (for current control modules) in A.
this functio is usually just a wrapper for set().

$id→mode() Returns the control mode of the deivce (mA,A,mV or
Volt). This overloads the normal mode() function.

$id→min() Returns the minimum possible value.
$id→max() Returns the maximum possible value.

11.19 RFC::PSU

Inherits from RFC::BaseDevice (refer section 11.14).

The PSU class (and the derived classes) defines the behaviour of DC power supplies for
the RFC control system. To obtain a PSU instance, call one of the constructors like
shown below:

$id = RFC::PSU→new($name,$rig);

$id = RFC::DefaultDelta→new($name,$rig);

$id = RFC::SM 15 100→new($name,$rig);

$id = RFC::SM 18 50→new($name,$rig);

$id = RFC::SM 60 100→new($name,$rig);

$id = RFC::SM 35 45→new($name,$rig);

$id = RFC::SM 52 30→new($name,$rig);

$id = RFC::SM 70 22→new($name,$rig);

$id = RFC::SM 120 13→new($name,$rig);

$id = RFC::SM 300 5→new($name,$rig);

$id = RFC::SM 30 200→new($name,$rig);

$id = RFC::ES015 10→new($name,$rig);

$id = RFC::ES030 5→new($name,$rig);

$id = RFC::ES075 2→new($name,$rig);

$id = RFC::ES0300 045→new($name,$rig);

The PSU class defines the follwing new functions.

$id→voltage($) Sets or returns the applied DC voltage If no argument
is supplied, it simply returns the last set value.

$id→current($) Sets or returns the applied DC current If no argument
is supplied, it simply returns the last set value.

$id→RSD($) Enables or disables DC output if such a device (relay)
is attatched to the system.

$id→minvoltage() Returns the minimum voltage.
$id→maxvoltage() Returns the maximum voltage.
$id→mincurrent() Returns the minimum current.

132 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

$id→maxcurrent() Returns the maximum current.
$id→idn() Returns a hardware specific identifier string
$id→measure U() Returns the measured voltage output (if the device

implements this).
$id→measure I() Returns the measured current output (if the device

implements this).
$id→get I() Returns the current setpoint (some devices returns

the result of measure I() instead).
$id→get U() Returns the voltage setpoint (some devices returns

the result of measure U() instead).
$id→set($) Alias for set voltage($) or set current($) depending

on the setting of the ’control mode’ variable.
$id→read Alias for measure I. Any arguments to read is passed

to measure I.

11.20 RFC::Elektro

Inherits from RFC::PSU (refer section 11.19).

This module implements RFC::PSU for electronic loads.

To obtain an instance call one of the constructors as shown below:

$id = RFC::EL 9080 200 HP→new($name,$rig);

$id = RFC::EL 9160 100 HP→new($name,$rig);

$id = RFC::EL 9400 50 HP→new($name,$rig);

$id = RFC::EL 9750 50 HP→new($name,$rig);

$id = RFC::EL 9080 200 HP→new($name,$rig);

$id = RFC::EL 9160 100 HP→new($name,$rig);

$id = RFC::EL 9400 50→new($name,$rig);

$id = RFC::EL 9750 50→new($name,$rig);

$id = RFC::EL 9080 600 HP→new($name,$rig);

$id = RFC::EL 9160 300 HP→new($name,$rig);

$id = RFC::EL 9400 150 HP→new($name,$rig);

$id = RFC::EL 9080 600 HP→new($name,$rig);

$id = RFC::EL 9160 300 HP→new($name,$rig);

$id = RFC::EL 9400 150 HP→new($name,$rig);

$id = RFC::EL 9750 75→new($name,$rig);

$id = RFC::EL 9750 75 HP→new($name,$rig);

$id = RFC::EL 3160 60A→new($name,$rig);

133 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

$id = RFC::EL 3400 25A→new($name,$rig);

$id = RFC::EL 9080 200→new($name,$rig);

$id = RFC::EL 9160 100→new($name,$rig);

$id = RFC::EL 9400 50 S01→new($name,$rig);

$id = RFC::EL 9750 25→new($name,$rig);

$id = RFC::EL 9080 400→new($name,$rig);

$id = RFC::EL 9400 100→new($name,$rig);

$id = RFC::EL 9160 200→new($name,$rig);

$id = RFC::EL 9400 100 S01→new($name,$rig);

$id = RFC::EL 9750 50→new($name,$rig);

11.21 RFC::Kepco

Inherits from RFC::PSU (refer section 11.19).

This module implements RFC::PSU for Kepco biploar power supplies.

To obtain an instance call one of the constructors as shown below:

$id = RFC::Kepco BOP 50 200MG→new($name,$rig);

Where $name is the name of the device and $rig is a RFC::Rig instance.

The Kepco class defines the following extra member functions besides those derived from
the RFC::PSU class:

$id→send raw($) Sends a raw command string to the device and re-
turns any output returned by the device.

$id→writecmd($) Sends a raw command string to the device, does not
expect any return value from the device.

$id→idn() Returns the identifier strign from teh device.
$id→get error() Returns any error. An empty return value indicates

no error. Note that the error register in the device is
automatically cleared after this command.

$id→device mode([$]) Gets or sets the device mode (0 is constant voltage,
1 is constant current).

$id→sine($$$[$]) Setup a sine wave output. argumentws are: de-
vice mode, frequency (Hz), amplitude (V/A) and op-
tional offset (V/A), where device mode is 0 for voltage
control and 1 for current control.

$id→square($$$[$]) Setup a square wave output. argumentws are: de-
vice mode, frequency (Hz), amplitude (V/A) and op-
tional offset (V/A), where device mode is 0 for voltage
control and 1 for current control.

134 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

$id→reset() Resets the device. Remember to use this after a sine
or square command has been processed before any
normal current and/or voltage commands

11.22 RFC::Keithley2400

Inherits from RFC::PSU (refer section 11.19).

RFC::Keithley2400 mpelments the RFC::PSU class for Keithley400 source meters.

To obtain an instance of RFC::Keithley2400 use the constructor:

$id = RFC::Keithley2400→new($name,$rig);

The class defines the following new member functions:

$id→PSU mode([$]) Sets or gets wether the PSU is a constant current
source (default) or a constant voltage source. Argu-
ment: ’CC’ for constant current and ’CV’ vor con-
stant voltage. Note that it may be nescesarry to run
reset() on the device after changing the PSU mode

$id→reset() Resets the keithley2400 to a known state.

As a Keithley2400 source meter is a true bipolar power supply, it is usually convenient
to use a RFC::PSU B2N device on top of the RFC::Keintley2400 device

Additionally in order to confirm with the basic operation of RFCcontrol, the positive
current direction is when the device under test is acting as a fuel cell (that is a positive
current acts as a current sink), therefore the current direction is reversed so specifying a
positive current actually sets a negative output!

11.23 RFC::PSU Bipolar

Inherits from RFC::BaseDevice (refer section 11.14).

This class defines the behaviour of container PSU modules. A PSU Bipolar instance
emulates a true bipolar power supply/eload by combining two power supplies or a power
supply and an electronic load. A power supply can be used as an electronic load if it is
fitted with DC offset diodes which offset the inherent DC bias of the device under test.
In the case of a single fuel cell, this is usually below 2 volt, and a series of 2 to 3 silicon
diodes can handle the DC bias. However beware that the diodes must be able to handle
the full DC current load (which potentially could be several hundred amps in case of big
PSU units) and thus the diodes likely have to be extensively cooled to awoid thermal
damage!

A PSU Bipolar instance behaves exactly as a normal PSU instance, however the minvolt-
age and mincurrent values are defined by the device acting as the PSU and the maxcurrent
and maxcurrent values are defined by the eload device.

135 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

The voltage() function is also overloaded so that if an additional argument is specified
besides the voltage to set, only the psu device is set if the second (optional) argument
matches the string ’psu’ and the eload device if it does not match. The rationale for this
is that both devices may need different voltage settings for true bipolar constant current
operation to work.

The benefit of using the container class is that it makes it possible to use two normal
power supplies as a single true bipolar power supply.

Beware, however, that you do not inadvertedly create an infinite recursion if more than
one container device is used!

The RFC::PSU Bipolar class defines whe following extra member functions:

$id→read volt psu() Returns the result of measure U() for the psu device
$id→read volt eload() Returns the result of measure U() for the eload device
$id→read curr psu() Returns the result of measure I() for the psu device
$id→read curr eload() Returns the result of measure I() for the eload device
$id→get volt psu() Returns the result of get U() for the psu device
$id→get volt eload() Returns the result of get U() for the eload device
$id→get curr psu() Returns the result of get I() for the psu device
$id→get curr eload() Returns the result of get I() for the eload device

These four functions are neeeded for accesing the voltage and current of the individual
devices.

11.24 RFC::PSU B2N

Inherits from RFC::BaseDevice (refer section 11.14).

The RFC::PSU B2N module defines a wrapper class which makes it possible to use bipolar
power supplies with the RFC control system. It works by vivifying a virtual relay which
from the system and UI is indistinguishable from the normal physical relays.

The only difference is that when switching polarity by using the virtual relay, the current
is switched by using callback through the the observer pattern. By using this, the device
behaves as a normal relay system. Thus this module overrides the observe() function
and attaches this device to the virtual relay instance created during device initialization
(bootstrapping).

A PSU B2N instance behaves exactly as a normal PSU instance in combination with
a normal electrolysis relay device. However, the minvoltage and mincurrent values are
defined by the device acting as the PSU, thus the mincurrent would likely be negative as
opposed to a normal unipolar PSU which would be unable to give negative current.

The benefit of using the container class is that it makes it possible to use a bipolar power
supply instead of a normal power supply fitted with electrolysis switching relays.

The TFC::PSU B2N module also defines the reverse wrapper (called RFC::PSU N2B)
which can be used to convert a normal unipolar PSU with a switching relay for polar-

136 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

ization control into a pseudo bipolar PSU (it will behave as a bipolar PSU as far as
RFCcontrol is concerned).

Although RFCcontrol assumes a normal PSU and a switching relay for control, in some
cases this is a disadvantage. Especially in the case where PID devices are used to control
the current of a PSU, then the inability of the normal PSU device to natively set a negative
current is a problem. This will be alleviated by using a RFC::PSU N2B wrapper between
the PID controller and the normal PSU.

11.25 RFC::PSUMulti

Inherits from RFC::PSU (refer section 11.19).

This class defines the behaviour of parallel connected PSU devices with diferent ranges.
This is intended to be used in the case where both high currents and high presision at low
currents are needed (and which rarely is possible with a single PSU). A RFC::PSUMulti
class instance behaves as a normal PSU device with the only exception that it is not
possible to use parallel or serial connections of RFC::PSUMulti devices (this has to be
done to the individual RFC::PSU devices).

As the API of RFC::PSUMulti is identical to RFC::PSU, it is possible to have more
than 2 PSU devices controlled in this way (as a RFC::PSUMulti. device can contain
RFC::PSUMulti as well as RFC::PSU device instances).

Beware that you do not inadvertedly create an infinite recursion if more than one container
device is used!

It is assumed that the individual PSU devices used handle ’OCV’ commands correctly
(that is that the PSU is placed in a high impedance output state either by PSU design
or by an external relay device, refer RFC::PSU for details).

11.26 RFC::MFC

Inherits from RFC::BaseDevice (refer section 11.14).

This class defines the behaviour of mass flow controlers for gas control. To obtain a MFC
instance call one of the constructors as shown below:

$id = RFC::MFC→new($name,$rig);

$id = RFC::Analog→new($name,$rig);

$id = RFC::AnalogReadonly→new($name,$rig);

$id = RFC::Brooks→new($name,$rig);

$id = RFC::BrooksReadonly→new($name,$rig);

All MFC objects have the following member functions in addition to those derived from
RFC::BaseDevce and Debug.pm:

137 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

$id→gasses() Returns a list of possible gasses used if more than
one gas can be selected, usually in conjunction with
a RFC::Multiplexer device.

$id→selected gas() Returns the name of the selected gas.
$id→maxflow() Returns the maximum possible flow for the selected

gas.
$id→setflow($[$][$]) Sets the gas flow for the mass flow controler to the

specified value. If an additional argument is specified,
it is assumed to be the username of the controlling
user and that name is appended to the string ap-
pended to the rigs proglog. an exception to this is
if a further argument is specified in which case no
proglog entry is appended!

$id→gas change() Returns the gas change mode (either manual or au-
tomatic).

$id→controler mode() Returns the controler mode (either ’Flowrate’ or
’Pressure Dependiong on if the MFC is a flow con-
troler or a pressure controler)

$id→change gas($) Changes the gas of the controler to the specified type.
$id→gasses() Returns a list of possible gasses for the device This

is to be used in conjunction with a RFC::Multiplex
device.

$id→multiplexer() Returns the multiplexer deivce if it exists.
$id→accuracy() Returns the expected accuracy of the device (For

Brooks MFC’s this is usually 1 percent of fullscale).
$id→read raw() Returns the flow rate reported by the controler. As

opposed to the normal read() function the read raw()
does not check for multiplexer operation. Thus use
of this function directly can result in inconsistently
reported flow rates if the caller does not explicitly
check for multiplexer status.

11.27 RFC::MKS

Inherits from RFC::MFC (refer section 11.26).

This class implements RFC::MFC for MKS mass flow controlers. To obtain a MKS
instance call one of the constructors as shown below:

$id = RFC::MKS→new($name,$rig);

$id = RFC::MKSReadonly→new($name,$rig);

The RFC::MKS class does not define any new public member functions

138 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

11.28 RFC::Pcontrol

Inherits from RFC::BaseDevice (refer section 11.14).

This class defines the behaviour of pressure controlers for gas control. To obtain a Pcontrol
instance call one of the constructors as shown below:

$id = RFC::Pcontrol→new($name,$rig);

$id = RFC::Pcontrol Analog→new($name,$rig);

$id = RFC::Pcontrol AnalogReadonly→new($name,$rig);

$id = RFC::Pcontrol ER3000→new($name,$rig);

The RFC::Pcontrol device is the default manual device.

All RFC::Pcontrol devices emulates the RFC::MFC interface (refer the RFC::MFC.pm
module for further documentation of the special member functions for RFC::MFC de-
vices). This makes it possible to use a pressure control device as was it a MFC device
and thus a gas device can be used to control gas flow or gas pressure. In order to dis-
tinguish, Pcontrol devices allow only the selection of gas device names where the name
contains the string ’pres’. This forces a more intuitive user interface where a clear dis-
tinction between normal gas devices and gas pressure devices.

RFC::Pcontrol devices does not support the addition of gas multiplexers, however to
conform with the RFC::MFC interface, the functions to manipulate gas multiplexers are
defined (but usually simply return undef).

All calculations for pressures using Pcontrol devices are performed in bar absolut (barA,
1 barA coresponds roughly to atmospheric pressure and 0 barA is a perfect vaccum).

The RFC::Pcontrol class defines the following membeer functions:

$id→minP Returns the minimum pressure for the controler in
barA

$id→maxP Returns the maximum pressure for the controler in
barA

$id→setP($[$][$]) Sets the gas pressure to the specified value If an ad-
ditional argument is specified, it is assumed to be the
username of the controlling user and that name is ap-
pended to the string appended to the rigs proglog. an
exception to this is if a further argument is specified
in which case no proglog entry is appended!

$id→set Alias for $id→setP.

The following RFC::MFC member function has been remapped:

$id→setflow Alias for $id→setP.
$id→maxflow Alias for $id→maxP.
$id→gasses Returns a single element ($id→selected gas).

139 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

11.29 RFC::Templog

Inherits from RFC::BaseDevice (refer section 11.14).

This class manages temperature logging as usually more than one measuremnt is needed
to correctly measure temperatures using thermocouples and/or PT-type resistance mea-
surements

To obtain a Templog instance call the constructor as shown below:

$id = RFC::Templog→new($name,$rig)

The Templog class defines no new functions.

11.30 RFC::Gas

Inherits from RFC::BaseDevice (refer section 11.14).

This calss defines the behaviour of gas flow logging. To obtain a gas instance call the
constructor as described below: my $id = RFC::Gas→new($name,$rig) The rig argument
must be a RFC::Rig instance or a similar object honoring the get cv() member function.

All Gas objects have the following member functions (excluding those derived from
RFC::BaseDevce and Debug.pm):

$id→setflow($[$][$]) Sets the gas flow for the gas to the specified value
(note all gas flows for RFC devices must be specified
in nL/hour). If an additional argument is specified, it
is assumed to be the username of the controlling user
and that name is appended to the string appended to
the rigs proglog. an exception to this is if a further
argument is specified in which case no proglog entry
is appended!

$id→cutoff set() Returns the minimum flow for the gas below which
the gas flow is defined to be 0. Somne controlers re-
quire special commands for completely closing which
is the reason for this to be implemented.

$id→cutoff report() Returns the minimum flow for the gas below which
the gas flow is defined to be 0 even if the controler
may report a positive value. In case of a manual
gas, this value can be set freely, however in case of
a gas controlled by a MFC or similar, the default
mimimum value is 0.75 times the accuracy of of the
control device (it can be manually overridden to a
higher value).

$id→maxflow() Returns the maximum flow rate possible.
$id→maxflow set() Returns the maximum allowable flow rate.
$id→accuracy() Returns the device accuracy (usually forwarded from

the controling device e.g MFC).

140 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

$id→control device() Returns the device instance of the control relay (if
any).

$id→control value() Returns the control value. this is to be compared to
the read response from the control device to deter-
mine if the gas is engaged or not (used in fast switch-
ing applications where a cross-over valve determines
if gas is supplied to the device under test or not).

$id→controler() Returns the device instance used for controling the
gas flow rate. Usually an instance of the RFC::MFC
class.

$id→attatch multiplex($) Attatches a multiplexer device (of type
RFC::Multiplex) to the gas device. The multi-
plex device is used for determining if the gas flow
reported by teh controler is for this gas.

$id→gas() Returns the name of the gas controlled by this device.
$id→read cutoff([]$) Returns the gas flow similar to read(), but if the flow

is below the cutoff report value, it returns 0.
$id→set($[$][$]) Alias for the setflow function.
$id→setpoint() Returns the last set setpoint for the gas (in case of

manual gasses this will be the same as a normal read).
$id→is pressure() Returns 1 if the gas device is configured to be auto-

matically controlled by a pressure controler. Returns
0 otherwise.

The RFC::Gas module overloads the bool() function to return 1 (ture) only if the actual
flow is above the cutoff report() value (the bool() returns 0 (false) otherwise.

The RFC::Gas module also allows slaving of one gas to an other. A slaved gas is in the
setup specicfied to have a flow which is proportional to the flow rate of the master gas
with the proportionality facter defined in the setup. To facility this, the RFC::Gas slave
device attatches itself to the master device durring initialisation and uses the observer
interface derived from BaseDevice to set the flow to the correct value whenever the flow
of the master device is changed. This is achieved by overloading the observe() function.

As a safety precaution, a gas can not be a slave of an other slaveed gas. This is to ensure
that no infinite loops are created. To facilitate this, the following member function is
alos defined:

$id→master() Returns the device instance of the master gas device.
returns undef if the gas device is a master, thus is
only true for slave devices.

11.31 RFC::CGas

Inherits from RFC::BaseDevice (refer section 11.14).

This class defines the behaviour of container gas modules. A container gas instance is a

141 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

virtual device containing two RFC::Gas or compatible devices. The API for RFC::CGas
instances is identical to RFC::Gas instances with the sole exception of the controler()
member function which returns a list of devices instead of a single device. The benefit of
having an almost identical API to RFC::Gas devices is tha an CGas instance can contain
RFC::CGas instances as well as normal RFC::Gas instances.

The reason for RFC::CGas devices is that they are intended for cases where a single gas
line contains more than one gas controler for handling vastly differing flow ranges as most
MFC’s can only give an accuracy of 1 percent of fullscale value. By using a RFC::Cgas
container, the possiblele range of flow values can be extended beyond this.

Beware that you do not inadvertedly create an infinite recursion if more than one container
device is used!

Note that in order for the container module to work properly, remember to set correct
values for ’cutoff report’ for the individual gas names in the container as this setting
isused to determine if the gas is shut off! Incorrect setting of this may cause wrong flow
values to be logged!

11.32 RFC::Multiplex

Inherits from RFC::BaseDevice (refer section 11.14).

This class defines the control of multiple gasses to the same MFC. To obtain a Multiplexer
instance call the constructor:

$id = RFC::Multiplex→new($name,$rig)

The constructor can also be called with an additional argument which must then be a
RFC::MFC (or derived) device instance:

$mfc = RFC::MFC→new($name,$rig);

$id = RFC::Multiplex→new($name,$rig,$mfc);

All Multiplex objects have the following member functions (excluding those derived from
RFC::BaseDevce and Debug.pm):

$id→attatch controler($) Attatches an RFC::MFC instance to the multiplexer
(if not included in the call of the constructor).

$id→set($) Sets the multiplexer to select the specified gas name.
$id→gasses() Returns a list of possible gasses.
$id→gas() Returns the name of the selected gas (NB NOT device

name). If supplied with an optional argument this is
used as a data structure to access if the device had
already been read (similar to the read() and read-
string()) member functions inherited rom BaseDe-
vice.

142 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

$id→gas name() Returns the device name of the selected gas. If sup-
plied with an optional argument this is used as a data
structure to access if the device had already been read
(similar to the read() and readstring()) member func-
tions inherited rom BaseDevice.

Prior to version 4.2.5, the implementation of the RFC::Multiplex class assumed that all
gasses were controled from the same relay board (usually a ICP-con relay module) Thus
all gas relays shared the same device tty and address, but differed only in the channel
number. As of version 5.0 this is deprecated and will only be avaliable for configuration
if legacy mode is enabled (it will still work for already configured systems).

As of version 4.2.5 and onwards, it is possible to use arbitrary relay devices to control a gas
multiplexer. To do so, simply configure the relays as normal RFC::Relay instances and
select the proper names (defined in the ’$gasname’ device name key in the configuration
section ($gasname being the name of the gas line in question).

11.33 RFC::GasGroup

Inherits from RFC::BaseDevice (refer section 11.14).

This module defines the virtual concept of a gas group and is only used for data logging
for lumping gas flows for differenc controlers into a single data value based on flow values
and on a control flag (usually a relay). It is mainly used for cross-over systems where fast
gas changes is desired and multiple gas lines with identical control systems are switched
after gas flows has stabilised.

To obtain a gas group instance use the constructor:

$id = RFC::GasGroup→new($name,$rig)

The class does not define any new functions

Note that the read and readstring functions only add the gas flows for the gasses where
the flow is above the cutoff report value defined in the configuration for that gas (Thus
remember to set a sensible value for this setting)!

Similarly for the setpoint() function which only add the setpoints for the gasses which
are selected.

11.34 RFC::TempControl

Inherits from RFC::BaseDevice (refer section 11.14).

This class defines the behaviour of temperature controlers for furnace control. To obtain
aTempControl instance call one o fthe constructors like shown below:

$id = RFC::TempControl→new($name,$rig)

143 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

All TempControl objects have the following member functions in addition to those derived
from RFC::BaseDevce and Debug.pm:

$id→get atemp() returns the active (measured) temperature.
$id→get output() returns the output power.
$id→get temp() Returns the temperature setpoint.
$id→get ramp() Returns the temperature ramp rate (C/hour).
$id→set temp($[$][$]) Sets the temperature setpoint. If an additional argu-

ment is specified, it is assumed to be the username
of the controlling user and that name is appended to
the string appended to the rigs proglog. an exception
to this is if a further argument is specified in which
case no proglog entry is appended!

$id→set ramp($[$][$]) Sets the temperature ramp rate (C/hour). If an ad-
ditional argument is specified, it is assumed to be the
username of the controlling user and that name is ap-
pended to the string appended to the rigs proglog. an
exception to this is if a further argument is specified
in which case no proglog entry is appended!

$id→set($[$][$]) Alias for set temp.

11.35 RFC::Honeywell

Inherits from RFC::BaseDevice (refer section 11.14).

This class implements the RFC::TempControl class for Honeywell temperature controlers.

The RFC::Honeywell module defines the following extra public member functions

$id→P([$]) Sets or gets the proportional gain (Gain)
$id→I([$]) Sets or gets the integration gain (Reset)
$id→D([$]) Sets or gets the diffential gain (Rate)
$id→I min([$]) Sets or gets the minimum integration limit
$id→I max([$]) Sets or gets the maximum integration limit
$id→stop() Forces the controler to ’Hold’ (if in a program)
$id→start() Starts the default program. Used toghethre with

stop() when setting new temperature setpoint in or-
der to properly use the ’hot start’ option thus awoid-
ing local setpoint ’stickiness’ (basically to make the
Honeywell behave as a Eurotherm)

11.36 RFC::Filter

Inherits from RFC::BaseDevice (refer section 11.14).

This class defines a special virtual device which can be used as a sort of filter on top of a

144 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

normal device. An input Filter device type operates on an other device and converts all
read operations on the underlying device

An output filter device operates on all set() function calls and filters the supplied argu-
ment before passing it on to the underlying device.

An input-output filter device does conversion on both read and set operations.

All control commands are passed on to the underlying device and the resulting filter
device can be operated on as if it were the underlying device.

The Filter device class defines no new member functions and classes derived from Filter
should not normally define any new functions either.

The filter class is not intended to be instantiated directly, only the derived classes.

Notice that the class instance created by the constructors of deviced derived by Filter
must NOT call init() as part of the constructor. This must first be done as part of any of
the handling functions. This is to allow the underlying device to be autovivified before
it is used.

A special type of Filter is the Schmidt Trigger device. This device class contains a nomral
device (simple input device usually) which is masqueraded as a read only relay device
(that is, read returns either 0 or 1). The exact output value depends on the value of the
contained device as well as the settings of the trigger device.

To obtain an instance of the schmid trigger device call the constructer:

my $id = RFC::Strigger→new($name,$rig);

11.37 RFC::SPDEV

Inherits from RFC::Filter (refer section 11.36).

This module defines a number of filter device classes. All the device classes operates with
spline filters on either input and/or output. Notice that for all splines, if only two lines
are detected, the relation is a linear relation and are handled accordingly (that is without
calls to the external splineinterpol program).

11.37.1 SPDEV: Input spline filter

This SPDEV class defines a filter device which can be used on top of a normal device.
The SPDEV device type operates on an other device and converts all read operations on
the underlying device according to the specified spline interpolation table.

The SPDEV device class defines no new member functions.

To obtain an instance of this class call the constructor:

$id = RFC::SPDEV→new($name,$rig)

145 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

11.37.2 SPOutDEV: Output spline filter

The SPOutDEV device type operates on an other device and converts all set/setflow
operations on the underlying device according to the specified spline interpolation table.

To obtain an instance of this class call the constructor:

$id = RFC::SPOutDEV→new($name,$rig)

11.37.3 SPIODEV: Input-output spline filter

The SPOutDEV device type operates on an other device and converts all set/setflow and
read operations on the underlying device according to the specified spline interpolation
tables.

To obtain an instance of this class call the constructor:

$id = RFC::SPIODEV→new($name,$rig)

11.38 RFC::Ysplit

Inherits from RFC::BaseDevice (refer section 11.14).

This module defins the behaviour of a special filter device An instance of RFC::Ysplit
behaves as a selector switch and sends commands to one of two underlying devices based
on the status of the control device (which must be of type RFC::BaseRelay or a class
derived from RFC::BaseRelay).

The underlying devices to be controlled can be of any type derived from RFC::BaseDevice.

To obtain a RFC::Ysplit instance call the constructor:

$id = RFC::Ysplit→new($name,$rig)

RFC::Ysplit does not export any new member functions besides those derived from
BaseDevice. However if a member function is called which is not derived directly from
baseDevice the the RFC::Ysplit instance refers the function call to the underlying selected
device thourgh autoloading.

11.39 RFC::Sum

Inherits from RFC::BaseDevice (refer section 11.14).

This class defines several special virtual devices which can be used as a sort of filter on
top of a normal devices.

The following description is for a RFC::Sum device, but the other device types (RFC::Min
and RFC::Max) behaves similarly when considering the input and output devices

A RFC::Sum device operates on other devices and when the Sum device is read (that is
it’s read function is called), the device retruns the arithmetic sum of the input devices

146 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

read functions.

Additionally the RFC::Sum device registers itself on all the input devices resulting in
that if a set or setflow or similar control comand is called on one of the inputs, then the
same control function on the output device (if any) is called (This is achieved using the
observer pattern).

In the case of gas devices, if the setflow command is callen on any of the inputs, the
setflow command is called with the sum of the inputs as argument.

When a read command is called on a RFC::Sum device, the device first reads the values
of all the inputs, and if the input devices supports the cutoff set command, it checks if
the values are below the value of the cutoff. If so, the value for that device is then set to
0. After this check all the input values are summed together (with the respecive input
factors multiplied on the values before summing).

To obtain an instance of the RFC::Sum device call the constructor:

my $id = RFC::Sum→new($name,$rig);

Instances of the other device classes (RFC::Min and RFC::Max which uppon a read
request returns either the minimum or maximum value of the inputs) can be obtained as:

my $id = RFC::Min→new($name,$rig);

my $id = RFC::Max→new($name,$rig);

For RFC::Min and RFC::Max devices any commands passed from any of the inputs is
forwarded to the output device (if any) with the minimum or maximum value (instead
of the sum) as for a RFC::Sum device.

11.40 RFC::PLC

This class is a modbus communication interface class thats read and write from a modbus
device the class do not implement any of the RFC classes and can therefore be used as
a stand alone interface for TCP modbus communication. the class is constructed as
a singleton class with the IP as the key to the singleton meaning when instantiate an
instance of this class the IP will be checked for already exist and if not a new object will
be obtained.

this means that all interfacing to a specific modbus device with that IP address will go
through the same object

the PLC class is constructed as a interface/data object containing a data structure of of
Modbus addresses and the data associated with this address is saved if a read() cmd as
been executed the data structure is dynamic and new addresses to read can be added
by running the member function addDataAdr() with augments, if successful the address
will now be read with the read() CMD to get data from the structure just run getSin-
gleReading() with the adrName key as argument

Design criterium for the modbus stack: in order for this class to work properly with the
modbus stack server the stack should be build in sets of 16 bit words, for example a byte

147 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

should always come in pairs of 2 bytes after each other so the offset address grow with 2,
datatype BOOL is also considered as a byte/single element always avoid to place a 16bit
datatype or longer at an odd offset address

To obtain an instance of this class call the constructors like:

$id = RFC::PLC→new(%)

where the argument hash must have at least the ’IP address’ key defined (with the PLC’s
IP address) Additional possible hash keys are: port (TCP-IP port), readStartAddress,
dataQuantity and subNAME

Example of use:

$id = RFC::PLC→new(IP address =¿ ’10.0.1.216’);
$id→addDataAdr(”PLC Date and time”, 28, 72,’UDINT’);
$id→read();
print scalar(localtime($id→getSingleReading(”PLC Date and time”)));

The RFC::PLC module member functions is definedd below:

$id→addDataAdr($$$$) Adds a data item to the data list. Arguments (in
roder of alignment): $adrName = hash key name
of the modbus adrress ! should be an unique name
as it is used as the key in the datastructure. $adr
= the modbus stack address number of the vari-
able to read starting from 1 = first data element of
the stack $Offset = the modbus stack offset num-
ber $dataType which must be one of the follow-
ing types: ’BOOL’, ’BYTE’, ’DINT’, ’DWORD’,
’INT’, ’LREAL’, ’REAL’, ’SINT’, ’TIME’, ’UDINT’,
’UINT’, ’USINT’, ’WORD’

Example call. $testPLC→addDataAdr(”DI24 Analog”, 125,
384,’INT’);

$id→print() use for debugging, print out obejct configuration
(datastruct, name, modbus adr, etc.) to stdout

$id→getName() get the subName of the obejct
$id→getIP() get the Ip address of the modbus server
$id→checkAdrNameExists() return 1 if name exists in the data structure
$id→read() execute a modbus stack read of the full data struc-

ture, return 1 if succesfully with out any errors
$id→getSingleReading($) returns the last read value of the address key name

specified if exist remember to run read() before to get
a new data set

$id→getReadings() get the whole data structure remember to run read()
before

$id→getRawBytes() return the last read byte string
$id→getLastModbusMsg() return last status msg of the modbus
$id→getlastModbusException() return last Modbus exception

148 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

———-WRITE section————————————- modbus writing supports up to 16
bit(2byte) register and coil(BOOL) writing, in the case of 1 byte writing this can only be
done by writing to the whole 16 bit word and therefore the value of the second byte in
the word will be overwritten with zero value if not known else the last know set value will
be set but only if added to the @adrstructOut where the last written value is stored, its
planed to update the modbus driver to support writing to multiple registers at once by
adding the write registers function code, but for now we see if this will be of any needs
in the future. plese note that reading and writing at the same modbus adr. may not give
the same value as this is controlled by the modbus slave ex. the PLC and if the same
variable point at the same IN and Out register address in the modbus device. writing
member functions

$id→addDataAdrWrite($$$$) add a modbus stack writing address, after adding a
an adr. the modbus adr can be write to by calling the
write() with the address name and a set value. arg:
$adrName, $adr ,$Offset,$dataTybe valid data types:
BOOL,BYTE,UDINT,SINT,INT,UINT WORD,

$id→setNewValue($$) arg: ”adr name” ”new value” followed by a writeAl-
lAdr() cmd or Write()

$id→write raw($$$) write to a none specified modbus stack address by raw
address arg: $address = stackAdr, $type = BOOL or
16 bit INT data type, $value = num

$id→write($$) arg: $dataAdrName , $value
$id→convToOutputFormat($$) Privat member function that converts input numbers

of different type to the modbus data format ex. a
signed INT will be converted to its corresponding un-
signed decimal value arg: $dataType, $value

$id→getOutStructData($$) get adrstruct data by address name and hash key
name Arg: $dataAdrName = name of an existing
data adr in the @adrstructOut $hashName = key
name in the @adrstructOut

$id→getOutStructDataKeyElement($$$) function that search in the @adrstructOut by a $key-
Value in any of the hash struct column selected by the
$HashKeyName, and if found returns the value of the
$hashName, else returns undef arg: $HashKeyName
, $keyValue, $hashName

11.41 RFC::PLCRead

Inherits from RFC::BaseDevice (refer section 11.14).

This class implements (readonly) dataloging through the TCP modbus RFC::PLC.pm
device class note PLC.pm is a singleton class that takes care of all communication to and
from a modbus server given by the IP adrress meaning all instance of PLCRead.pm with
the same IP goes through the same PLC.pm object

149 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

To obtain an instance of this class call the constructors like:

$id = RFC::PLCRead→new($name,$rig)

The RFC::PLCRead module defines no new member functions.

11.42 RFC::PID

Inherits from Debug (refer section 11.1).

This module defines a PID controller and can be used together with the other RFCcontroll
modules for process control systems.

To obtain an instance of this class call one of the constructors like:

$pid = RFC::PID→new($name,$filename,[opt lock filename]);

Notice that unlike most other RFC devices the PID device class does not require a
RFC::Rig instance as an argument to the constructor. The name argument is the instance
name (useful if operating with more than one instance of the PID class).

The filename is the name of the file in which to store process error and integration error
information. This is used so that the PID device can maintain state across processes (for
instance if the control program is started once a minute from crontab).

The RFC::PID class implements a standard IPD controller (refer wikipedia for a more
detailed description of a PID controller)

All RFC::PID objects has the following public member functions besides those derived
from the Debug class.

$pid→reset() Resets the internal data including integrated error.
$pid→name() Returns the name given as first argument to the con-

structor.
$pid→intwindup([$]) Sets or gets the maximum integration error possible

(default is 0.2) To disable integrtion windup protec-
tion set the value to 0.

$pid→data($[$]) Adds a new error value to the device. Arguments
must be current error and optionally time. If no time
argument is specified, the local system time is used
instead (utime).

$pid→P([$]) Sets or gets the proportional gain (default is 0.9)
$pid→I([$]) Sets or gets the integration gain (default is 0.2)
$pid→D([$]) Sets or gets the differential gain (default is 0.1)
$pid→get P() Returns the proportional error multiplied with pro-

portional gain
$pid→get I() Returns the integrated error multiplied with integra-

tion gain
$pid→get D() Returns the differential error multiplied with differ-

ential gain
$pid→get int() Returns the integrated error.

150 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

$pid→reset int() Resets the integrated error.
$pid→set int($) Sets the integrated error to the specified value.
$pid→deadband([$]) Sets ot gets the deadband (if the error is below this

calls to Out() returns undef); Remember to check for
defined status of out if deadband is used (default is
no deadband).

$pid→min([$]) Sets or gets the minimum output value (default is -1)
$pid→max([$]) Sets or gets the maximum output value (efault is 1)
$pid→Out([$]) Returns the output to be set to the system. The

output value will be between min and max If an ar-
gument is specified to Out() it is assumed to be a
gain which is then multiplied to the raw output value
and the result returned instead. Notice that if the
error is within the deadband, Out() returns undef, so
remember to check the return value of Out() before
using it to set a device!

$pid→remove() This function works like DESTROY() except it does
NOT run a store() command before removing the file
object.

Additionally the RFC::PID instances has the following private functions (although Perl
does not protect private member functions from being called from outside an instance...)

$pid→load() Loads the data stored in the data file. Called auto-
matically by the constructor.

$pid→store() Saves the internal data to file. Called automatically
by the destructor. Returns 1 on succes, 0 if the
modification time of the file has changed since last
read/write

The RFC::PID object also implements integration windup protection by the following
method (in addition to the posibility to set a maximum value for the integrated error):
If the sum of the proportional gain and the previous integrated error is enough for the
output to reach the maximum or minimum value, the integrated error is NOT updated
but is maintained at the previous value.

11.43 RFC::RFCPID

Inherits from RFC::BaseDevice (refer section 11.14).

This class defines a virtual PIC control device for controling complex systems.

To obtain an indtance of this class, use the constructor:

$id = RFC::RFCPID→new($name,$rig)

All RFCPID objects have the following member functions (in addition to those derived

151 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

from RFC::BaseDevce and Debug.pm):

$id→fast() Returns yes if the device is to run continiously and as
fast as possible. If no is returned it is only run once
a minute (by crontab).

$id→store() Stores the current values and integrated error for Re-
turns 1 (true) for succes, 0 in case of errors.

$id→remove() This function removes the underlying PID device
from the Current device. Is only to be used when it is
certian that the current device is not to be used and
no changes in the accumulated error for the device
is wanted before device goes out of scope (nescesarry
for the PID fase control.pl script for excluding slow
PID’s)

$id→reset int() Resets the integrated error.
$id→set int($) Sets the integrated error to the specified value.
$id→set([$]) Sets or gets the target setpoint.
$id→data([$]) Reads the current value and computes the error which

is stored internally as well as returned. If an argu-
ment is specified, this is assumed to be the current
value and is used instead.

$id→out() Sets the output device to the calculated setpoint
based on the PID settings.

$id→control() Reads the current value and sets the output (combi-
nation of data and out.

$id→output enabled() Returns 1 if commands eill be passed to the output
device 0 otherwise.

$id→show gain() Returns an array with information about the P, I, D
and combined output for the device

11.44 RFC::Logic

Inherits from RFC::BaseDevice (refer section 11.14).

The RFC::Logic module defines a list of virtual logical devices Each of the devices im-
plements one of the logical operators AND, OR, XOR etc.

A logic device operates on logical inputs from RFC::BaseDevice derived devices where
the boolean value can be sensibly derived (by using the bool() member function). The
device classes where this is the case are: logical devices, relay devices, gas devices and
the special filter device ’Schmidt trigger’ which converts a floating point value to a logical
value based on specific threshold values.

A RFC::Logic derived device can have from 1 to 9 inputs and an optional single output
device. The output device must be a relay device type and is intended to convey the
result of one or more logical operations to the actual control system.

152 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

As RFC::Logic devices are virtual, they are not included in the normal datalogging (and
accordingly readstring ignore(1) is set uppon device instantiation). However they must
be enabled in the rig configuration to work properly.

Interdevice control flow is implemented by the obsever pattern. This ensures that input
devices does not need to know that they are used as inputs to logic devices ad any set()
or set noinfo() command exeuted on a relay device automatically forces ay logic device
using this as an input to get updated (and potentially forcing updates on logic devices
further ’down the chain’ to be updated).

Notice however that great care must be taken when including logic devices as it is easy
to configure a situation where circular references will occour (essentially causing Perl’s
version of a stack overflow).

Thus it is recommended that if logic devices is to be included in a rig’s control system,
make a detailed schematic of the control flow diagram with unique names of each indi-
vidual logic gate thus ensuring that the correct inputs and gate names are chosen when
configuring the rig.

11.45 RFC::Math

Inherits from RFC::BaseDevice (refer section 11.14).

The RFC::Math module defines a number of arithmetic devices which all accepts one or
more RFC devices as inputs and performs the arithmetic function on the values obtained
from the input devices read funstions.

The RFC::Math devices are purely intended to be used in rare cases where control logic
/ feedback loops require calculations of measured device values, and NOT intended to be
used for data logging purposes.

As RFC::Math devices are virtual, they are not included in the normal datalogging (and
accordingly readstring ignore(1) is set uppon device instantiation). However they must
be enabled in the rig configuration to work properly.

Interdevice control flow is implemented by the obsever pattern. This ensures that input
devices does not need to know that they are used as inputs to math devices and any
command executed on a RFC::Math input device automatically forces the RFC::Math
to get updated although this has no direct effect (other than potentially forcing devices
further ’down the chain’ to be updated).

Notice however that great care must be taken when including math devices as it is easy
to configure a situation where circular references will occour (essentially causing Perl’s
version of a stack overflow).

Thus it is recommended that if math devices is to be included in a rig’s control system,
make a detailed schematic of the control flow diagram with unique names of each individ-
ual math device as well as all other normal devices thus ensuring that the correct inputs
and device names are chosen when configuring the rig.

To obtain an instance of a RFC::Math object call one of the constructors:

153 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

my $id = RFC::Math add→new($name,$rig);

my $id = RFC::Math sub→new($name,$rig);

my $id = RFC::Math multily→new($name,$rig);

my $id = RFC::Math divide→new($name,$rig);

my $id = RFC::Math log→new($name,$rig);

my $id = RFC::Math exp→new($name,$rig);

my $id = RFC::Math root→new($name,$rig);

my $id = RFC::Math abs→new($name,$rig);

my $id = RFC::Math inv→new($name,$rig);

RFC::Math devices does not allow caching, however the underlying (input) devices may
do so by themselves.

Notice that some of the RFC::Math devices behaves slightly different than the normal
arithmetic functions they implement. This difference is due to the potential consequences
of division by zero or similar errors.

Thus RFC::Math::divide returns 0 if the divisor is 0, RFC::Math::log and RFC::Math::root
returns 0 for all non-positive inputs (including 0) and RFC::Math::inv returns 0 if the
input is 0.

11.46 RFC::Typecast

Inherits from RFC::Filter (refer section 11.36).

The RFC::Typecast is a special filter device. It can convert one underlying device to an
other type.

Typcast devices should not normally be nescesarry, but in specific cases it may be nesce-
sarry to do a typecast.

Typecast devices have a simplified interface as they only implement the BaseDevice
classes.

An exception to this is the notify function which allows the conversion of the originating
command to the one specified by the ’notify function’ value. Default is the ’set’ command.

The possible values for this variable is determined by inspecting any devices attatched
to the Typecast device. If (one or more) attatched devices are found, the first device is
asked for potential notify functions by calling the list set functions() on it.

As opposed to most other devices, the readstring function simply returns the empty string
as the value of the typecast device will be equal to the unederlying device.

A special Typecast device is the RFC::TypecastFaraday (accessed as
Typecast PSU to gas), which only accepts RFC::PSU devices as inputs and always mas-
querade as a RFC::gas device. This device class only forwards ’current’ commands but
not ’voltage’ commands as it only makes sense to convert a current to a gas flow according

154 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

to Faraday’s law of elecrolysis.

To obtain a RFC::Typecast instance, call one of the constructiors as shown below:

$id = RFC::TypeCastDefault→new($name,$rig);

$id = RFC::TypeCastDefault→new($name,$rig,$input device,$output type,[opt $read function]);

$id = RFC::TypecastFaraday→new($name,$rig);

In case the input device and output type is specified, a RFC::Typecast device can be
instantiated without it having a soresponding section in a RFC::Rig instances configura-
tion. This enables other RFC::BaseDevice derived classes to instantiate RFC::Typecast
devices explicitly as part of their own instantiation.

11.47 RFC::Alert

Inherits from RFC::BaseDevice (refer section 11.14).

The RFC::Alert is a device intended to be used for automatic monitoring of process
parameters.

Each instance of RFC::Alert can monitor a single parameter (other RFC device) and
if a given setpoint is passed, a single alert mail is sent to recipients defined by either
the alert mail key for the RFC::Rig instance or the global system administrators if the
alert mail key is not defined.

If an alert has occoured, the Alert device can be set up to stop any running sequential
programs for the rig and / or execute a sequence of commands which potentially could
rectify the situation leading up to the alert.

The alert vill be canceled whenever the parameter beeing monitored passes the reset
threshold.

The alarm level and the reset level determines if the process parameter have to be either
above or below the alarm threshold for an alarm to trigger. If the reset level is below the
alarm threshold, an alarm is triggered whenever the process paramater gets above the
alarm threshold. If the alarm trheshold is below the reset level, the reverse is the case.

RFC::Alarm instances are not included in normal data logging, as the values of the
monitored device will be logged by that device iteself.

Complex trigger alarms are possible by combining several individual devices through
Math devices, schmidt trigger devices and / or logic devices. However care should be
observed as the more complex the system becomes the bigger the risk of misconfigura-
tion resulting in loss of experimental results (by premature shutdown of key devices for
instance).

To obtaina RFC::Alert instance, call the constructor as shown below:

$id = RFC::Alert→new($name,$rig);

The RFC::Alert class defines the following extra public member function:

155 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

$id→check([opt cache]) This function tests if the value of the under-
lying device is within the range defined as OK or not.
If the value is outside the accepted range, it measures
a few times more (up to the retries value) And if the
returned value is consistently outside the accepted
range, an alert is raised (potentially stopping run-
ing programs and/or executing additional comands
which could correct the situation). If an instance of
type RFC::Cache is supplied, this is passed on to the
underlying device potentially speeding up operation.
Note that the retry measurements do NOT pass on
the cache (which woulod be pointless)! The function
returns 0 if the value is within the accepted range
and 1 if the alert has been raised already. If this call
of ckeck() results in the alert beeing raised, the re-
turn value is a text string describing the alert and
any potential actions taken.

11.48 RFC::Adapter

Inherits from RFC::BaseDevice (refer section 11.14).

The RFC::Adapter class defines the behaviour of a group of special virtual devices. These
devices all operator on top of normal RFC::BaseDevice derived devices and operate ac-
cording to the Adapter pattern (as defined by GoF).

The adapter devices are intended to supply functionality which the native RFC devies
do not themselves suppport. For instance most power supplies do not support slowly
ramping voltage or current up to a fixed setpoint.

By using a RamprateAdapter this can be facilitated by letting the adapter device supply
a steadialy changing setpoint to the power supply device.

The rationale for using the Adapter pattern is the it makes it possible to use multiple
different adapters on any single object (if the application of those adapters make any
sense that is).

All RFC::Adapter derived classes has two distinct constructors. One with the normal 2
arguments as for normal RFC::BaseDevice instances:

my $id = RFC::Adapter→new($name,$rig);

And one with an additional argument which must be the RFC::BaseDevice derived in-
stance to wrap:

my $id = RFC::Adapter→new($name,$rig,$dev);

If the second constructor is used, the adapter device does not need to have it’s own
configurationsection in the rig’s configuration file as it already knows the device it is
to wrap (for some adapter instances the configuration may still be nescesarry for full

156 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

functionality).

All RFC::Adapter objects has the following member functions (in addition to those in-
herited from RFC::BaseDevice).

$id→update() Performs the internal state change nescesarry for the
added functionality.

$id→load state() Loads any state information which must be persistent
between device invocations

$id→store() Saves persistent information.

Common to the functions described above is that the default adapter does not define any
functionality for the functions (in effct they are pure virtual), and any nescesarry actions
must be defined in the classes derived from RFC::Adapter

To obtain one of the operational adapters call one of the constructors as shown below:

my $id = RFC::RamprateAdapter→new($name,$rig);

my $id = RFC::RamprateAdapter→new($name,$rig,$dev);

my $id = RFC::ExponentialDecayAdapter→new($name,$rig);

my $id = RFC::ExponentialDecayAdapter→new($name,$rig,$dev);

Notice that due to the way the RamprateAdapter is implemented, only slow ramprates
will be possible (changes taking minutes or hours to complete).

157 of 362 Implemented by Søren Koch

Chapter 12

Device configuration

This section describes how the different devices are configured and which configuration
parameters are used for each device class and type. Each device class contains a number of
device types which behaves similarly. For instance, all Simplechannel devices can be used
to measure a physical parameter (this beeing a voltage, resistance, current or similar).

All devices contains a number of common functions, these include read and readstring,
which allows the application to read the value of the device (readstring is used for data
logging, as it includes the device name and a timestamp). The individual devices them-
selves decides what the ’value’ of the device means.

All devices also contains two common tags, a title tag (used for an optional title on the
data plots) and a show plot tag used for determining if the data from the device is to be
shown in the data plots. Notice however that the value of this tag only determines if a
graph is shown! If the device is enabled (that is included in the data logging), the data
will be written in the data file irrespectively of the value of the show plot tag.

Notice however that the show plot tag should noly ever be used for enabled devices as
otherwise a name overlap may result in plots not beeing shown correctly. Specifically
if two devices of different types but identical names exists and one is enabled and the
other not, then setting the show plot tag to no for the not enabled device would result in
the plot generating program reading this value instead as device type information is not
stored in the stored data byt only the name and thus the plotting program has to check
all device types for a device with the specific data collumn name before it can query the
value of the show plot tag.

Note that or all devices described in this chapter, the legacy tags (if any) is included in
the list of configurable tags for the device type in quiestion. Thus for some devices the
actual number of tags displayed on the setup page may be les than the list described
here.

158

DTU energy RFCcontrol 5.5.4

12.1 Simplechannel

Simplechannels are used for measuring a single parameter, this could be for instance a
voltage. Often simplechannels are used internally by some of the more complex devices
(refer sectios 12.3, 12.6 or 12.5). The use by other devices of simplechannels are either
explicitly (by referencing an already defined simplehcannel by name) or implicitly by
creating one based on configuration parameters from the domplex device itself.

12.1.1 Keithley

Tag Description Values Default
mode Device control mode Readonly Readonly
communication Connunication mode GPIB
channel Channel number of input device, for-

mat: X:YZZ, X gpib address, Y board
number, ZZ channel number on board

1:101

factor Scaling factor 1
title Optional title

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

use cache Determines if persisten caching of read
values is allowed

Yes
No

No

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.1: Configuration tags for simplechannel device
type ’Keithley’. An empty value field generally indicates
that the tag value can be either a free text string or a
number (integer or floating point).

12.1.2 Keithley580

159 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Tag Description Values Default
mode Device control mode Readonly Readonly
communication Connunication mode GPIB
address GPIB address 1

range Measurement range

Auto
200m
2
20
200
2k
20k
200k

0

dry circuit Use dry circuit measurement mode
None
Enabled

0

relative Use relative measruement mode
Off
On

0

polarity
Pol+
Pol-

0

drive Measurement drive mode
Pulsed
DC

1

factor Scaling factor 1
title Optional title

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

use cache Determines if persisten caching of read
values is allowed

Yes
No

No

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.2: Configuration tags for simplechannel device
type ’KeithleyMicroohmmeter’. An empty value field
generally indicates that the tag value can be either a
free text string or a number (integer or floating point).

160 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

12.1.3 ICP

Tag Description Values Default
mode Device control mode Readonly Readonly
tty Serial device for controling device (eg

ttyS0)
ttyS0

address Device address 1
channel Channel number on device (Note 0-

based)
0

range Input type and range
factor Scaling factor 1
title Optional title

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

use cache Determines if persisten caching of read
values is allowed

Yes
No

No

CRC Determines if checksum is to be used
for serial communication

No
Yes

No

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.3: Configuration tags for simplechannel device
type ’SimpleICP’. An empty value field generally indi-
cates that the tag value can be either a free text string
or a number (integer or floating point).

12.1.4 ICP7017/18

Tag Description Values Default
mode Device control mode Readonly Readonly
tty Serial device for controling device (eg

ttyS0)
ttyS0

Continued on next page

161 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.4 – continued from previous page
Tag Description Values Default
address Device address 1
channel Channel number on device (Note 0-

based)
0

range Input type and range
factor Scaling factor 1
title Optional title

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

use cache Determines if persisten caching of read
values is allowed

Yes
No

No

CRC Determines if checksum is to be used
for serial communication

No
Yes

No

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.4: Configuration tags for simplechannel device
type ’SimpleICP7017/18’. An empty value field generally
indicates that the tag value can be either a free text string
or a number (integer or floating point).

12.1.5 Modbus

Tag Description Values Default
mode Device control mode Readonly Readonly
tty Serial device for controling device (eg

ttyS0)
ttyS0

address Device address 1
channel Modbus tag number for reading value 0
range Input type and range
factor Scaling factor 1

Continued on next page

162 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.5 – continued from previous page
Tag Description Values Default
title Optional title

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

use cache Determines if persisten caching of read
values is allowed

Yes
No

No

CRC Determines if checksum is to be used
for serial communication

No
Yes

No

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.5: Configuration tags for simplechannel device
type ’SimpleModbus’. An empty value field generally
indicates that the tag value can be either a free text string
or a number (integer or floating point).

12.1.6 PLCRead

Tag Description Values Default
mode Device read mode Readonly Readonly
IP PLC IP address 10.0.03.216
port modbus port number 502
stackAddress modbus stack address index num of the

variable to read
1

offset modbus stack offset value of the vari-
able to read

0

Continued on next page

163 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.6 – continued from previous page
Tag Description Values Default

dataType data type of the variable to read

BOOL
BYTE
DINT
DWORD
INT
LREAL
REAL
SINT
TIME
UDINT
UINT
USINT
WORD

WORD

title Optional title

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.6: Configuration tags for simplechannel device
type ’PLCRead’. An empty value field generally indi-
cates that the tag value can be either a free text string
or a number (integer or floating point).

164 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

12.2 Relay

Relay devices are used for control of relay modules for controling other external functions.
This could for instance be magnetic valves for gasses or similar device control. As with
simplechannels, relay devices are often used internally in more complex devices (refer
sections 12.5, 12.6 or 12.7). These devices are used either explisitly (by referentinc the
realy device by name) ro implictly by creating a relay device from internal parameters in
the complex device).

Relay devices supports the set command to set the status of the relay (1 for closed relay,
0 for open)

12.2.1 ICP

Tag Description Values Default
mode Device control mode Automatic Automatic
tty Serial device for communication ttyS0
address Device address 0
channel Channel number on device (Note is 0

based)
0

title Optional title

show plot Determines if the current device data is
to be shown in the daily data plots

Yes
No

Yes

use cache Determines if persisten caching of read
values is allowed

Yes
No

No

CRC Determines if checksum is to be used
for serial communication

No
Yes

No

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.7: Configuration tags for relay device type
’ICPRelay’. An empty value field generally indicates that
the tag value can be either a free text string or a number
(integer or floating point).

12.2.2 ICPDI

165 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Tag Description Values Default
mode Device control mode Readonly Readonly
tty Serial device for communication ttyS0
address Device address 0
channel Channel number on device (Note is 0

based)
0

title Optional title

show plot Determines if the current device data is
to be shown in the daily data plots

Yes
No

Yes

use cache Determines if persisten caching of read
values is allowed

Yes
No

No

CRC Determines if checksum is to be used
for serial communication

No
Yes

No

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.8: Configuration tags for relay device type
’ICPDI’. An empty value field generally indicates that
the tag value can be either a free text string or a number
(integer or floating point).

12.2.3 ManualRelay

Tag Description Values Default
title Optional title

show plot Determines if the current device data is
to be shown in the daily data plots

Yes
No

Yes

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Continued on next page

166 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.9 – continued from previous page
Tag Description Values Default

Table 12.9: Configuration tags for relay device type
’ManualRelay’. An empty value field generally indicates
that the tag value can be either a free text string or a
number (integer or floating point).

12.2.4 Monostable

Tag Description Values Default
mode Device control mode Automatic Automatic
device Relay device name used for actual con-

trol (a BaseRelay device instance)
duration Duration of the on pulse in seconds 1
title Optional title

show plot Determines if the current device data is
to be shown in the daily data plots

Yes
No

Yes

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.10: Configuration tags for relay device type
’Monostable’. An empty value field generally indicates
that the tag value can be either a free text string or a
number (integer or floating point).

12.2.5 Monostable-PWM

Tag Description Values Default
mode Device control mode Automatic Automatic
device Relay device name used for actual con-

trol (a BaseRelay device instance)

Continued on next page

167 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.11 – continued from previous page
Tag Description Values Default

timing device type Device type of the timing device

simplechann-
el
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

timing device Device determining length of on state.
The read value of this device uppon a
recieved set command is used for the
duration of the pulse. If no timing de-
vice can be loaded, the duration is fixed
to 1 second. If the read value is nega-
tive, the duration is set to 0.

title Optional title

show plot Determines if the current device data is
to be shown in the daily data plots

Yes
No

Yes

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.11: Configuration tags for relay device type
’Monostable-PWM’. An empty value field generally in-
dicates that the tag value can be either a free text string
or a number (integer or floating point).

168 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

12.3 Templog

Temperature log devices are used for measuring temperatures by thermocouples or similar
sensor types. Usually the temperature devices uses simplechannel devices internally to
do the actual measurements, thus the temperature device can be visualised as simply a
computational device.

12.3.1 Analog

Tag Description Values Default
mode Device control mode Readonly Readonly
channel name Input device name
channel Input device channel, only used

if no channel name. Note that
the measure channel must re-
port the value in either mV (for
thermocouples) or Ohm (for re-
sistive elements such as pt1000
or similar

0

channel input type Input device type , only used if
no channel name

Keithley
Keithley580
ICP
ICP7017/18
Modbus
PLCRead

Keithley

channel tty Input device communication de-
vice, only used if no device
name and device input type is
not Keithley

ttyS0

channel address Input device address, only used
if no device name and device in-
put type is not Keithley

0

type Sensor type

K
N
S
R
B
pt100
pt1000
Thermistor -
NTCLE100E31-
03 B0

S

Continued on next page

169 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.12 – continued from previous page
Tag Description Values Default

internal compensation Switch for controling if the in-
put device reports raw voltage
or does internal compensation,
thus reporting temperatures di-
rectly

Yes
No

No

callibration file File name of callibration file if
custom callibration file is to be
used for calculations (Default is
NIST tables)

DEFAULT DEFAULT

cold junction name Name of cold junction input de-
vice

cj channel Cold junction device channel,
only used if no cold junction
name

0

cj channel input type Cold junction input type, only
used if no cold junction name

Keithley
Keithley580
ICP
ICP7017/18
Modbus
PLCRead

Keithley

cj channel tty Cold junction communication
device, only used if no cold junc-
tion name and cond junction in-
put type is not Keithley)

ttyS0

cj channel address Cold junction device address,
only used if no cold junction
name and cond junction input
type is not Keithley)

0

cj type Cold junction sensor type
pt100
pt1000

pt1000

lead res name Lead resistance input device
lead res Lead ressistance if fixed value

or lead resistance channel if not
fixed value

0

lead res input type Lead resistance input device
type

fixed value
Keithley
Keithley580
ICP
ICP7017/18
Modbus
PLCRead

fixed value

Continued on next page

170 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.12 – continued from previous page
Tag Description Values Default
lead res tty Lead resistance input device

communication device, only
used if no lead ressistance name
and lead resistance input type
is not Keithley

ttyS0

lead res address Lead resistance input device de-
vice address, only used if no lead
ressistance name and lead resis-
tance input type is not Keithley

0

title Optional device title

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled de-
vices

Yes
No

Yes

use cache Determines if persisten caching
of read values is allowed

Yes
No

No

comments Description for this device. Do
not use ’,’ in text as that charac-
ter is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled de-
vices)

No
Yes

No

Table 12.12: Configuration tags for templog device type
’S’. An empty value field generally indicates that the tag
value can be either a free text string or a number (integer
or floating point).

12.3.2 E3216

Tag Description Values Default
channel Controler address 0
tty Communication device (ex.

ttyS0)
ttyS0

Continued on next page

171 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.13 – continued from previous page
Tag Description Values Default

mode Number format
integer
decimal

integer

factor Multiplication factor 1

communication Communication type
modbus
bisynch

modbus

title Optional device title

show plot Determines if the current device
data is to be shown in the daily
data plots

Yes
No

Yes

use cache Determines if persisten caching
of read values is allowed

Yes
No

No

comments Description for this device. Do
not use ’,’ in text as that charac-
ter is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled de-
vices)

No
Yes

No

Table 12.13: Configuration tags for templog device type
’3216e’. An empty value field generally indicates that
the tag value can be either a free text string or a number
(integer or floating point).

12.3.3 E2216

Tag Description Values Default
channel Controler address 0
tty Communication device (ex.

ttyS0)
ttyS0

mode Number format
integer
decimal

integer

factor Multiplication factor 1

communication Communication type
modbus
bisynch

modbus

title Optional device title

Continued on next page

172 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.14 – continued from previous page
Tag Description Values Default

show plot Determines if the current device
data is to be shown in the daily
data plots

Yes
No

Yes

use cache Determines if persisten caching
of read values is allowed

Yes
No

No

comments Description for this device. Do
not use ’,’ in text as that charac-
ter is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled de-
vices)

No
Yes

No

Table 12.14: Configuration tags for templog device type
’2216e’. An empty value field generally indicates that
the tag value can be either a free text string or a number
(integer or floating point).

12.3.4 E2208

Tag Description Values Default
channel Controler address 0
tty Communication device (ex.

ttyS0)
ttyS0

mode Number format
integer
decimal

integer

factor Multiplication factor 1

communication Communication type
modbus
bisynch

modbus

title Optional device title

show plot Determines if the current device
data is to be shown in the daily
data plots

Yes
No

Yes

use cache Determines if persisten caching
of read values is allowed

Yes
No

No

Continued on next page

173 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.15 – continued from previous page
Tag Description Values Default
comments Description for this device. Do

not use ’,’ in text as that charac-
ter is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled de-
vices)

No
Yes

No

Table 12.15: Configuration tags for templog device type
’2208e’. An empty value field generally indicates that
the tag value can be either a free text string or a number
(integer or floating point).

12.3.5 E2404

Tag Description Values Default
channel Controler address 0
tty Communication device (ex.

ttyS0)
ttyS0

mode Number format
integer
decimal

integer

factor Multiplication factor 1

communication Communication type
modbus
bisynch

modbus

title Optional device title

show plot Determines if the current device
data is to be shown in the daily
data plots

Yes
No

Yes

use cache Determines if persisten caching
of read values is allowed

Yes
No

No

comments Description for this device. Do
not use ’,’ in text as that charac-
ter is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled de-
vices)

No
Yes

No

Continued on next page

174 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.16 – continued from previous page
Tag Description Values Default

Table 12.16: Configuration tags for templog device type
’2404e’. An empty value field generally indicates that
the tag value can be either a free text string or a number
(integer or floating point).

12.3.6 E2408

Tag Description Values Default
channel Controler address 0
tty Communication device (ex.

ttyS0)
ttyS0

mode Number format
integer
decimal

integer

factor Multiplication factor 1

communication Communication type
modbus
bisynch

modbus

title Optional device title

show plot Determines if the current device
data is to be shown in the daily
data plots

Yes
No

Yes

use cache Determines if persisten caching
of read values is allowed

Yes
No

No

comments Description for this device. Do
not use ’,’ in text as that charac-
ter is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled de-
vices)

No
Yes

No

Table 12.17: Configuration tags for templog device type
’2408e’. An empty value field generally indicates that
the tag value can be either a free text string or a number
(integer or floating point).

175 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

12.3.7 E2416

Tag Description Values Default
channel Controler address 0
tty Communication device (ex.

ttyS0)
ttyS0

mode Number format
integer
decimal

integer

factor Multiplication factor 1

communication Communication type
modbus
bisynch

modbus

title Optional device title

show plot Determines if the current device
data is to be shown in the daily
data plots

Yes
No

Yes

use cache Determines if persisten caching
of read values is allowed

Yes
No

No

comments Description for this device. Do
not use ’,’ in text as that charac-
ter is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled de-
vices)

No
Yes

No

Table 12.18: Configuration tags for templog device type
’2416e’. An empty value field generally indicates that
the tag value can be either a free text string or a number
(integer or floating point).

12.3.8 W6100

Tag Description Values Default
channel Controler address 0
tty Communication device (ex.

ttyS0)
ttyS0

factor Multiplication factor 1
title Optional device title

Continued on next page

176 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.19 – continued from previous page
Tag Description Values Default
comments Description for this device. Do

not use ’,’ in text as that charac-
ter is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled de-
vices)

No
Yes

No

Table 12.19: Configuration tags for templog device type
’West6100’. An empty value field generally indicates that
the tag value can be either a free text string or a number
(integer or floating point).

12.3.9 Linkam

Tag Description Values Default
channel Controler address 0
tty Communication device (ex.

ttyS0)
ttyS0

factor Multiplication factor 1
title Optional device title
comments Description for this device. Do

not use ’,’ in text as that charac-
ter is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled de-
vices)

No
Yes

No

Table 12.20: Configuration tags for templog device type
’Linkam’. An empty value field generally indicates that
the tag value can be either a free text string or a number
(integer or floating point).

177 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

12.4 Tempcontrol

Temperature control devices are used to control and monitor furnaces controlers (includ-
ing cryogenic controlers as they work similarly)

Temperature control devices supports the set temp and set ramp commands to set the
temperature setpoint and temperature ramprate.

A special tag is the ’controler type’. This tag is not used for internal configuration of
the device, but is instead used for device selection. The reason for this is historic as
version 4.x had to be backwards compatible on a configuration file level with version 3.x.
Thus for instance for a Honeywell device, it is possible to select a value corresponding
to a Eurotherm R© controler, this will however convert the device to the appropriate
Eurotherm R© device!.

12.4.1 Honeywell

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

tty Communication device ttyS0
address Device address 1

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

use cache Determines if persisten caching of read
values is allowed

Yes
No

No

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.21: Configuration tags for tempcontrol device
type ’Honeywell’. An empty value field generally indi-
cates that the tag value can be either a free text string
or a number (integer or floating point).

178 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

12.4.2 E3216

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

tty Communication device ttyS0
address Device address 1

controler mode Number format
integer
decimal

integer

type Communication mode
modbus
bisynch

modbus

maxramp Maximum allowable ramprate in
C/hour (no value means no limit)

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

use cache Determines if persisten caching of read
values is allowed

Yes
No

No

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.22: Configuration tags for tempcontrol device
type ’E3216’. An empty value field generally indicates
that the tag value can be either a free text string or a
number (integer or floating point).

12.4.3 E2216

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

tty Communication device ttyS0
address Device address 1

Continued on next page

179 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.23 – continued from previous page
Tag Description Values Default

controler mode Number format
integer
decimal

integer

type Communication mode
modbus
bisynch

modbus

maxramp Maximum allowable ramprate in
C/hour (no value means no limit)

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

use cache Determines if persisten caching of read
values is allowed

Yes
No

No

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.23: Configuration tags for tempcontrol device
type ’E2216’. An empty value field generally indicates
that the tag value can be either a free text string or a
number (integer or floating point).

12.4.4 E2208

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

tty Communication device ttyS0
address Device address 1

controler mode Number format
integer
decimal

integer

type Communication mode
modbus
bisynch

modbus

maxramp Maximum allowable ramprate in
C/hour (no value means no limit)

Continued on next page

180 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.24 – continued from previous page
Tag Description Values Default

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

use cache Determines if persisten caching of read
values is allowed

Yes
No

No

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.24: Configuration tags for tempcontrol device
type ’E2208’. An empty value field generally indicates
that the tag value can be either a free text string or a
number (integer or floating point).

12.4.5 E2404

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

tty Communication device ttyS0
address Device address 1

controler mode Number format
integer
decimal

integer

type Communication mode
modbus
bisynch

modbus

maxramp Maximum allowable ramprate in
C/hour (no value means no limit)

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

Continued on next page

181 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.25 – continued from previous page
Tag Description Values Default

use cache Determines if persisten caching of read
values is allowed

Yes
No

No

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.25: Configuration tags for tempcontrol device
type ’E2404’. An empty value field generally indicates
that the tag value can be either a free text string or a
number (integer or floating point).

12.4.6 E2408

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

tty Communication device ttyS0
address Device address 1

controler mode Number format
integer
decimal

integer

type Communication mode
modbus
bisynch

modbus

maxramp Maximum allowable ramprate in
C/hour (no value means no limit)

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

use cache Determines if persisten caching of read
values is allowed

Yes
No

No

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

Continued on next page

182 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.26 – continued from previous page
Tag Description Values Default

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.26: Configuration tags for tempcontrol device
type ’E2408’. An empty value field generally indicates
that the tag value can be either a free text string or a
number (integer or floating point).

12.4.7 E2416

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

tty Communication device ttyS0
address Device address 1

controler mode Number format
integer
decimal

integer

type Communication mode
modbus
bisynch

modbus

maxramp Maximum allowable ramprate in
C/hour (no value means no limit)

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

use cache Determines if persisten caching of read
values is allowed

Yes
No

No

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Continued on next page

183 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.27 – continued from previous page
Tag Description Values Default

Table 12.27: Configuration tags for tempcontrol device
type ’E2416’. An empty value field generally indicates
that the tag value can be either a free text string or a
number (integer or floating point).

12.4.8 W6100

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

tty Communication device ttyS0
address Device address 1
comments Description for this device. Do not use

’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.28: Configuration tags for tempcontrol device
type ’W6100’. An empty value field generally indicates
that the tag value can be either a free text string or a
number (integer or floating point).

12.4.9 Linkam

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

tty Communication device ttyS0
address Device address 1

controler mode Number format
integer
decimal

integer

type Communication mode
modbus
bisynch

modbus

Continued on next page

184 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.29 – continued from previous page
Tag Description Values Default
maxramp Maximum allowable ramprate in

C/hour (no value means no limit)

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

use cache Determines if persisten caching of read
values is allowed

Yes
No

No

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.29: Configuration tags for tempcontrol device
type ’Linkam’. An empty value field generally indicates
that the tag value can be either a free text string or a
number (integer or floating point).

12.4.10 Omron-E5CC

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

type Communication mode modbus modbus
tty Communication device ttyS0
address Device address 1
comments Description for this device. Do not use

’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Continued on next page

185 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.30 – continued from previous page
Tag Description Values Default

Table 12.30: Configuration tags for tempcontrol device
type ’Omron-E5CC’. An empty value field generally in-
dicates that the tag value can be either a free text string
or a number (integer or floating point).

186 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

12.5 MFC

A mass flow controler device is used for the actual control of the gas flow controler. This
makes it possible for multiple gasses to use the same physical flow controler device by
multiplexing (refer sections 12.7 and 12.11).

All MFC devices supports the setflow command to set the actual gas flow.

Notice, that MFC-devices only rarely is used explicitly to measure gas flows. Usually this
is done implicitly through a gas device (refer section 12.7) which refers the measurement
to the MFC device. Thus to create a new gas flow line, first create a gas device (a manual
one), then create the MFC-device (that uses the gas device i question), and at last change
the mode of the gas device from manual to automatic (once the gas device has registered
the correct MFC device, which happens automatically as long as only one MFC device
references the gas device). It is not allowed to have more than one MFC device reference
each gas device!

Some MFC devices contains a special setting variable called ’spline’. This is intended to
be used in the case a callibration curve/list has been supplied with the controler and can
be used to correct the MFC output according to the callibration sheet. The format of
the setting is a list of values which can be used in by a spline interpoaltion routine as
shown below:

0 0

1 1.2

2 2.1

3 3

4 3.9

The first column is the flow reported by the controler, and the second is the actual flow
(note that flows are in L/hour irrespective of which unit the controler reports the flow
in!). If the field is left blank, no correction is atempted and the reported flow is used as
is.

A related control device is the pressure controler. Unlike mass flow controler devices it
does not support multiplexers but it is used just like a MFC device. The reason for this
is that it is possible to control the flow of a gas or the pressure, but not both at the same
time.

The data unit for pressure controlers is bar absolute (barA). 0 barA corresponds to a
vaccum and 1 barA corresponds roughly to atmospheric pressure.

12.5.1 Manual

Tag Description Values Default
mode Device control mode Manual Manual

Continued on next page

187 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.31 – continued from previous page
Tag Description Values Default

calibrated gas The gas for which the maxflow
is specified on the controler
(usually nitrogen)

ne
co2
o2
d2
n2
no
kr
co
ch4
he
no2
n2o3
h2
ar
n2o
xe
air

n2

calibrated maxflow Maximum flowrate for the calli-
brated gas (Note in L/hour!)

100

gas selected gas n2

gas change Gas change mode
Manual
Automatic

Manual

gas multiplexer Name of gas multiplexer device
if any

gasses Avaliable gasses, Must contain
a comma separated list of gas
names (device name!) that the
MFC can be used to control (in
case of no multiplexer, just the
single gas connected).

n2

spline
setflow factor 1
read factor 1
title Optional title

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled de-
vices

Yes
No

Yes

Continued on next page

188 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.31 – continued from previous page
Tag Description Values Default

use cache Determines if persisten caching
of read values is allowed

Yes
No

No

comments Description for this device. Do
not use ’,’ in text as that charac-
ter is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled de-
vices)

No
Yes

No

Table 12.31: Configuration tags for MFC device type
’Manual’. An empty value field generally indicates that
the tag value can be either a free text string or a number
(integer or floating point).

12.5.2 Brooks

Tag Description Values Default
mode Device control mode Automatic Automatic
tty Communication device (ex.

ttyS0)
ttyS0

channel Tag number (ex 05691001), NB
must be 8 digits!

00000000

Continued on next page

189 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.32 – continued from previous page
Tag Description Values Default

calibrated gas The gas for which the maxflow
is specified on the controler
(usually nitrogen)

ne
co2
o2
d2
n2
no
kr
co
ch4
he
no2
n2o3
h2
ar
n2o
xe
air

n2

calibrated maxflow Maximum flowrate for the calli-
brated gas (Note in L/hour!)

100

unit Flow unit in which the controler
reports the gas flow. MB This
may be different than the unit
the maxflow is given in!

L/s
L/min
L/hour
mL/s
mL/min
mL/hour
m3/s
m3/min
m3/hour

L/hour

gas selected gas n2

relay Bypass relay avaliable
YES
NO

NO

relay time bypass relay engage time (sec-
onds)

0

relay name Bypass relay name

relay type bypass relay device type (used
only if no relay name is speci-
fied)

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

Continued on next page

190 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.32 – continued from previous page
Tag Description Values Default
relay tty Bypass relay communication

device (used only if no relay
name is specified)

ttyS0

relay address Bypass relay address (used only
if no relay name is specified)

1

relay channel bypass relay channel (used only
if no relay name is specified)

0

output control relay Switch controling if an external
output control device is fitted
(for instance a magnetic valve
for forcing complete cutoff of
gas)

YES
NO

NO

control relay name Cutoff relay name

control relay type Control relay device type (used
only if no control relay name is
specified)

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

control relay tty Control relay tty (used only if
no control relay name is speci-
fied)

ttyS0

control relay address Control relay address (used only
if no control relay name is spec-
ified)

1

control relay channel Control relay channel (used
only if no control relay name is
specified)

0

gas change Gas change mode
Manual
Automatic

Manual

gas multiplexer Name of gas multiplexer device
if any

gasses Avaliable gasses, Must contain
a comma separated list of gas
names (device name!) that the
MFC can be used to control (in
case of no multiplexer, just the
single gas connected).

n2

setflow factor Callibration factor for settig
flow

1

read factor Callibration factor for reading
flow

1

Continued on next page

191 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.32 – continued from previous page
Tag Description Values Default
title Optional title

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled de-
vices

Yes
No

Yes

use cache Determines if persisten caching
of read values is allowed

Yes
No

No

persistent settings Determines if the device should
be queried each time for flow
trange settings or if settings
should be cached on disk. De-
fault for Brooks MFCs are
Yes as communication overhead
usually becomes a problem (a
single MFC require 1 second for
initialisation otherwise)

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that charac-
ter is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled de-
vices)

No
Yes

No

Table 12.32: Configuration tags for MFC device type
’Brooks’. An empty value field generally indicates that
the tag value can be either a free text string or a number
(integer or floating point).

12.5.3 BrooksReadonly

Tag Description Values Default
mode Device control mode Automatic Automatic
tty Communication device (ex.

ttyS0)
ttyS0

Continued on next page

192 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.33 – continued from previous page
Tag Description Values Default
channel Tag number (ex 05691001), NB

must be 8 digits!
00000000

calibrated gas The gas for which the maxflow
is specified on the controler
(usually nitrogen)

ne
co2
o2
d2
n2
no
kr
co
ch4
he
no2
n2o3
h2
ar
n2o
xe
air

n2

calibrated maxflow Maximum flowrate for the calli-
brated gas (Note in L/hour!)

100

unit Flow unit in which the controler
reports the gas flow. MB This
may be different than the unit
the maxflow is given in!

L/s
L/min
L/hour
mL/s
mL/min
mL/hour
m3/s
m3/min
m3/hour

L/hour

controler mode Controler mode of operation Flowrate Flowrate
gas selected gas n2

gas change Gas change mode
Manual
Automatic

Manual

gas multiplexer Name of gas multiplexer device
if any

Continued on next page

193 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.33 – continued from previous page
Tag Description Values Default
gasses Avaliable gasses, Must contain

a comma separated list of gas
names (device name!) that the
MFC can be used to control (in
case of no multiplexer, just the
single gas connected).

n2

setflow factor Callibration factor for settig
flow

1

read factor Callibration factor for reading
flow

1

title Optional title

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled de-
vices

Yes
No

Yes

use cache Determines if persisten caching
of read values is allowed

Yes
No

No

persistent settings Determines if the device should
be queried each time for flow
trange settings or if settings
should be cached on disk. De-
fault for Brooks MFCs are
Yes as communication overhead
usually becomes a problem (a
single MFC require 1 second for
initialisation otherwise)

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that charac-
ter is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled de-
vices)

No
Yes

No

Table 12.33: Configuration tags for MFC device type
’BrooksReadonly’. An empty value field generally indi-
cates that the tag value can be either a free text string
or a number (integer or floating point).

194 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

12.5.4 Analog

Tag Description Values Default
mode Device control mode Automatic Automatic
output name Name of output device

output type Output device type (Only used
if no output name)

ICP7024
ICP87024
ICP87028
ManualAnalo-
gOut

ICP87024

address Output device address (Only
used if no output name)

1

control channel Output device channel (Only
used if no output name)

0

tty Output device communication
device (Only used if no output
name)

ttyS0

channel name Input device name

channel type Input device type (used only if
no channel name is specified)

Keithley
Keithley580
ICP
ICP7017/18
Modbus
PLCRead

Keithley

channel Input device channel (used only
if no channel name is specified)

1:101

channel tty Input device communication de-
vice (used only if no channel
name is specified)

ttyS0

channel address Input device address (used only
if no channel name is specified)

1

output control relay Switch controling if an external
output control device is fitted
(for instance a magnetic valve
for forcing complete cutoff of
gas)

YES
NO

NO

control relay name Cutoff relay name

control relay type Control relay device type (used
only if no control relay name is
specified)

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

Continued on next page

195 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.34 – continued from previous page
Tag Description Values Default
control relay tty Control relay tty (used only if

no control relay name is speci-
fied)

ttyS0

control relay address Control relay address (used only
if no control relay name is spec-
ified)

1

control relay channel Control relay channel (used
only if no control relay name is
specified)

0

calibrated gas The gas for which the maxflow
is specified on the controler
(usually nitrogen)

ne
co2
o2
d2
n2
no
kr
co
ch4
he
no2
n2o3
h2
ar
n2o
xe
air

n2

calibrated maxflow Maximum flowrate for the calli-
brated gas (Note in L/hour!)

100

accuracy Accuracy of the flow rate in per-
cent

1

output range Output range, note that this
may be different than the range
of the output device!

0-5V
1-5V
0-10V
2-10V
0-20mA
4-20mA

0-5V

use underrange cutoff Allow the analog output to be
set below the operational range
in order to force the MFC to
close completely

Yes
No

Yes

gas selected gas n2

Continued on next page

196 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.34 – continued from previous page
Tag Description Values Default

relay Bypass relay avaliable
YES
NO

NO

relay time bypass relay engage time (sec-
onds)

0

relay name Bypass relay name

relay type bypass relay device type (used
only if no relay name is speci-
fied)

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

relay tty Bypass relay tty (used only if no
relay name is specified)

ttyS0

relay address Bypass relay address (used only
if no relay name is specified)

1

relay channel bypass relay channel (used only
if no relay name is specified)

0

gas change Gas change mode
Manual
Automatic

Manual

gas multiplexer Name of gas multiplexer device
if any

gasses Avaliable gasses, Must contain
a comma separated list of gas
names (device name!) that the
MFC can be used to control (in
case of no multiplexer, just the
single gas connected).

n2

setflow factor Callibration factor for settig
flow

1

read factor Callibration factor for reading
flow

1

title Optional title

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled de-
vices

Yes
No

Yes

use cache Determines if persisten caching
of read values is allowed

Yes
No

No

Continued on next page

197 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.34 – continued from previous page
Tag Description Values Default
comments Description for this device. Do

not use ’,’ in text as that charac-
ter is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled de-
vices)

No
Yes

No

Table 12.34: Configuration tags for MFC device type
’Analog’. An empty value field generally indicates that
the tag value can be either a free text string or a number
(integer or floating point).

12.5.5 AnalogReadonly

Tag Description Values Default
mode Device control mode Readonly Readonly
channel name Input device name

calibrated gas The gas for which the maxflow
is specified on the controler
(usually nitrogen)

ne
co2
o2
d2
n2
no
kr
co
ch4
he
no2
n2o3
h2
ar
n2o
xe
air

n2

calibrated maxflow Maximum flowrate for the calli-
brated gas (Note in L/hour!)

100

Continued on next page

198 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.35 – continued from previous page
Tag Description Values Default
accuracy Accuracy of the flow rate in per-

cent

output range Output range, note that this
may be different than the range
of the output device!

0-5V
1-5V

0-5V

gas selected gas n2

gas change Gas change mode
Manual
Automatic

Manual

gas multiplexer Name of gas multiplexer device
if any

gasses Avaliable gasses, Must contain
a comma separated list of gas
names (device name!) that the
MFC can be used to control (in
case of no multiplexer, just the
single gas connected).

n2

read factor Callibration factor for reading
flow

1

title Optional title

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled de-
vices

Yes
No

Yes

use cache Determines if persisten caching
of read values is allowed

Yes
No

No

comments Description for this device. Do
not use ’,’ in text as that charac-
ter is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled de-
vices)

No
Yes

No

Table 12.35: Configuration tags for MFC device type
’AnalogReadonly’. An empty value field generally in-
dicates that the tag value can be either a free text string
or a number (integer or floating point).

199 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

12.5.6 MKS

Tag Description Values Default
mode Device control mode Automatic Automatic
tty Communication device (ex.

ttyS0)
ttyS0

channel Device address (ex 021), NB
must be 3 digits! Note that ad-
dress 254 and 255 are broadcast
addresses (all MKS units will
listen on those, but will only re-
spond on 254)!

001

calibrated gas The gas for which the maxflow
is specified on the controler
(usually nitrogen)

ne
co2
o2
d2
n2
no
kr
co
ch4
he
no2
n2o3
h2
ar
n2o
xe
air

n2

maxflow Maximum flowrate for the se-
lected gas (Note in L/hour!)

unit Flow unit in which the controler
reports the gas flow. MB This
may be different than the unit
the maxflow is given in!

gas selected gas n2

relay Bypass relay avaliable
YES
NO

NO

relay time bypass relay engage time (sec-
onds)

0

relay name Bypass relay name

Continued on next page

200 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.36 – continued from previous page
Tag Description Values Default

output control relay Switch controling if an external
output control device is fitted
(for instance a magnetic valve
for forcing complete cutoff of
gas)

YES
NO

NO

control relay name Cutoff relay name

gas change Gas change mode
Manual
Automatic

Manual

gas multiplexer Name of gas multiplexer device
if any

gasses Avaliable gasses, Must contain
a comma separated list of gas
names (device name!) that the
MFC can be used to control (in
case of no multiplexer, just the
single gas connected).

n2

setflow factor Callibration factor for settig
flow

1

read factor Callibration factor for reading
flow

1

title Optional title

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled de-
vices

Yes
No

Yes

use cache Determines if persisten caching
of read values is allowed

Yes
No

No

persistent settings Determines wether or not set-
tings such as callibrated gas
should be cached (speeding up
normal use) or queried each
time

Yes
No

No

comments Description for this device. Do
not use ’,’ in text as that charac-
ter is used as newline substitute.

Continued on next page

201 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.36 – continued from previous page
Tag Description Values Default

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled de-
vices)

No
Yes

No

Table 12.36: Configuration tags for MFC device type
’MKS’. An empty value field generally indicates that the
tag value can be either a free text string or a number
(integer or floating point).

12.5.7 MKSReadonly

Tag Description Values Default
mode Device control mode Automatic Automatic
tty Communication device (ex.

ttyS0)
ttyS0

channel Device address (ex 021), NB
must be 3 digits! Note that ad-
dress 254 and 255 are broadcast
addresses (all MKS units will
listen on those, but will only re-
spond on 254)!

001

Continued on next page

202 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.37 – continued from previous page
Tag Description Values Default

calibrated gas The gas for which the maxflow
is specified on the controler
(usually nitrogen)

ne
co2
o2
d2
n2
no
kr
co
ch4
he
no2
n2o3
h2
ar
n2o
xe
air

n2

maxflow Maximum flowrate for the se-
lected gas (Note in L/hour!)

unit Flow unit in which the controler
reports the gas flow. MB This
may be different than the unit
the maxflow is given in!

gas selected gas n2

gas change Gas change mode
Manual
Automatic

Manual

gas multiplexer Name of gas multiplexer device
if any

gasses Avaliable gasses, Must contain
a comma separated list of gas
names (device name!) that the
MFC can be used to control (in
case of no multiplexer, just the
single gas connected).

n2

setflow factor Callibration factor for settig
flow

1

read factor Callibration factor for reading
flow

1

title Optional title

Continued on next page

203 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.37 – continued from previous page
Tag Description Values Default

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled de-
vices

Yes
No

Yes

use cache Determines if persisten caching
of read values is allowed

Yes
No

No

persistent settings Determines wether or not set-
tings such as callibrated gas
should be cached (speeding up
normal use) or queried each
time

Yes
No

No

comments Description for this device. Do
not use ’,’ in text as that charac-
ter is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled de-
vices)

No
Yes

No

Table 12.37: Configuration tags for MFC device type
’MKSReadonly’. An empty value field generally indicates
that the tag value can be either a free text string or a
number (integer or floating point).

12.5.8 Pc ER3000

Tag Description Values Default
mode Device control mode Automatic Automatic
tty Communication device (ex.

ttyS0)
ttyS0

address Device address (Default factory
address on a ER3000 is 250)

1

minpressure Minimum pressure (Note in
barA, 1 BarA is atmospheric
pressure!)

1

Continued on next page

204 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.38 – continued from previous page
Tag Description Values Default
maxpressure Maximum pressure (Note in

barA, 1 barA is atmospheric
pressure!)

101

gas selected gas n2
title Optional title

show plot Determines if the current device
data is to be shown in the daily
data plots

Yes
No

Yes

use cache Determines if persisten caching
of read values is allowed

Yes
No

No

comments Description for this device. Do
not use ’,’ in text as that charac-
ter is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled de-
vices)

No
Yes

No

Table 12.38: Configuration tags for MFC device type
’Pc ER3000’. An empty value field generally indicates
that the tag value can be either a free text string or a
number (integer or floating point).

12.5.9 Pc Analog

Tag Description Values Default
mode Device control mode Automatic Automatic
input name Input device name
output name Output device name

output range

0-5V
1-5V
0-10V
2-10V
0-20mA
4-20mA

minpressure Minimum pressure (Note in
barA, 1 BarA is atmospheric
pressure!)

1

Continued on next page

205 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.39 – continued from previous page
Tag Description Values Default
maxpressure Maximum pressure (Note in

barA, 1 barA is atmospheric
pressure!)

101

gas selected gas n2
title Optional title

show plot Determines if the current device
data is to be shown in the daily
data plots

Yes
No

Yes

use cache Determines if persisten caching
of read values is allowed

Yes
No

No

comments Description for this device. Do
not use ’,’ in text as that charac-
ter is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled de-
vices)

No
Yes

No

Table 12.39: Configuration tags for MFC device type
’Pc Analog’. An empty value field generally indicates
that the tag value can be either a free text string or a
number (integer or floating point).

12.5.10 Pc AnalogReadonly

Tag Description Values Default
mode Device control mode Automatic Automatic
input name Input device name

output range

0-5V
1-5V
0-10V
2-10V
0-20mA
4-20mA

minpressure Minimum pressure (Note in
barA, 1 BarA is atmospheric
pressure!)

1

Continued on next page

206 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.40 – continued from previous page
Tag Description Values Default
maxpressure Maximum pressure (Note in

barA, 1 barA is atmospheric
pressure!)

101

gas selected gas n2
title Optional title

show plot Determines if the current device
data is to be shown in the daily
data plots

Yes
No

Yes

use cache Determines if persisten caching
of read values is allowed

Yes
No

No

comments Description for this device. Do
not use ’,’ in text as that charac-
ter is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled de-
vices)

No
Yes

No

Table 12.40: Configuration tags for MFC device type
’Pc AnalogReadonly’. An empty value field generally in-
dicates that the tag value can be either a free text string
or a number (integer or floating point).

207 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

12.5.11 Pc Manual

Tag Description Values Default
mode Device control mode Manual Manual
minpressure Minimum pressure (Note in

barA, 1 BarA is atmospheric
pressure!)

1

maxpressure Maximum pressure (Note in
barA, 1 barA is atmospheric
pressure!)

101

gas selected gas n2
title Optional title

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled de-
vices

Yes
No

Yes

use cache Determines if persisten caching
of read values is allowed

Yes
No

No

comments Description for this device. Do
not use ’,’ in text as that charac-
ter is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled de-
vices)

No
Yes

No

Table 12.41: Configuration tags for MFC device type
’Pc Manual’. An empty value field generally indicates
that the tag value can be either a free text string or a
number (integer or floating point).

208 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

12.6 Water

Water bubler devices are compound devices serving two distinct functions. The first is
to measure the temperature of the water bubler (for dewpoint determinations) and the
second function is to control/determine if the water bubler is enabled or bypassed. The
first functions is performed using simpledevices similarly to the temperature log devices
in section eftemplogdev and the second function is performed by using a relay device
(refer section 12.2). Notice that if the channel device is already a temperature logging
device, a lot of the additional tags is not used and can be left blank (In effect only the
control device tags are used in this case).

All water devices supports the setstatus command which controls if the water bubler is
enabled or not.

12.6.1 Water

Tag Description Values Default

mode Device control mode
Manual
Automatic

Manual

channel name Input device name, may be either a
simple channel name or a temperature
log device name (temperature log de-
vice recomended, will be prefixed with
”Tlog ” in list)

channel Input channel (if no channel name) 1:101

channel input type Input channel type (if no channel
name)

Keithley
Keithley580
ICP
ICP7017/18
Modbus
PLCRead

Keithley

channel tty Input communication device (ex.
ttyS0), used only if channel type is not
Keithley

ttyS0

channel address Input device address (if input type is
not Keithley)

1

gas stream Name (label) of gas stream the device
is attatched to, Used only for display /
UI purposes

type Device type
pt100
pt1000

pt100

lead res name Name of lead resistance input device
lead res Lead resistance 1:101

Continued on next page

209 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.42 – continued from previous page
Tag Description Values Default

lead res type Lead resistance input type (if no lead
resistance name)

fixed value
Keithley
Keithley580
ICP
ICP7017/18
Modbus
PLCRead

Fixed value

lead res tty Lead resistance communication device
(If no lead resistance name and lead re-
sistance type is not Keithley)

ttyS0

lead res address Lead resistance device address (If no
lead resistance name and lead resis-
tance type is not Keithley)

1

lead res value Value (if fixed) for lead resistance 0
control relay name Device name for control relay (Used for

controling if Water bubler device is en-
abled or bypassed)

control type Device type for control relay (if no con-
trol relay name)

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

tty Serial device for contro relay communi-
cation (ex. ttyS0)

control address Control relay device address, only used
if no control relay name

1

control channel Control relay device channel, only used
if no control relay name

0

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

use cache Determines if persisten caching of read
values is allowed

Yes
No

No

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

Continued on next page

210 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.42 – continued from previous page
Tag Description Values Default

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.42: Configuration tags for water device type
’Humidifier’. An empty value field generally indicates
that the tag value can be either a free text string or a
number (integer or floating point).

211 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

12.7 Gas

Gas devices are used for controling gas flows. Each gas supplied to the device and/or test
setup in question must have its own gas device. Each gas device can be either manually
controled or automatically controled. In the manual case (for instance safety rules may
specify that purge gas flows be controled by manual ball flowmeters to be sure that the
purge gas continues in case of poweroutages), the gas devicesimply stores the last entreed
flow rate and returns that upon read. In the automatic case, the actual control device (a
MFC device, refer section 12.5), is used and a read on the gas device forwards the read
command to the control device.

All gas devices supports the setflow command to set the gas flow.

12.7.1 Normal gasses

Tag Description Values Default

class Device type
Normal
Multiline

Normal

gas Name of gas controlled by this device.
Only rarely should this be set to any-
thing other than the device name! If
set to something else, problems may
arise with gas multiplexer control if the
control name (name of gas to be con-
troled) is not the same as the eventuel
gas name (intermediate device names
may dffer however!)

ne
co2
o2
d2
n2
no
kr
co
ch4
he
no2
n2o3
h2
ar
n2o
xe
air

n2

mode Device control mode
Manual
Automatic

Manual

controler Name of controler device (if any) 0 0
maxflow Maximum flow rate (Note L/hour),

only used for manual gasses
1

maxflow set Maximum allowable flow rate (l/hour) 0
cutoff set Cutoff flow rate (force close if set below

this value)
0

Continued on next page

212 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.43 – continued from previous page
Tag Description Values Default
cutoff report Cutoff flow rate for report generation,

flows below this level is treated as 0
0

link Optional gas device name for linking
purposes, If a gas (parent) links to one
or more other gas devices (childs) and
the flow for one of the child devices is
above the cutoff value, the flow rate re-
ported by the parent device is set to 0
irrespectively of actual / assumed flow
rate. Notice that by using links it is
possible to configure circular references
which must be awoided!

title Optional title

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

control name Name of control valve device (relay) if
any, used mainly if gas is part of a gas
group

control value Control valve relay status for allowing
flow, used mainly if gas is part of a gas
group

0

master device Device name for the master device in
case current device is a slave device
(locked to have X percent of master de-
vice flow rate)

slave flow Percentage of master device flow rate
that current device is supposed to have

100

use cache Determines if persisten caching of read
values is allowed

Yes
No

No

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Continued on next page

213 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.43 – continued from previous page
Tag Description Values Default

Table 12.43: Configuration tags for gas device type ’Gas’.
An empty value field generally indicates that the tag
value can be either a free text string or a number (in-
teger or floating point).

12.7.2 Multiline

Tag Description Values Default

class Device type
Normal
Multiline

Multiline

mode Device control mode
Manual
Automatic

Automatic

device 1 Device name for first gas device
device 2 Device name for first gas device
maxflow Maximum flow rate (l/hour), readonly
maxflow set Maximum allowable flow rate (l/hour) 0
cutoff set Cutoff flow rate (force close if set below

this value), readonly
0

cutoff report Cutoff flow rate for report generation,
flows below this level is treated as 0

0

shift up Flow level where control shifts from
small to large device, default is maxflow
of low flow device

1

shift down Flow level where control shifts from
large to small device, default is 80 per-
cent of maxflow of low flow device

0.8

steps Number of steps in flow shift between
devices

5

sleep Wait time in seconds on each step in a
shift between devices

1

link Optional gas device name for linking
purposes, If a gas (parent) links to an
other gas device (child) and the flow
for the child device is above the cut-
off value, the flow rate reported by the
parent device is set to 0 irrespectively
of actual/assumed flow rate

title Optional title

Continued on next page

214 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.44 – continued from previous page
Tag Description Values Default

show plot Determines if the current device data is
to be shown in the daily data plots

Yes
No

Yes

control name Name of control valve device (relay) if
any, used mainly if gas is part of a gas
group

control value control valve relay status for allowing
flow, used mainly if gas is part of a gas
group

0

master device Device name for the master device in
case current device is a slave device
(locked to have X percent of master de-
vice flow rate)

slave flow Percentage of master device flow rate
that current device is supposed to have

100

use cache Determines if persisten caching of read
values is allowed

Yes
No

No

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.44: Configuration tags for gas device type ’Mul-
tiline’. An empty value field generally indicates that the
tag value can be either a free text string or a number
(integer or floating point).

215 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

12.8 Gasgroup

Gas groups are used for special confugrations of gas systems. If for istance two separate
gas lines with the same gas supply are used but with a automatic cross-over walve for
fast switching of gas flows, then the gas group can be used to log what the acutal gas
flow through the device under test actually was.

For instance assuming that the gas devices o2 1 and o2 2 are each automatically controled
and noe are set to 10 L/h and the other to 20 L/h and one wants to do a fast increase
in O2 flow rate, a cross ower valve (actually usually in the form of 4 valves, 2x NO and
2x NC in bridge configuration), then the gas group o2 group can be set to include o2 1
and o2 2 but each of them with different control values, so in one position, only the flow
from o2 1 is included in the group value and o2 2 is used in the other.

12.8.1 ICP

Tag Description Values Default
gasses Names of gas devices included in gas

group
title Optional title

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

use cache Determines if persisten caching of read
values is allowed

Yes
No

No

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.45: Configuration tags for gasgroup device type
’Gasgroup’. An empty value field generally indicates that
the tag value can be either a free text string or a number
(integer or floating point).

216 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

12.9 PSU

DC power supply devices are used for cotroling DC power supplies (including elec-
tronic loads). This may seem to overlab the analog output devices described in section
efanalogdev. However, this overlap is intentional, as in theory a controlable DC power-
suppy coudl be used as an analog output device, however in reality this us usually cost
ineffective.

PSU devices supports the voltage and current commands, these commands control the DC
voltage and current respectively. A special argument ’ocv’ can be given to the voltage or
current commands, specifying that the device should go to open circuit conditions (some
devices supports this natively, others throgh an external relay).

12.9.1 SM 15 100

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (master +

slaves)
1

parallel Number of devices in parallel (master
+ slaves)

1

external RSD Existence of external remote shut down
device (usually an external relay)

Yes
No

No

RSD name Device name for remote shut down re-
lay

RSD type Device type for remote shutdown relay,
only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote shut-
down relay, only used if no RSD name

ttyS0

RSD address Remote shutdown relay address, only
used if no RSD name

0

RSD channel Remote shutdown relay channel, only
used if no RSD name

0

control mode determines if the set() function should
control voltage or current

Voltage
Current

Current

Continued on next page

217 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.46 – continued from previous page
Tag Description Values Default
master device Device name for the master device in

case current device is a slave device
(locked to have X percent of master de-
vice current)

slave current Percentage of master device current
that this device is supposed to have

100

slave voltage Percentage of master device voltage
that this device is supposed to have

100

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.46: Configuration tags for PSU device type ’SM-
15-100’. An empty value field generally indicates that
the tag value can be either a free text string or a number
(integer or floating point).

12.9.2 SM 18 50

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (master +

slaves)
1

parallel Number of devices in parallel (master
+ slaves)

1

Continued on next page

218 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.47 – continued from previous page
Tag Description Values Default

external RSD Existence of external remote shut down
device (usually an external relay)

Yes
No

No

RSD name Device name for remote shut down re-
lay

RSD type Device type for remote shutdown relay,
only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote shut-
down relay, only used if no RSD name

ttyS0

RSD address Remote shutdown relay address, only
used if no RSD name

0

RSD channel Remote shutdown relay channel, only
used if no RSD name

0

control mode determines if the set() function should
control voltage or current

Voltage
Current

Current

master device Device name for the master device in
case current device is a slave device
(locked to have X percent of master de-
vice current)

slave current Percentage of master device current
that this device is supposed to have

100

slave voltage Percentage of master device voltage
that this device is supposed to have

100

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Continued on next page

219 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.47 – continued from previous page
Tag Description Values Default

Table 12.47: Configuration tags for PSU device type ’SM-
18-50’. An empty value field generally indicates that the
tag value can be either a free text string or a number
(integer or floating point).

12.9.3 SM 60 100

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (master +

slaves)
1

parallel Number of devices in parallel (master
+ slaves)

1

external RSD Existence of external remote shut down
device (usually an external relay)

Yes
No

No

RSD name Device name for remote shut down re-
lay

RSD type Device type for remote shutdown relay,
only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote shut-
down relay, only used if no RSD name

ttyS0

RSD address Remote shutdown relay address, only
used if no RSD name

0

RSD channel Remote shutdown relay channel, only
used if no RSD name

0

control mode determines if the set() function should
control voltage or current

Voltage
Current

Current

Continued on next page

220 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.48 – continued from previous page
Tag Description Values Default
master device Device name for the master device in

case current device is a slave device
(locked to have X percent of master de-
vice current)

slave current Percentage of master device current
that this device is supposed to have

100

slave voltage Percentage of master device voltage
that this device is supposed to have

100

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.48: Configuration tags for PSU device type ’SM-
60-100’. An empty value field generally indicates that
the tag value can be either a free text string or a number
(integer or floating point).

12.9.4 SM 35 45

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (master +

slaves)
1

parallel Number of devices in parallel (master
+ slaves)

1

Continued on next page

221 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.49 – continued from previous page
Tag Description Values Default

external RSD Existence of external remote shut down
device (usually an external relay)

Yes
No

No

RSD name Device name for remote shut down re-
lay

RSD type Device type for remote shutdown relay,
only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote shut-
down relay, only used if no RSD name

ttyS0

RSD address Remote shutdown relay address, only
used if no RSD name

0

RSD channel Remote shutdown relay channel, only
used if no RSD name

0

control mode determines if the set() function should
control voltage or current

Voltage
Current

Current

master device Device name for the master device in
case current device is a slave device
(locked to have X percent of master de-
vice current)

slave current Percentage of master device current
that this device is supposed to have

100

slave voltage Percentage of master device voltage
that this device is supposed to have

100

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Continued on next page

222 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.49 – continued from previous page
Tag Description Values Default

Table 12.49: Configuration tags for PSU device type ’SM-
35-45’. An empty value field generally indicates that the
tag value can be either a free text string or a number
(integer or floating point).

12.9.5 SM 52 30

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (master +

slaves)
1

parallel Number of devices in parallel (master
+ slaves)

1

external RSD Existence of external remote shut down
device (usually an external relay)

Yes
No

No

RSD name Device name for remote shut down re-
lay

RSD type Device type for remote shutdown relay,
only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote shut-
down relay, only used if no RSD name

ttyS0

RSD address Remote shutdown relay address, only
used if no RSD name

0

RSD channel Remote shutdown relay channel, only
used if no RSD name

0

control mode determines if the set() function should
control voltage or current

Voltage
Current

Current

Continued on next page

223 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.50 – continued from previous page
Tag Description Values Default
master device Device name for the master device in

case current device is a slave device
(locked to have X percent of master de-
vice current)

slave current Percentage of master device current
that this device is supposed to have

100

slave voltage Percentage of master device voltage
that this device is supposed to have

100

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.50: Configuration tags for PSU device type ’SM-
52-30’. An empty value field generally indicates that the
tag value can be either a free text string or a number
(integer or floating point).

12.9.6 SM 70 22

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (master +

slaves)
1

parallel Number of devices in parallel (master
+ slaves)

1

Continued on next page

224 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.51 – continued from previous page
Tag Description Values Default

external RSD Existence of external remote shut down
device (usually an external relay)

Yes
No

No

RSD name Device name for remote shut down re-
lay

RSD type Device type for remote shutdown relay,
only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote shut-
down relay, only used if no RSD name

ttyS0

RSD address Remote shutdown relay address, only
used if no RSD name

0

RSD channel Remote shutdown relay channel, only
used if no RSD name

0

control mode determines if the set() function should
control voltage or current

Voltage
Current

Current

master device Device name for the master device in
case current device is a slave device
(locked to have X percent of master de-
vice current)

slave current Percentage of master device current
that this device is supposed to have

100

slave voltage Percentage of master device voltage
that this device is supposed to have

100

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Continued on next page

225 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.51 – continued from previous page
Tag Description Values Default

Table 12.51: Configuration tags for PSU device type ’SM-
70-22’. An empty value field generally indicates that the
tag value can be either a free text string or a number
(integer or floating point).

12.9.7 SM 120 13

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (master +

slaves)
1

parallel Number of devices in parallel (master
+ slaves)

1

external RSD Existence of external remote shut down
device (usually an external relay)

Yes
No

No

RSD name Device name for remote shut down re-
lay

RSD type Device type for remote shutdown relay,
only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote shut-
down relay, only used if no RSD name

ttyS0

RSD address Remote shutdown relay address, only
used if no RSD name

0

RSD channel Remote shutdown relay channel, only
used if no RSD name

0

control mode determines if the set() function should
control voltage or current

Voltage
Current

Current

Continued on next page

226 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.52 – continued from previous page
Tag Description Values Default
master device Device name for the master device in

case current device is a slave device
(locked to have X percent of master de-
vice current)

slave current Percentage of master device current
that this device is supposed to have

100

slave voltage Percentage of master device voltage
that this device is supposed to have

100

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.52: Configuration tags for PSU device type ’SM-
120-13’. An empty value field generally indicates that
the tag value can be either a free text string or a number
(integer or floating point).

12.9.8 SM 300 5

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (master +

slaves)
1

parallel Number of devices in parallel (master
+ slaves)

1

Continued on next page

227 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.53 – continued from previous page
Tag Description Values Default

external RSD Existence of external remote shut down
device (usually an external relay)

Yes
No

No

RSD name Device name for remote shut down re-
lay

RSD type Device type for remote shutdown relay,
only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote shut-
down relay, only used if no RSD name

ttyS0

RSD address Remote shutdown relay address, only
used if no RSD name

0

RSD channel Remote shutdown relay channel, only
used if no RSD name

0

control mode determines if the set() function should
control voltage or current

Voltage
Current

Current

master device Device name for the master device in
case current device is a slave device
(locked to have X percent of master de-
vice current)

slave current Percentage of master device current
that this device is supposed to have

100

slave voltage Percentage of master device voltage
that this device is supposed to have

100

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Continued on next page

228 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.53 – continued from previous page
Tag Description Values Default

Table 12.53: Configuration tags for PSU device type ’SM-
300-5’. An empty value field generally indicates that the
tag value can be either a free text string or a number
(integer or floating point).

12.9.9 SM 30 200

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (master +

slaves)
1

parallel Number of devices in parallel (master
+ slaves)

1

external RSD Existence of external remote shut down
device (usually an external relay)

Yes
No

No

RSD name Device name for remote shut down re-
lay

RSD type Device type for remote shutdown relay,
only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote shut-
down relay, only used if no RSD name

ttyS0

RSD address Remote shutdown relay address, only
used if no RSD name

0

RSD channel Remote shutdown relay channel, only
used if no RSD name

0

control mode determines if the set() function should
control voltage or current

Voltage
Current

Current

Continued on next page

229 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.54 – continued from previous page
Tag Description Values Default
master device Device name for the master device in

case current device is a slave device
(locked to have X percent of master de-
vice current)

slave current Percentage of master device current
that this device is supposed to have

100

slave voltage Percentage of master device voltage
that this device is supposed to have

100

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.54: Configuration tags for PSU device type ’SM-
30-200’. An empty value field generally indicates that
the tag value can be either a free text string or a number
(integer or floating point).

12.9.10 ES015 10

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (master +

slaves)
1

parallel Number of devices in parallel (master
+ slaves)

1

Continued on next page

230 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.55 – continued from previous page
Tag Description Values Default

external RSD Existence of external remote shut down
device (usually an external relay)

Yes
No

No

RSD name Device name for remote shut down re-
lay

RSD type Device type for remote shutdown relay,
only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote shut-
down relay, only used if no RSD name

ttyS0

RSD address Remote shutdown relay address, only
used if no RSD name

0

RSD channel Remote shutdown relay channel, only
used if no RSD name

0

control mode determines if the set() function should
control voltage or current

Voltage
Current

Current

master device Device name for the master device in
case current device is a slave device
(locked to have X percent of master de-
vice current)

slave current Percentage of master device current
that this device is supposed to have

100

slave voltage Percentage of master device voltage
that this device is supposed to have

100

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Continued on next page

231 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.55 – continued from previous page
Tag Description Values Default

Table 12.55: Configuration tags for PSU device type
’ES015-10’. An empty value field generally indicates that
the tag value can be either a free text string or a number
(integer or floating point).

232 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

12.9.11 ES030 5

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (master +

slaves)
1

parallel Number of devices in parallel (master
+ slaves)

1

external RSD Existence of external remote shut down
device (usually an external relay)

Yes
No

No

RSD name Device name for remote shut down re-
lay

RSD type Device type for remote shutdown relay,
only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote shut-
down relay, only used if no RSD name

ttyS0

RSD address Remote shutdown relay address, only
used if no RSD name

0

RSD channel Remote shutdown relay channel, only
used if no RSD name

0

control mode determines if the set() function should
control voltage or current

Voltage
Current

Current

master device Device name for the master device in
case current device is a slave device
(locked to have X percent of master de-
vice current)

slave current Percentage of master device current
that this device is supposed to have

100

slave voltage Percentage of master device voltage
that this device is supposed to have

100

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

Continued on next page

233 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.56 – continued from previous page
Tag Description Values Default
comments Description for this device. Do not use

’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.56: Configuration tags for PSU device type
’ES030-5’. An empty value field generally indicates that
the tag value can be either a free text string or a number
(integer or floating point).

12.9.12 ES075 2

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (master +

slaves)
1

parallel Number of devices in parallel (master
+ slaves)

1

external RSD Existence of external remote shut down
device (usually an external relay)

Yes
No

No

RSD name Device name for remote shut down re-
lay

RSD type Device type for remote shutdown relay,
only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote shut-
down relay, only used if no RSD name

ttyS0

RSD address Remote shutdown relay address, only
used if no RSD name

0

Continued on next page

234 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.57 – continued from previous page
Tag Description Values Default
RSD channel Remote shutdown relay channel, only

used if no RSD name
0

control mode determines if the set() function should
control voltage or current

Voltage
Current

Current

master device Device name for the master device in
case current device is a slave device
(locked to have X percent of master de-
vice current)

slave current Percentage of master device current
that this device is supposed to have

100

slave voltage Percentage of master device voltage
that this device is supposed to have

100

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.57: Configuration tags for PSU device type
’ES075-2’. An empty value field generally indicates that
the tag value can be either a free text string or a number
(integer or floating point).

12.9.13 ES0300 045

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0

Continued on next page

235 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.58 – continued from previous page
Tag Description Values Default
serial Number of devices in serial (master +

slaves)
1

parallel Number of devices in parallel (master
+ slaves)

1

external RSD Existence of external remote shut down
device (usually an external relay)

Yes
No

No

RSD name Device name for remote shut down re-
lay

RSD type Device type for remote shutdown relay,
only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote shut-
down relay, only used if no RSD name

ttyS0

RSD address Remote shutdown relay address, only
used if no RSD name

0

RSD channel Remote shutdown relay channel, only
used if no RSD name

0

control mode determines if the set() function should
control voltage or current

Voltage
Current

Current

master device Device name for the master device in
case current device is a slave device
(locked to have X percent of master de-
vice current)

slave current Percentage of master device current
that this device is supposed to have

100

slave voltage Percentage of master device voltage
that this device is supposed to have

100

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

Continued on next page

236 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.58 – continued from previous page
Tag Description Values Default

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.58: Configuration tags for PSU device type
’ES0300-045’. An empty value field generally indicates
that the tag value can be either a free text string or a
number (integer or floating point).

12.9.14 EL 9080 200

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (master +

slaves)
1

parallel Number of devices in parallel (master
+ slaves)

1

external RSD Existence of external remote shut down
device (usually an external relay)

Yes
No

No

RSD name Device name for remote shut down re-
lay

RSD type Device type for remote shutdown relay,
only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote shut-
down relay, only used if no RSD name

ttyS0

RSD address Remote shutdown relay address, only
used if no RSD name

0

RSD channel Remote shutdown relay channel, only
used if no RSD name

0

Continued on next page

237 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.59 – continued from previous page
Tag Description Values Default

control mode determines if the set() function should
control voltage or current

Voltage
Current

Current

master device Device name for the master device in
case current device is a slave device
(locked to have X percent of master de-
vice current)

slave current Percentage of master device current
that this device is supposed to have

100

slave voltage Percentage of master device voltage
that this device is supposed to have

100

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.59: Configuration tags for PSU device type
’EL 9080-200 HP’. An empty value field generally indi-
cates that the tag value can be either a free text string
or a number (integer or floating point).

12.9.15 EL 9160 100

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (master +

slaves)
1

Continued on next page

238 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.60 – continued from previous page
Tag Description Values Default
parallel Number of devices in parallel (master

+ slaves)
1

external RSD Existence of external remote shut down
device (usually an external relay)

Yes
No

No

RSD name Device name for remote shut down re-
lay

RSD type Device type for remote shutdown relay,
only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote shut-
down relay, only used if no RSD name

ttyS0

RSD address Remote shutdown relay address, only
used if no RSD name

0

RSD channel Remote shutdown relay channel, only
used if no RSD name

0

control mode determines if the set() function should
control voltage or current

Voltage
Current

Current

master device Device name for the master device in
case current device is a slave device
(locked to have X percent of master de-
vice current)

slave current Percentage of master device current
that this device is supposed to have

100

slave voltage Percentage of master device voltage
that this device is supposed to have

100

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Continued on next page

239 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.60 – continued from previous page
Tag Description Values Default

Table 12.60: Configuration tags for PSU device type
’EL 9160-100 HP’. An empty value field generally indi-
cates that the tag value can be either a free text string
or a number (integer or floating point).

12.9.16 EL 9400 50

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (master +

slaves)
1

parallel Number of devices in parallel (master
+ slaves)

1

external RSD Existence of external remote shut down
device (usually an external relay)

Yes
No

No

RSD name Device name for remote shut down re-
lay

RSD type Device type for remote shutdown relay,
only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote shut-
down relay, only used if no RSD name

ttyS0

RSD address Remote shutdown relay address, only
used if no RSD name

0

RSD channel Remote shutdown relay channel, only
used if no RSD name

0

control mode determines if the set() function should
control voltage or current

Voltage
Current

Current

Continued on next page

240 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.61 – continued from previous page
Tag Description Values Default
master device Device name for the master device in

case current device is a slave device
(locked to have X percent of master de-
vice current)

slave current Percentage of master device current
that this device is supposed to have

100

slave voltage Percentage of master device voltage
that this device is supposed to have

100

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.61: Configuration tags for PSU device type
’EL 9400-50’. An empty value field generally indicates
that the tag value can be either a free text string or a
number (integer or floating point).

12.9.17 EL 9750 50

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (master +

slaves)
1

parallel Number of devices in parallel (master
+ slaves)

1

Continued on next page

241 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.62 – continued from previous page
Tag Description Values Default

external RSD Existence of external remote shut down
device (usually an external relay)

Yes
No

No

RSD name Device name for remote shut down re-
lay

RSD type Device type for remote shutdown relay,
only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote shut-
down relay, only used if no RSD name

ttyS0

RSD address Remote shutdown relay address, only
used if no RSD name

0

RSD channel Remote shutdown relay channel, only
used if no RSD name

0

control mode determines if the set() function should
control voltage or current

Voltage
Current

Current

master device Device name for the master device in
case current device is a slave device
(locked to have X percent of master de-
vice current)

slave current Percentage of master device current
that this device is supposed to have

100

slave voltage Percentage of master device voltage
that this device is supposed to have

100

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Continued on next page

242 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.62 – continued from previous page
Tag Description Values Default

Table 12.62: Configuration tags for PSU device type
’EL 9750-50’. An empty value field generally indicates
that the tag value can be either a free text string or a
number (integer or floating point).

12.9.18 EL 9080 200 HP

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (master +

slaves)
1

parallel Number of devices in parallel (master
+ slaves)

1

external RSD Existence of external remote shut down
device (usually an external relay)

Yes
No

No

RSD name Device name for remote shut down re-
lay

RSD type Device type for remote shutdown relay,
only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote shut-
down relay, only used if no RSD name

ttyS0

RSD address Remote shutdown relay address, only
used if no RSD name

0

RSD channel Remote shutdown relay channel, only
used if no RSD name

0

control mode determines if the set() function should
control voltage or current

Voltage
Current

Current

Continued on next page

243 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.63 – continued from previous page
Tag Description Values Default
master device Device name for the master device in

case current device is a slave device
(locked to have X percent of master de-
vice current)

slave current Percentage of master device current
that this device is supposed to have

100

slave voltage Percentage of master device voltage
that this device is supposed to have

100

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.63: Configuration tags for PSU device type
’EL 9080-200 HP’. An empty value field generally indi-
cates that the tag value can be either a free text string
or a number (integer or floating point).

12.9.19 EL 9160 100 HP

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (master +

slaves)
1

parallel Number of devices in parallel (master
+ slaves)

1

Continued on next page

244 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.64 – continued from previous page
Tag Description Values Default

external RSD Existence of external remote shut down
device (usually an external relay)

Yes
No

No

RSD name Device name for remote shut down re-
lay

RSD type Device type for remote shutdown relay,
only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote shut-
down relay, only used if no RSD name

ttyS0

RSD address Remote shutdown relay address, only
used if no RSD name

0

RSD channel Remote shutdown relay channel, only
used if no RSD name

0

control mode determines if the set() function should
control voltage or current

Voltage
Current

Current

master device Device name for the master device in
case current device is a slave device
(locked to have X percent of master de-
vice current)

slave current Percentage of master device current
that this device is supposed to have

100

slave voltage Percentage of master device voltage
that this device is supposed to have

100

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Continued on next page

245 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.64 – continued from previous page
Tag Description Values Default

Table 12.64: Configuration tags for PSU device type
’EL 9160-100 HP’. An empty value field generally indi-
cates that the tag value can be either a free text string
or a number (integer or floating point).

12.9.20 EL 9400 50 HP

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (master +

slaves)
1

parallel Number of devices in parallel (master
+ slaves)

1

external RSD Existence of external remote shut down
device (usually an external relay)

Yes
No

No

RSD name Device name for remote shut down re-
lay

RSD type Device type for remote shutdown relay,
only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote shut-
down relay, only used if no RSD name

ttyS0

RSD address Remote shutdown relay address, only
used if no RSD name

0

RSD channel Remote shutdown relay channel, only
used if no RSD name

0

control mode determines if the set() function should
control voltage or current

Voltage
Current

Current

Continued on next page

246 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.65 – continued from previous page
Tag Description Values Default
master device Device name for the master device in

case current device is a slave device
(locked to have X percent of master de-
vice current)

slave current Percentage of master device current
that this device is supposed to have

100

slave voltage Percentage of master device voltage
that this device is supposed to have

100

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.65: Configuration tags for PSU device type
’EL 9400-50 HP’. An empty value field generally indi-
cates that the tag value can be either a free text string
or a number (integer or floating point).

247 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

12.9.21 EL 9750 50 HP

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (master +

slaves)
1

parallel Number of devices in parallel (master
+ slaves)

1

external RSD Existence of external remote shut down
device (usually an external relay)

Yes
No

No

RSD name Device name for remote shut down re-
lay

RSD type Device type for remote shutdown relay,
only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote shut-
down relay, only used if no RSD name

ttyS0

RSD address Remote shutdown relay address, only
used if no RSD name

0

RSD channel Remote shutdown relay channel, only
used if no RSD name

0

control mode determines if the set() function should
control voltage or current

Voltage
Current

Current

master device Device name for the master device in
case current device is a slave device
(locked to have X percent of master de-
vice current)

slave current Percentage of master device current
that this device is supposed to have

100

slave voltage Percentage of master device voltage
that this device is supposed to have

100

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

Continued on next page

248 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.66 – continued from previous page
Tag Description Values Default
comments Description for this device. Do not use

’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.66: Configuration tags for PSU device type
’EL 9750-50-HP’. An empty value field generally indi-
cates that the tag value can be either a free text string
or a number (integer or floating point).

12.9.22 EL 9080 600

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (master +

slaves)
1

parallel Number of devices in parallel (master
+ slaves)

1

external RSD Existence of external remote shut down
device (usually an external relay)

Yes
No

No

RSD name Device name for remote shut down re-
lay

RSD type Device type for remote shutdown relay,
only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote shut-
down relay, only used if no RSD name

ttyS0

RSD address Remote shutdown relay address, only
used if no RSD name

0

Continued on next page

249 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.67 – continued from previous page
Tag Description Values Default
RSD channel Remote shutdown relay channel, only

used if no RSD name
0

control mode determines if the set() function should
control voltage or current

Voltage
Current

Current

master device Device name for the master device in
case current device is a slave device
(locked to have X percent of master de-
vice current)

slave current Percentage of master device current
that this device is supposed to have

100

slave voltage Percentage of master device voltage
that this device is supposed to have

100

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.67: Configuration tags for PSU device type
’EL 9080-600 HP’. An empty value field generally indi-
cates that the tag value can be either a free text string
or a number (integer or floating point).

12.9.23 EL 9160 300

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0

Continued on next page

250 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.68 – continued from previous page
Tag Description Values Default
serial Number of devices in serial (master +

slaves)
1

parallel Number of devices in parallel (master
+ slaves)

1

external RSD Existence of external remote shut down
device (usually an external relay)

Yes
No

No

RSD name Device name for remote shut down re-
lay

RSD type Device type for remote shutdown relay,
only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote shut-
down relay, only used if no RSD name

ttyS0

RSD address Remote shutdown relay address, only
used if no RSD name

0

RSD channel Remote shutdown relay channel, only
used if no RSD name

0

control mode determines if the set() function should
control voltage or current

Voltage
Current

Current

master device Device name for the master device in
case current device is a slave device
(locked to have X percent of master de-
vice current)

slave current Percentage of master device current
that this device is supposed to have

100

slave voltage Percentage of master device voltage
that this device is supposed to have

100

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

Continued on next page

251 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.68 – continued from previous page
Tag Description Values Default

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.68: Configuration tags for PSU device type
’EL 9160-300 HP’. An empty value field generally indi-
cates that the tag value can be either a free text string
or a number (integer or floating point).

12.9.24 EL 9400 150

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (master +

slaves)
1

parallel Number of devices in parallel (master
+ slaves)

1

external RSD Existence of external remote shut down
device (usually an external relay)

Yes
No

No

RSD name Device name for remote shut down re-
lay

RSD type Device type for remote shutdown relay,
only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote shut-
down relay, only used if no RSD name

ttyS0

RSD address Remote shutdown relay address, only
used if no RSD name

0

RSD channel Remote shutdown relay channel, only
used if no RSD name

0

Continued on next page

252 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.69 – continued from previous page
Tag Description Values Default

control mode determines if the set() function should
control voltage or current

Voltage
Current

Current

master device Device name for the master device in
case current device is a slave device
(locked to have X percent of master de-
vice current)

slave current Percentage of master device current
that this device is supposed to have

100

slave voltage Percentage of master device voltage
that this device is supposed to have

100

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.69: Configuration tags for PSU device type
’EL 9400-150 HP’. An empty value field generally indi-
cates that the tag value can be either a free text string
or a number (integer or floating point).

12.9.25 EL 9750 75

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (master +

slaves)
1

Continued on next page

253 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.70 – continued from previous page
Tag Description Values Default
parallel Number of devices in parallel (master

+ slaves)
1

external RSD Existence of external remote shut down
device (usually an external relay)

Yes
No

No

RSD name Device name for remote shut down re-
lay

RSD type Device type for remote shutdown relay,
only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote shut-
down relay, only used if no RSD name

ttyS0

RSD address Remote shutdown relay address, only
used if no RSD name

0

RSD channel Remote shutdown relay channel, only
used if no RSD name

0

control mode determines if the set() function should
control voltage or current

Voltage
Current

Current

master device Device name for the master device in
case current device is a slave device
(locked to have X percent of master de-
vice current)

slave current Percentage of master device current
that this device is supposed to have

100

slave voltage Percentage of master device voltage
that this device is supposed to have

100

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Continued on next page

254 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.70 – continued from previous page
Tag Description Values Default

Table 12.70: Configuration tags for PSU device type
’EL 9750-75’. An empty value field generally indicates
that the tag value can be either a free text string or a
number (integer or floating point).

12.9.26 EL 9080 600 HP

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (master +

slaves)
1

parallel Number of devices in parallel (master
+ slaves)

1

external RSD Existence of external remote shut down
device (usually an external relay)

Yes
No

No

RSD name Device name for remote shut down re-
lay

RSD type Device type for remote shutdown relay,
only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote shut-
down relay, only used if no RSD name

ttyS0

RSD address Remote shutdown relay address, only
used if no RSD name

0

RSD channel Remote shutdown relay channel, only
used if no RSD name

0

control mode determines if the set() function should
control voltage or current

Voltage
Current

Current

Continued on next page

255 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.71 – continued from previous page
Tag Description Values Default
master device Device name for the master device in

case current device is a slave device
(locked to have X percent of master de-
vice current)

slave current Percentage of master device current
that this device is supposed to have

100

slave voltage Percentage of master device voltage
that this device is supposed to have

100

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.71: Configuration tags for PSU device type
’EL 9080-600 HP’. An empty value field generally indi-
cates that the tag value can be either a free text string
or a number (integer or floating point).

12.9.27 EL 9160 300 HP

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (master +

slaves)
1

parallel Number of devices in parallel (master
+ slaves)

1

Continued on next page

256 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.72 – continued from previous page
Tag Description Values Default

external RSD Existence of external remote shut down
device (usually an external relay)

Yes
No

No

RSD name Device name for remote shut down re-
lay

RSD type Device type for remote shutdown relay,
only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote shut-
down relay, only used if no RSD name

ttyS0

RSD address Remote shutdown relay address, only
used if no RSD name

0

RSD channel Remote shutdown relay channel, only
used if no RSD name

0

control mode determines if the set() function should
control voltage or current

Voltage
Current

Current

master device Device name for the master device in
case current device is a slave device
(locked to have X percent of master de-
vice current)

slave current Percentage of master device current
that this device is supposed to have

100

slave voltage Percentage of master device voltage
that this device is supposed to have

100

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Continued on next page

257 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.72 – continued from previous page
Tag Description Values Default

Table 12.72: Configuration tags for PSU device type
’EL 9160-300 HP’. An empty value field generally indi-
cates that the tag value can be either a free text string
or a number (integer or floating point).

12.9.28 EL 9400 150 HP

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (master +

slaves)
1

parallel Number of devices in parallel (master
+ slaves)

1

external RSD Existence of external remote shut down
device (usually an external relay)

Yes
No

No

RSD name Device name for remote shut down re-
lay

RSD type Device type for remote shutdown relay,
only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote shut-
down relay, only used if no RSD name

ttyS0

RSD address Remote shutdown relay address, only
used if no RSD name

0

RSD channel Remote shutdown relay channel, only
used if no RSD name

0

control mode determines if the set() function should
control voltage or current

Voltage
Current

Current

Continued on next page

258 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.73 – continued from previous page
Tag Description Values Default
master device Device name for the master device in

case current device is a slave device
(locked to have X percent of master de-
vice current)

slave current Percentage of master device current
that this device is supposed to have

100

slave voltage Percentage of master device voltage
that this device is supposed to have

100

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.73: Configuration tags for PSU device type
’EL 9400-150 HP’. An empty value field generally indi-
cates that the tag value can be either a free text string
or a number (integer or floating point).

12.9.29 EL 9750 75 HP

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (master +

slaves)
1

parallel Number of devices in parallel (master
+ slaves)

1

Continued on next page

259 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.74 – continued from previous page
Tag Description Values Default

external RSD Existence of external remote shut down
device (usually an external relay)

Yes
No

No

RSD name Device name for remote shut down re-
lay

RSD type Device type for remote shutdown relay,
only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote shut-
down relay, only used if no RSD name

ttyS0

RSD address Remote shutdown relay address, only
used if no RSD name

0

RSD channel Remote shutdown relay channel, only
used if no RSD name

0

control mode determines if the set() function should
control voltage or current

Voltage
Current

Current

master device Device name for the master device in
case current device is a slave device
(locked to have X percent of master de-
vice current)

slave current Percentage of master device current
that this device is supposed to have

100

slave voltage Percentage of master device voltage
that this device is supposed to have

100

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Continued on next page

260 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.74 – continued from previous page
Tag Description Values Default

Table 12.74: Configuration tags for PSU device type
’EL 9750-75 HP’. An empty value field generally indi-
cates that the tag value can be either a free text string
or a number (integer or floating point).

12.9.30 EL 3160 60A

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (master +

slaves)
1

parallel Number of devices in parallel (master
+ slaves)

1

external RSD Existence of external remote shut down
device (usually an external relay)

Yes
No

No

RSD name Device name for remote shut down re-
lay

RSD type Device type for remote shutdown relay,
only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote shut-
down relay, only used if no RSD name

ttyS0

RSD address Remote shutdown relay address, only
used if no RSD name

0

RSD channel Remote shutdown relay channel, only
used if no RSD name

0

control mode determines if the set() function should
control voltage or current

Voltage
Current

Current

Continued on next page

261 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.75 – continued from previous page
Tag Description Values Default
master device Device name for the master device in

case current device is a slave device
(locked to have X percent of master de-
vice current)

slave current Percentage of master device current
that this device is supposed to have

100

slave voltage Percentage of master device voltage
that this device is supposed to have

100

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.75: Configuration tags for PSU device type
’EL 3160-60A’. An empty value field generally indicates
that the tag value can be either a free text string or a
number (integer or floating point).

262 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

12.9.31 EL 3400 25A

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (master +

slaves)
1

parallel Number of devices in parallel (master
+ slaves)

1

external RSD Existence of external remote shut down
device (usually an external relay)

Yes
No

No

RSD name Device name for remote shut down re-
lay

RSD type Device type for remote shutdown relay,
only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote shut-
down relay, only used if no RSD name

ttyS0

RSD address Remote shutdown relay address, only
used if no RSD name

0

RSD channel Remote shutdown relay channel, only
used if no RSD name

0

control mode determines if the set() function should
control voltage or current

Voltage
Current

Current

master device Device name for the master device in
case current device is a slave device
(locked to have X percent of master de-
vice current)

slave current Percentage of master device current
that this device is supposed to have

100

slave voltage Percentage of master device voltage
that this device is supposed to have

100

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

Continued on next page

263 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.76 – continued from previous page
Tag Description Values Default
comments Description for this device. Do not use

’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.76: Configuration tags for PSU device type
’EL 3400-25A’. An empty value field generally indicates
that the tag value can be either a free text string or a
number (integer or floating point).

12.9.32 EL 9080 200

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (master +

slaves)
1

parallel Number of devices in parallel (master
+ slaves)

1

external RSD Existence of external remote shut down
device (usually an external relay)

Yes
No

No

RSD name Device name for remote shut down re-
lay

RSD type Device type for remote shutdown relay,
only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote shut-
down relay, only used if no RSD name

ttyS0

RSD address Remote shutdown relay address, only
used if no RSD name

0

Continued on next page

264 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.77 – continued from previous page
Tag Description Values Default
RSD channel Remote shutdown relay channel, only

used if no RSD name
0

control mode determines if the set() function should
control voltage or current

Voltage
Current

Current

master device Device name for the master device in
case current device is a slave device
(locked to have X percent of master de-
vice current)

slave current Percentage of master device current
that this device is supposed to have

100

slave voltage Percentage of master device voltage
that this device is supposed to have

100

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.77: Configuration tags for PSU device type
’EL 9080-200 HP’. An empty value field generally indi-
cates that the tag value can be either a free text string
or a number (integer or floating point).

12.9.33 EL 9160 100

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0

Continued on next page

265 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.78 – continued from previous page
Tag Description Values Default
serial Number of devices in serial (master +

slaves)
1

parallel Number of devices in parallel (master
+ slaves)

1

external RSD Existence of external remote shut down
device (usually an external relay)

Yes
No

No

RSD name Device name for remote shut down re-
lay

RSD type Device type for remote shutdown relay,
only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote shut-
down relay, only used if no RSD name

ttyS0

RSD address Remote shutdown relay address, only
used if no RSD name

0

RSD channel Remote shutdown relay channel, only
used if no RSD name

0

control mode determines if the set() function should
control voltage or current

Voltage
Current

Current

master device Device name for the master device in
case current device is a slave device
(locked to have X percent of master de-
vice current)

slave current Percentage of master device current
that this device is supposed to have

100

slave voltage Percentage of master device voltage
that this device is supposed to have

100

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

Continued on next page

266 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.78 – continued from previous page
Tag Description Values Default

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.78: Configuration tags for PSU device type
’EL 9160-100 HP’. An empty value field generally indi-
cates that the tag value can be either a free text string
or a number (integer or floating point).

12.9.34 EL 9400 50

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (master +

slaves)
1

parallel Number of devices in parallel (master
+ slaves)

1

external RSD Existence of external remote shut down
device (usually an external relay)

Yes
No

No

RSD name Device name for remote shut down re-
lay

RSD type Device type for remote shutdown relay,
only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote shut-
down relay, only used if no RSD name

ttyS0

RSD address Remote shutdown relay address, only
used if no RSD name

0

RSD channel Remote shutdown relay channel, only
used if no RSD name

0

Continued on next page

267 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.79 – continued from previous page
Tag Description Values Default

control mode determines if the set() function should
control voltage or current

Voltage
Current

Current

master device Device name for the master device in
case current device is a slave device
(locked to have X percent of master de-
vice current)

slave current Percentage of master device current
that this device is supposed to have

100

slave voltage Percentage of master device voltage
that this device is supposed to have

100

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.79: Configuration tags for PSU device type
’EL 9400-50’. An empty value field generally indicates
that the tag value can be either a free text string or a
number (integer or floating point).

12.9.35 EL 9400 50 S01

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (master +

slaves)
1

Continued on next page

268 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.80 – continued from previous page
Tag Description Values Default
parallel Number of devices in parallel (master

+ slaves)
1

external RSD Existence of external remote shut down
device (usually an external relay)

Yes
No

No

RSD name Device name for remote shut down re-
lay

RSD type Device type for remote shutdown relay,
only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote shut-
down relay, only used if no RSD name

ttyS0

RSD address Remote shutdown relay address, only
used if no RSD name

0

RSD channel Remote shutdown relay channel, only
used if no RSD name

0

control mode determines if the set() function should
control voltage or current

Voltage
Current

Current

master device Device name for the master device in
case current device is a slave device
(locked to have X percent of master de-
vice current)

slave current Percentage of master device current
that this device is supposed to have

100

slave voltage Percentage of master device voltage
that this device is supposed to have

100

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Continued on next page

269 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.80 – continued from previous page
Tag Description Values Default

Table 12.80: Configuration tags for PSU device type
’EL 9400-50 S01’. An empty value field generally indi-
cates that the tag value can be either a free text string
or a number (integer or floating point).

12.9.36 EL 9750 25

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (master +

slaves)
1

parallel Number of devices in parallel (master
+ slaves)

1

external RSD Existence of external remote shut down
device (usually an external relay)

Yes
No

No

RSD name Device name for remote shut down re-
lay

RSD type Device type for remote shutdown relay,
only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote shut-
down relay, only used if no RSD name

ttyS0

RSD address Remote shutdown relay address, only
used if no RSD name

0

RSD channel Remote shutdown relay channel, only
used if no RSD name

0

control mode determines if the set() function should
control voltage or current

Voltage
Current

Current

Continued on next page

270 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.81 – continued from previous page
Tag Description Values Default
master device Device name for the master device in

case current device is a slave device
(locked to have X percent of master de-
vice current)

slave current Percentage of master device current
that this device is supposed to have

100

slave voltage Percentage of master device voltage
that this device is supposed to have

100

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.81: Configuration tags for PSU device type
’EL 9750 25’. An empty value field generally indicates
that the tag value can be either a free text string or a
number (integer or floating point).

12.9.37 EL 9080 400

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (master +

slaves)
1

parallel Number of devices in parallel (master
+ slaves)

1

Continued on next page

271 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.82 – continued from previous page
Tag Description Values Default

external RSD Existence of external remote shut down
device (usually an external relay)

Yes
No

No

RSD name Device name for remote shut down re-
lay

RSD type Device type for remote shutdown relay,
only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote shut-
down relay, only used if no RSD name

ttyS0

RSD address Remote shutdown relay address, only
used if no RSD name

0

RSD channel Remote shutdown relay channel, only
used if no RSD name

0

control mode determines if the set() function should
control voltage or current

Voltage
Current

Current

master device Device name for the master device in
case current device is a slave device
(locked to have X percent of master de-
vice current)

slave current Percentage of master device current
that this device is supposed to have

100

slave voltage Percentage of master device voltage
that this device is supposed to have

100

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Continued on next page

272 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.82 – continued from previous page
Tag Description Values Default

Table 12.82: Configuration tags for PSU device type
’EL 9080-400’. An empty value field generally indicates
that the tag value can be either a free text string or a
number (integer or floating point).

12.9.38 EL 9160 200

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (master +

slaves)
1

parallel Number of devices in parallel (master
+ slaves)

1

external RSD Existence of external remote shut down
device (usually an external relay)

Yes
No

No

RSD name Device name for remote shut down re-
lay

RSD type Device type for remote shutdown relay,
only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote shut-
down relay, only used if no RSD name

ttyS0

RSD address Remote shutdown relay address, only
used if no RSD name

0

RSD channel Remote shutdown relay channel, only
used if no RSD name

0

control mode determines if the set() function should
control voltage or current

Voltage
Current

Current

Continued on next page

273 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.83 – continued from previous page
Tag Description Values Default
master device Device name for the master device in

case current device is a slave device
(locked to have X percent of master de-
vice current)

slave current Percentage of master device current
that this device is supposed to have

100

slave voltage Percentage of master device voltage
that this device is supposed to have

100

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.83: Configuration tags for PSU device type
’EL 9160-100’. An empty value field generally indicates
that the tag value can be either a free text string or a
number (integer or floating point).

12.9.39 EL 9400 100

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (master +

slaves)
1

parallel Number of devices in parallel (master
+ slaves)

1

Continued on next page

274 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.84 – continued from previous page
Tag Description Values Default

external RSD Existence of external remote shut down
device (usually an external relay)

Yes
No

No

RSD name Device name for remote shut down re-
lay

RSD type Device type for remote shutdown relay,
only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote shut-
down relay, only used if no RSD name

ttyS0

RSD address Remote shutdown relay address, only
used if no RSD name

0

RSD channel Remote shutdown relay channel, only
used if no RSD name

0

control mode determines if the set() function should
control voltage or current

Voltage
Current

Current

master device Device name for the master device in
case current device is a slave device
(locked to have X percent of master de-
vice current)

slave current Percentage of master device current
that this device is supposed to have

100

slave voltage Percentage of master device voltage
that this device is supposed to have

100

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Continued on next page

275 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.84 – continued from previous page
Tag Description Values Default

Table 12.84: Configuration tags for PSU device type
’EL 9400-100’. An empty value field generally indicates
that the tag value can be either a free text string or a
number (integer or floating point).

12.9.40 EL 9400 100 S01

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (master +

slaves)
1

parallel Number of devices in parallel (master
+ slaves)

1

external RSD Existence of external remote shut down
device (usually an external relay)

Yes
No

No

RSD name Device name for remote shut down re-
lay

RSD type Device type for remote shutdown relay,
only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote shut-
down relay, only used if no RSD name

ttyS0

RSD address Remote shutdown relay address, only
used if no RSD name

0

RSD channel Remote shutdown relay channel, only
used if no RSD name

0

control mode determines if the set() function should
control voltage or current

Voltage
Current

Current

Continued on next page

276 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.85 – continued from previous page
Tag Description Values Default
master device Device name for the master device in

case current device is a slave device
(locked to have X percent of master de-
vice current)

slave current Percentage of master device current
that this device is supposed to have

100

slave voltage Percentage of master device voltage
that this device is supposed to have

100

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.85: Configuration tags for PSU device type
’EL 9400-100 S01’. An empty value field generally in-
dicates that the tag value can be either a free text string
or a number (integer or floating point).

277 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

12.9.41 EL 9750 50

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication Serial
tty Communication device ttyS0
address Device address 0
serial Number of devices in serial (master +

slaves)
1

parallel Number of devices in parallel (master
+ slaves)

1

external RSD Existence of external remote shut down
device (usually an external relay)

Yes
No

No

RSD name Device name for remote shut down re-
lay

RSD type Device type for remote shutdown relay,
only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote shut-
down relay, only used if no RSD name

ttyS0

RSD address Remote shutdown relay address, only
used if no RSD name

0

RSD channel Remote shutdown relay channel, only
used if no RSD name

0

control mode determines if the set() function should
control voltage or current

Voltage
Current

Current

master device Device name for the master device in
case current device is a slave device
(locked to have X percent of master de-
vice current)

slave current Percentage of master device current
that this device is supposed to have

100

slave voltage Percentage of master device voltage
that this device is supposed to have

100

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

Continued on next page

278 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.86 – continued from previous page
Tag Description Values Default
comments Description for this device. Do not use

’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.86: Configuration tags for PSU device type
’EL 9750-50’. An empty value field generally indicates
that the tag value can be either a free text string or a
number (integer or floating point).

12.9.42 PSU Bipolar

Tag Description Values Default
mode Device control mode Automatic Automatic

PSU device Device for controling current in elec-
trolyser mode (negative current)

Eload device Device for controling current in fuel cell
mode (positive current)

control mode determines if the set() function should
control voltage or current

Voltage
Current

Current

show plot Determines if the current device data is
to be shown in the daily data plots

Yes
No

Yes

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.87: Configuration tags for PSU device type
’PSU Bipolar’. An empty value field generally indicates
that the tag value can be either a free text string or a
number (integer or floating point).

279 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

12.9.43 PSU B2N

Tag Description Values Default
mode Device control mode Automatic Automatic

PSU device Bipolar power supply device

control mode determines if the set() function should
control voltage or current

Voltage
Current

Current

show plot Determines if the current device data is
to be shown in the daily data plots

Yes
No

Yes

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.88: Configuration tags for PSU device type
’PSU B2N’. An empty value field generally indicates that
the tag value can be either a free text string or a number
(integer or floating point).

12.9.44 PSU N2B

Tag Description Values Default
mode Device control mode Automatic Automatic

PSU device Power supply device

relay device Relay device controling the direction of
curent for the underlying PSU device

control mode determines if the set() function should
control voltage or current

Voltage
Current

Current

show plot Determines if the current device data is
to be shown in the daily data plots

Yes
No

Yes

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

Continued on next page

280 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.89 – continued from previous page
Tag Description Values Default

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.89: Configuration tags for PSU device type
’PSU N2B’. An empty value field generally indicates that
the tag value can be either a free text string or a number
(integer or floating point).

12.9.45 Kepco BOP 50 20MG

Tag Description Values Default

mode Device control mode
Manual
Automatic

Automatic

communication Device communication GPIB
address Device address 6
serial Number of devices in serial (master +

slaves)
1

parallel Number of devices in parallel (master
+ slaves)

1

external RSD Existence of external remote shut down
device (usually an external relay)

Yes
No

No

RSD name Device name for remote shut down re-
lay

RSD type Device type for remote shutdown relay,
only used if no RSD name

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

RSD tty Communication device for remote shut-
down relay, only used if no RSD name

ttyS0

RSD address Remote shutdown relay address, only
used if no RSD name

0

RSD channel Remote shutdown relay channel, only
used if no RSD name

0

control mode determines if the set() function should
control voltage or current

Voltage
Current

Voltage

Continued on next page

281 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.90 – continued from previous page
Tag Description Values Default
master device Device name for the master device in

case current device is a slave device
(locked to have X percent of master de-
vice current)

slave current Percentage of master device current
that this device is supposed to have

100

slave voltage Percentage of master device voltage
that this device is supposed to have

100

title Optional device title

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.90: Configuration tags for PSU device type
’BOP-50-200MG’. An empty value field generally indi-
cates that the tag value can be either a free text string
or a number (integer or floating point).

12.9.46 Keithley2400

Tag Description Values Default

mode Device control mode. If set to ’hidden’
it will not show up as a controlable de-
vice in the GUI. However it will still be
avaliable through other devices such as
PSU B2N

Normal
hidden

Normal

communication Device connunication GPIB 488.1 GPIB 488.1
address Device address 1

Continued on next page

282 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.91 – continued from previous page
Tag Description Values Default

PSU mode Mode of operation (determines if the
device should act as a constant current
source or a constant voltage source)

CC
CV

CC

external RSD Existence of external remote shut down
device (usually an external relay)

Yes
No

No

RSD name Device name for remote shut down re-
lay

control mode determines if the set() function should
control voltage or current

Voltage
Current

Current

master device Device name for the master device in
case current device is a slave device
(locked to have X percent of master de-
vice current)

slave current Percentage of master device current
that this device is supposed to have

100

slave voltage Percentage of master device voltage
that this device is supposed to have

100

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.91: Configuration tags for PSU device type
’keithley2400’. An empty value field generally indicates
that the tag value can be either a free text string or a
number (integer or floating point).

12.9.47 PSUMulti

283 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Tag Description Values Default

class Device type
Normal
PSUMulti

PSUMulti

mode Device control mode Automatic Automatic
device 1 Name of low range PSU device
device 2 Name of high range PSU device
cutoff device 1 curent for device 1 below which the cur-

rent is defined to be 0 (OCV)
0

cutoff device 2 curent for device 2 below which the cur-
rent is defined to be 0 (OCV)

0

minvoltage
maxvoltage
mincurrent
maxcurrent
shift up Flow level where control shifts from

small to large device, default is max-
current of low range device

1

shift down Flow level where control shifts from
large to small device, default is 80 per-
cent of maxcurrent of low range device

0.8

steps Number of steps in current shift be-
tween devices

1

sleep Wait time in seconds on each step in a
shift between devices

1

control mode determines if the set() function should
control voltage or current

Current Current

master device Device name for the master device in
case current device is a slave device
(locked to have X percent of master de-
vice current)

slave current Percentage of master device current
that this device is supposed to have

100

slave voltage Percentage of master device voltage
that this device is supposed to have

100

show plot Determines if the current device data is
to be shown in the daily data plots

Yes
No

Yes

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Continued on next page

284 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.92 – continued from previous page
Tag Description Values Default

Table 12.92: Configuration tags for PSU device type
’PSUMulti’. An empty value field generally indicates
that the tag value can be either a free text string or a
number (integer or floating point).

285 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

12.10 Analog

Analog output devices are used for instances where a specific control device needs an
analog voltage for actual control. This is usually mass flow controlers, but other devices
could also utilise this.

Analog output devices supports the set() command to set the output voltage or current.

12.10.1 ICP7024

Tag Description Values Default
mode Device control mode Automatic Volt
tty Serial device for communication (ex

ttyS0)
ttyS0

address Device address 0
channel Device channel 0
title Optional title

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

use cache Determines if persisten caching of read
values is allowed

Yes
No

No

persistent settings Determines wether or not settings
should be cached on file (speeding up
normal use) or queried each time

Yes
No

No

CRC Determines if checksum is to be used
for serial communication

No
Yes

No

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.93: Configuration tags for analog device type
’AnalogICP87024’. An empty value field generally indi-
cates that the tag value can be either a free text string
or a number (integer or floating point).

286 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

12.10.2 ICP87024

Tag Description Values Default
mode Device control mode Automatic Volt
tty Serial device for communication (ex

ttyS0)
ttyS0

address Device address 0
channel Device channel 0
title Optional title

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

use cache Determines if persisten caching of read
values is allowed

Yes
No

No

persistent settings Determines wether or not settings
should be cached on file (speeding up
normal use) or queried each time

Yes
No

No

CRC Determines if checksum is to be used
for serial communication

No
Yes

No

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.94: Configuration tags for analog device type
’AnalogICP87024’. An empty value field generally indi-
cates that the tag value can be either a free text string
or a number (integer or floating point).

12.10.3 ICP87028

Tag Description Values Default
mode Device control mode Automatic Volt
tty Serial device for communication (ex

ttyS0)
ttyS0

Continued on next page

287 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.95 – continued from previous page
Tag Description Values Default
address Device address 0
channel Device channel 0
title Optional title

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

use cache Determines if persisten caching of read
values is allowed

Yes
No

No

persistent settings Determines wether or not settings
should be cached on file (speeding up
normal use) or queried each time

Yes
No

No

CRC Determines if checksum is to be used
for serial communication

No
Yes

No

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.95: Configuration tags for analog device type
’AnalogICP87028’. An empty value field generally indi-
cates that the tag value can be either a free text string
or a number (integer or floating point).

12.10.4 ManualAnalogOut

Tag Description Values Default
mode Device control mode Volt/mA Volt/mA
title Optional title

show plot Determines if the current device data is
to be shown in the daily data plots

Yes
No

Yes

use cache Determines if persisten caching of read
values is allowed

Yes
No

No

Continued on next page

288 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.96 – continued from previous page
Tag Description Values Default
min -1e+100
max 1e+100
comments Description for this device. Do not use

’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Table 12.96: Configuration tags for analog device type
’ManualAnalogOut’. An empty value field generally in-
dicates that the tag value can be either a free text string
or a number (integer or floating point).

289 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

12.11 Multiplex

Gas multiplexer devices are used in the case that multiple gas strings are used sequentially
by the same mass flow controler (this is usually done to save cost) A multiplexer device
thus connects several gas devices to a MFC device.

Multiplexer devices supports the set command to set the currently selected gas. If the
multiplexer is manually controler, then the user must make sure that whenever he/she
changes either the valve status or the multiplexer status, that the other is kept in sync!.
In case of automatically controled multiplexers, relay devices (refer section 12.2) handles
the gas selection.

12.11.1 Relay

Tag Description Values Default

type
Relay
VICI

mode Device control mode
Manual
Automatic

Automatic

tty Device communication device (ex.
ttyS0)

ttyS0

address Device address 0

control type Device control type

ICP
ICPDI
ManualRelay
Monostable
Monostable–
PWM

ICP

title Optional title

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

use cache Determines if persisten caching of read
values is allowed

Yes
No

No

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Continued on next page

290 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.97 – continued from previous page
Tag Description Values Default

Table 12.97: Configuration tags for multiplex device type
’Relay’. An empty value field generally indicates that the
tag value can be either a free text string or a number
(integer or floating point).

12.11.2 VICI

Tag Description Values Default

type
Relay
VICI

tty Device communication device (ex.
ttyS0)

ttyS0

communication Device communication protocol
RS232
RS485

RS485

baudrate Communication speed

4800
9600
19200
38400
57600
115200

4800

address Device address Z
title Optional title

show plot Determines if the current device data
is to be shown in the normal daily data
plots (graph will be shown in the ’all
data’ page). Only relevant for enabled
devices

Yes
No

Yes

use cache Determines if persisten caching of read
values is allowed

Yes
No

No

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

disable readstring Determines if readstring should always
return the empty string (only relevant
for enabled devices)

No
Yes

No

Continued on next page

291 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.98 – continued from previous page
Tag Description Values Default

Table 12.98: Configuration tags for multiplex device type
’VICI’. An empty value field generally indicates that the
tag value can be either a free text string or a number
(integer or floating point).

292 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

12.12 Filter

Filter devices are a special group of devices. The individual filter devices are used as
a filter between other devices. The filter devices work by passing all commands to the
filtered device but running the result of a read operation on a filtered device through the
filter specified by the filter device (usually a spline interpolation).

The Filter device type ’spline’ contains a special setting variable called ’spline’. It is
intended to be used in case the base device output (read) is to be corrected according to
a spline interpolation table. The format of the setting is a list of values as shown below:

0 0

1 1.2

2 2.1

3 3

4 3.9

If the field is left blank, no correction is atempted and the reported value is used as is,
but in which case the use of the filter device is somewhat pointless.

A final special filter device is teh Typecast device. This device can be used to convert
commands from one device type to another. Notice however that the typecast device
class is limited in scope and not all callable functions on the soruce type may be possible
to convert to the target type. As a general rule, only one callable function (usually the
’set’ command) can be called on the target type.

12.12.1 Input spline

Tag Description Values Default

mode Device control mode
Manual
Automatic

spline Spline table

Continued on next page

293 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.99 – continued from previous page
Tag Description Values Default

device type Type of raw device

simplechannel
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

device Raw device
title Optional title

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled de-
vices

Yes
No

Yes

read function Device function to use for read
operations

read read

comments Description for this device. Do
not use ’,’ in text as that charac-
ter is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled de-
vices)

No
Yes

No

Table 12.99: Configuration tags for filter device type ’In-
put spline device’. An empty value field generally indi-
cates that the tag value can be either a free text string
or a number (integer or floating point).

294 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

12.12.2 Output spline

Tag Description Values Default

mode Device control mode
Manual
Automatic

spline Spline table

device type Type of raw device

simplechannel
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

analog

device Raw device
title Optional title

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled de-
vices

Yes
No

Yes

Continued on next page

295 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.100 – continued from previous page
Tag Description Values Default

master device type Device type for the master de-
vice in case current device is
a slave device (locked to have
X percent of master device set-
point)

simplechannel
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

master device Device name for the master de-
vice in case current device is
a slave device (locked to have
X percent of master device set-
point)

slave flow Percentage of master device set-
point that current device is sup-
posed to have

100

comments Description for this device. Do
not use ’,’ in text as that charac-
ter is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled de-
vices)

No
Yes

No

Table 12.100: Configuration tags for filter device type
’Output spline device’. An empty value field generally
indicates that the tag value can be either a free text string
or a number (integer or floating point).

12.12.3 IO spline

296 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Tag Description Values Default

mode Device control mode
Manual
Automatic

input spline Spline table used for read oper-
ation

output spline Spline table used for set opera-
tion

device type Type of raw device

simplechannel
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

analog

device Raw device
title Optional title
read function Device function to use for read

operations
read read

master device type Device type for the master de-
vice in case current device is
a slave device (locked to have
X percent of master device set-
point)

simplechannel
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

Continued on next page

297 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.101 – continued from previous page
Tag Description Values Default

master device Device name for the master de-
vice in case current device is
a slave device (locked to have
X percent of master device set-
point)

slave flow Percentage of master device set-
point that current device is sup-
posed to have

100

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled de-
vices

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that charac-
ter is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled de-
vices)

No
Yes

No

Table 12.101: Configuration tags for filter device type
’IO spline device’. An empty value field generally indi-
cates that the tag value can be either a free text string
or a number (integer or floating point).

12.12.4 Y-split

Tag Description Values Default
mode Device control mode Automatic
control device Relay device for controlling

which device is used

Continued on next page

298 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.102 – continued from previous page
Tag Description Values Default

device type Type of raw device to control

simplechannel
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

input device Optional input device. If it ex-
ists, commands from the input
device is passed on to one of the
output devices

device 1 Device selected if control device
is off (0)

device 2 Device selected if control device
is on (1)

title

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled de-
vices

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that charac-
ter is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled de-
vices)

No
Yes

No

Continued on next page

299 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.102 – continued from previous page
Tag Description Values Default

Table 12.102: Configuration tags for filter device type
’Y-split filter device’. An empty value field generally in-
dicates that the tag value can be either a free text string
or a number (integer or floating point).

12.12.5 Schmidttrigger

Tag Description Values Default

mode Device control mode
Manual
Automatic

Readonly

device type Type of raw device

simplechannel
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

device Raw device
shift up Threshold above wich the trig-

ger is on
0.6

shift down Threshold below which the trig-
ger is off

0.4

reverse output Indicates if the locgical output
state should be reversed

Yes
No

No

title Optional title

Continued on next page

300 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.103 – continued from previous page
Tag Description Values Default

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled de-
vices

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that charac-
ter is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled de-
vices)

No
Yes

No

Table 12.103: Configuration tags for filter device type
’Schmidt trigger latch’. An empty value field generally
indicates that the tag value can be either a free text string
or a number (integer or floating point).

12.12.6 Sum

Tag Description Values Default

mode Device control mode
Manual
Automatic

Continued on next page

301 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.104 – continued from previous page
Tag Description Values Default

device type Device type

simplechannel
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

offset Numeric offset of the output
(added to the sum of the inputs)

0

inputs number of inputs

2
3
4
5
6
7
8
9
10

2

output device Output device (optional if cur-
rent device is used in a control
chain)

title Optional title

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled de-
vices

Yes
No

Yes

read function Device function to use for read
operations

read read

input device 0 Input device 0

Continued on next page

302 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.104 – continued from previous page
Tag Description Values Default
input device factor 0 Input device 0 factor (multi-

plied on input device read value
before summing)

1

input device 1 Input device 1
input device factor 1 Input device 1 factor (multi-

plied on input device read value
before summing)

1

comments Description for this device. Do
not use ’,’ in text as that charac-
ter is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled de-
vices)

No
Yes

No

Table 12.104: Configuration tags for filter device type
’Summing device’. An empty value field generally indi-
cates that the tag value can be either a free text string
or a number (integer or floating point).

12.12.7 Min

Tag Description Values Default

mode Device control mode
Manual
Automatic

Continued on next page

303 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.105 – continued from previous page
Tag Description Values Default

device type Device type

simplechannel
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

inputs number of inputs

2
3
4
5
6
7
8
9
10

2

output device Output device (optional if cur-
rent device is used in a control
chain)

title Optional title

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled de-
vices

Yes
No

Yes

read function Device function to use for read
operations

read read

input device 0 Input device 0 factor (multi-
plied on input device read value
before determining minimum)

Continued on next page

304 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.105 – continued from previous page
Tag Description Values Default
input device factor 0 Input device 0 factor (multi-

plied on input device read value
before summing)

1

input device 1 Input device 1 factor (multi-
plied on input device read value
before determining minimum)

input device factor 1 Input device 1 factor (multi-
plied on input device read value
before summing)

1

comments Description for this device. Do
not use ’,’ in text as that charac-
ter is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled de-
vices)

No
Yes

No

Table 12.105: Configuration tags for filter device type
’Minimum device’. An empty value field generally indi-
cates that the tag value can be either a free text string
or a number (integer or floating point).

12.12.8 Max

Tag Description Values Default

mode Device control mode
Manual
Automatic

Continued on next page

305 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.106 – continued from previous page
Tag Description Values Default

device type Device type

simplechannel
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

inputs number of inputs

2
3
4
5
6
7
8
9
10

2

output device Output device (optional if cur-
rent device is used in a control
chain)

title Optional title

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled de-
vices

Yes
No

Yes

read function Device function to use for read
operations

read read

input device 0 Input device 0 factor (multi-
plied on input device read value
before determining maximum)

Continued on next page

306 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.106 – continued from previous page
Tag Description Values Default
input device factor 0 Input device 0 factor (multi-

plied on input device read value
before summing)

1

input device 1 Input device 1 factor (multi-
plied on input device read value
before determining maximum)

input device factor 1 Input device 1 factor (multi-
plied on input device read value
before summing)

1

comments Description for this device. Do
not use ’,’ in text as that charac-
ter is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled de-
vices)

No
Yes

No

Table 12.106: Configuration tags for filter device type
’Maximum device’. An empty value field generally indi-
cates that the tag value can be either a free text string
or a number (integer or floating point).

12.12.9 Lowpass

Tag Description Values Default

mode Device control mode
Manual
Automatic

Readonly

Continued on next page

307 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.107 – continued from previous page
Tag Description Values Default

device type Type of raw device

simplechannel
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

device Raw device
time constant Time constant in seconds 10
title Optional title

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled de-
vices

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that charac-
ter is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled de-
vices)

No
Yes

No

Table 12.107: Configuration tags for filter device type
’Low pass filter’. An empty value field generally indicates
that the tag value can be either a free text string or a
number (integer or floating point).

12.12.10 Moving average

308 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Tag Description Values Default

mode Device control mode
Manual
Automatic

Readonly

device type Type of raw device

simplechannel
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

device Raw device

interval Number of readings to aveage
over

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

5

method Averaging method, The median
method often gives better noise
rejection than simple arithmetic
mean

Mean
Median

Mean

read function Device function to use for read
operations

read read

Continued on next page

309 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.108 – continued from previous page
Tag Description Values Default
title Optional title

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled de-
vices

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that charac-
ter is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled de-
vices)

No
Yes

No

Table 12.108: Configuration tags for filter device type
’Moving average’. An empty value field generally indi-
cates that the tag value can be either a free text string
or a number (integer or floating point).

310 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

12.12.11 Typecast

Tag Description Values Default

mode Device control mode
Manual
Automatic

device type Type of raw device

simplechannel
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

device Raw device

output type Type of device to convert to

simplechannel
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

gas

output device Optional output device
notify function Function to call on the output

device and any listening devices
if a notify event is called on cur-
rent device

set

Continued on next page

311 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.109 – continued from previous page
Tag Description Values Default
comments Description for this device. Do

not use ’,’ in text as that charac-
ter is used as newline substitute.

Table 12.109: Configuration tags for filter device type
’Typecast device’. An empty value field generally indi-
cates that the tag value can be either a free text string
or a number (integer or floating point).

12.12.12 Typecast PSU to gas

Tag Description Values Default

mode Device control mode
Manual
Automatic

device Raw device

output device Optional output device
title

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled de-
vices

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that charac-
ter is used as newline substitute.

Table 12.110: Configuration tags for filter device type
’Typecast device Faraday’. An empty value field gener-
ally indicates that the tag value can be either a free text
string or a number (integer or floating point).

312 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

12.13 PID

PID devices are virtual devices used for more complex process control than normally
avaliable with fixed setpoints. The devices implement the normal behaviour of a PID
controler but uses other RFCcontrol devices for input and output.

12.13.1 PID

Tag Description Values Default
P Proportional gain 0.8
I Integrator gain 0.3
D Differential gain 0.1
intwindup Maximum integrated error 10
deadband Deadband, whenever the abso-

lute error is less than this no
change in ouptut is made (de-
termined before error gain is ap-
plied!). Note that the deadband
should not be set to a value less
than the accuracy of the sensor
measuring the actual value (and
hence the error)!

0

min minimum allowed output (check
that it is greater than output
device minimum output!)

0

max maximum allowed output
(check that it is less than out-
put device maximum output!)

1

Continued on next page

313 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.111 – continued from previous page
Tag Description Values Default

sensor type Device type of the sensing de-
vice

simplechannel
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
filter
PID
logic
math
Alert
Adapter

simplechannel

sensor device Device name of sensing device

control type Device type of the controlled de-
vice

simplechannel
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
filter
PID
logic
math
Alert
Adapter

gas

control device Device name of controlled de-
vice. Dhe device instance must
support the set() member func-
tion!

allow override Allow controlled device to be
controlled directly from the
GUI

Yes
No

No

Continued on next page

314 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.111 – continued from previous page
Tag Description Values Default
error gain Factor multiplied on the error.

Used to keep the error values
within the most optimum range.
For RFC devices with long time
constants usually a value of 0.01
should be chosen. Note that er-
ror gain can be used to invert
the output by changing the sign.

0.1

fast Determines if the PID control
loop is running as fast as pos-
sible (Yes) or only with one it-
eratoion / minute (No)

Yes
No

No

output enabled Determines if each call to out()
or control() should result in
commands passed to the output
device (closed loop) or merely
result in an iteration and result-
ing update of the integrated er-
ror (open loop). Setting this to
No is usefull for calibration /
configuration / testing purposes

Yes
No
Relay

Yes

output enable input relay device determining if out-
put is enabled or not

show plot Determines if the current device
data is to be shown in the nor-
mal daily data plots (graph will
be shown in the ’all data’ page).
Only relevant for enabled de-
vices

Yes
No

Yes

comments Description for this device. Do
not use ’,’ in text as that charac-
ter is used as newline substitute.

disable readstring Determines if readstring should
always return the empty string
(only relevant for enabled de-
vices)

No
Yes

No

Continued on next page

315 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.111 – continued from previous page
Tag Description Values Default

Table 12.111: Configuration tags for PID device type
’RFCPID’. An empty value field generally indicates that
the tag value can be either a free text string or a number
(integer or floating point).

316 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

12.14 Logic

Logic devices are virtual logical devices used for more complex process control. The
devices implement the normal behaviour of the usual logical operators AND, OR, XOR
etc. A logic device can operate with relay, logic or schmidt trigger devices as inputs. The
individual logic devices uses short circuit evaluation where appropriate.

Notice that all logic devices return undefined if the readstring function is called as they
are virtual devices not intended for data logging but only for process control.

12.14.1 AND

Tag Description Values Default
mode Device control mode Logic Logic

inputs number of inputs

2
3
4
5
6
7
8
9

2

output device Relay device for output (optional if cur-
rent device is used in a logic chain)

input device 0 Input device 0
input device 1 Input device 1
comments Description for this device. Do not use

’,’ in text as that character is used as
newline substitute.

Table 12.112: Configuration tags for logic device type
’AND logic device’. An empty value field generally indi-
cates that the tag value can be either a free text string
or a number (integer or floating point).

12.14.2 OR

Tag Description Values Default
mode Device control mode Logic Logic

Continued on next page

317 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.113 – continued from previous page
Tag Description Values Default

inputs number of inputs

2
3
4
5
6
7
8
9

2

output device Relay device for output (optional if cur-
rent device is used in a logic chain)

input device 0 Input device 0
input device 1 Input device 1
comments Description for this device. Do not use

’,’ in text as that character is used as
newline substitute.

Table 12.113: Configuration tags for logic device type
’OR logic device’. An empty value field generally indi-
cates that the tag value can be either a free text string
or a number (integer or floating point).

12.14.3 NOT

Tag Description Values Default
mode Device control mode Logic Logic
input device 0 Input device
output device Relay device for output (optional if cur-

rent device is used in a logic chain)
comments Description for this device. Do not use

’,’ in text as that character is used as
newline substitute.

Table 12.114: Configuration tags for logic device type
’NOT logic device’. An empty value field generally indi-
cates that the tag value can be either a free text string
or a number (integer or floating point).

318 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

12.14.4 XOR

Tag Description Values Default
mode Device control mode Logic Logic
inputs number of inputs 2 2
output device Relay device for output (optional if cur-

rent device is used in a logic chain)
input device 0 Input device 0
input device 1 Input device 1
comments Description for this device. Do not use

’,’ in text as that character is used as
newline substitute.

Table 12.115: Configuration tags for logic device type
’XOR logic device’. An empty value field generally indi-
cates that the tag value can be either a free text string
or a number (integer or floating point).

12.14.5 NAND

Tag Description Values Default
mode Device control mode Logic Logic

inputs number of inputs

2
3
4
5
6
7
8
9

2

output device Relay device for output (optional if cur-
rent device is used in a logic chain)

input device 0 Input device 0
input device 1 Input device 1
comments Description for this device. Do not use

’,’ in text as that character is used as
newline substitute.

Table 12.116: Configuration tags for logic device type
’NAND logic device’. An empty value field generally in-
dicates that the tag value can be either a free text string
or a number (integer or floating point).

319 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

12.14.6 NOR

Tag Description Values Default
mode Device control mode Logic Logic

inputs number of inputs

2
3
4
5
6
7
8
9

2

output device Relay device for output (optional if cur-
rent device is used in a logic chain)

input device 0 Input device 0
input device 1 Input device 1
comments Description for this device. Do not use

’,’ in text as that character is used as
newline substitute.

Table 12.117: Configuration tags for logic device type
’NOR logic device’. An empty value field generally indi-
cates that the tag value can be either a free text string
or a number (integer or floating point).

12.14.7 NXOR

Tag Description Values Default
mode Device control mode Logic Logic
inputs number of inputs 2 2
output device Relay device for output (optional if cur-

rent device is used in a logic chain)
input device 0 Input device 0
input device 1 Input device 1
comments Description for this device. Do not use

’,’ in text as that character is used as
newline substitute.

Continued on next page

320 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.118 – continued from previous page
Tag Description Values Default

Table 12.118: Configuration tags for logic device type
’NXOR logic device’. An empty value field generally in-
dicates that the tag value can be either a free text string
or a number (integer or floating point).

321 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

12.15 Math

Math devices are virtual arithmetic devices used for more complex process control. The
devices implement the normal behaviour of the usual arithmetic operators such as + - *
/ exp log and sqrt A math device can operate with any kind of device as input(s) For
the math devices where specific input values would normally cause a divide by zero error
or similar, the devices simply return 0 to awoid causing a premature termination of the
program.

Notice that all math devices return undefined if the readstring function is called as they
are virtual devices not intended for data logging.

12.15.1 Add

Tag Description Values Default
mode Device control mode Math Automatic

inputs number of inputs

2
3
4
5
6
7
8
9

2

offset Nummeric offset added to result of in-
puts

0

device type 0 Device type for input 0

simplechann-
el
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

device 0 Input device 0

Continued on next page

322 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.119 – continued from previous page
Tag Description Values Default
input factor 0 Factor multiplied on value from input

0 before math operation
1

read function 0 Device function to use for read opera-
tions for device 0

read read

device type 1 Device type for input 1

simplechann-
el
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

device 1 Input device 1
input factor 1 Factor multiplied on value from input

1 before math operation
1

read function 1 Device function to use for read opera-
tions for device 1

read read

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

Table 12.119: Configuration tags for math device type
’Arithmnitic sum device’. An empty value field generally
indicates that the tag value can be either a free text string
or a number (integer or floating point).

12.15.2 Multiply

Tag Description Values Default
mode Device control mode Math Automatic

Continued on next page

323 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.120 – continued from previous page
Tag Description Values Default

inputs number of inputs

2
3
4
5
6
7
8
9

2

device type 0 Device type for input 0

simplechann-
el
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

device 0 Input device 0
input factor 0 Factor multiplied on value from input

0 before math operation
1

read function 0 Device function to use for read opera-
tions for device 0

read read

Continued on next page

324 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.120 – continued from previous page
Tag Description Values Default

device type 1 Device type for input 1

simplechann-
el
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

device 1 Input device 1
input factor 1 Factor multiplied on value from input

1 before math operation
1

read function 1 Device function to use for read opera-
tions for device 1

read read

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

Table 12.120: Configuration tags for math device type
’Arithmnitic multiplication’. An empty value field gen-
erally indicates that the tag value can be either a free
text string or a number (integer or floating point).

12.15.3 Subtract

Tag Description Values Default
mode Device control mode Math Automatic
offset Nummeric offset added to result of in-

puts
0

Continued on next page

325 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.121 – continued from previous page
Tag Description Values Default

device type 0 Device type for input 0

simplechann-
el
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

device 0 Input device 0
input factor 0 Factor multiplied on value from input

0 before math operation
1

read function 0 Device function to use for read opera-
tions for device 0

read read

device type 1 Device type for input 1

simplechann-
el
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

device 1 Input device 1
input factor 1 Factor multiplied on value from input

1 before math operation
1

read function 1 Device function to use for read opera-
tions for device 1

read read

Continued on next page

326 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.121 – continued from previous page
Tag Description Values Default
comments Description for this device. Do not use

’,’ in text as that character is used as
newline substitute.

Table 12.121: Configuration tags for math device type
’Arithmnitic subtraction’. An empty value field generally
indicates that the tag value can be either a free text string
or a number (integer or floating point).

12.15.4 Divide

Tag Description Values Default
mode Device control mode Math Automatic

device type 0 Device type for input 0

simplechann-
el
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

device 0 Input device 0
input factor 0 Factor multiplied on value from input

0 before math operation
1

read function 0 Device function to use for read opera-
tions for device 0

read read

Continued on next page

327 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.122 – continued from previous page
Tag Description Values Default

device type 1 Device type for input 1

simplechann-
el
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

device 1 Input device 1
input factor 1 Factor multiplied on value from input

1 before math operation
1

read function 1 Device function to use for read opera-
tions for device 1

read read

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

Table 12.122: Configuration tags for math device type
’Arithmnitic division’. An empty value field generally
indicates that the tag value can be either a free text string
or a number (integer or floating point).

12.15.5 Log

Tag Description Values Default
mode Device control mode Math Automatic

Continued on next page

328 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.123 – continued from previous page
Tag Description Values Default

device type 0 Device type for input 0

simplechann-
el
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

device 0 Input device 0
input factor 0 Factor multiplied on value from input

0 before math operation
1

read function 0 Device function to use for read opera-
tions for device 0

read read

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

Table 12.123: Configuration tags for math device type
’Arithmnitic logarithm’. An empty value field generally
indicates that the tag value can be either a free text string
or a number (integer or floating point).

12.15.6 Exp

Tag Description Values Default
mode Device control mode Math Automatic

Continued on next page

329 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.124 – continued from previous page
Tag Description Values Default

device type 0 Device type for input 0

simplechann-
el
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

device 0 Input device 0
input factor 0 Factor multiplied on value from input

0 before math operation
1

read function 0 Device function to use for read opera-
tions for device 0

read read

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

Table 12.124: Configuration tags for math device type
’Arithmnitic exponential’. An empty value field generally
indicates that the tag value can be either a free text string
or a number (integer or floating point).

12.15.7 Root

Tag Description Values Default
mode Device control mode Math Automatic

Continued on next page

330 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.125 – continued from previous page
Tag Description Values Default

device type 0 Device type for input 0

simplechann-
el
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

device 0 Input device 0
input factor 0 Factor multiplied on value from input

0 before math operation
1

read function 0 Device function to use for read opera-
tions for device 0

read read

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

Table 12.125: Configuration tags for math device type
’Arithmnitic square root’. An empty value field generally
indicates that the tag value can be either a free text string
or a number (integer or floating point).

12.15.8 Abs

Tag Description Values Default
mode Device control mode Math Automatic

Continued on next page

331 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.126 – continued from previous page
Tag Description Values Default

device type 0 Device type for input 0

simplechann-
el
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

device 0 Input device 0
input factor 0 Factor multiplied on value from input

0 before math operation
1

read function 0 Device function to use for read opera-
tions for device 0

read read

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

Table 12.126: Configuration tags for math device type
’Arithmnitic absolute value’. An empty value field gen-
erally indicates that the tag value can be either a free
text string or a number (integer or floating point).

12.15.9 Inv

Tag Description Values Default
mode Device control mode Math Automatic

Continued on next page

332 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.127 – continued from previous page
Tag Description Values Default

device type 0 Device type for input 0

simplechann-
el
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

device 0 Input device 0
input factor 0 Factor multiplied on value from input

0 before math operation
1

read function 0 Device function to use for read opera-
tions for device 0

read read

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.

Table 12.127: Configuration tags for math device type
’Arithmnitic inverse’. An empty value field generally in-
dicates that the tag value can be either a free text string
or a number (integer or floating point).

333 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

12.16 Alert

Alert devices are virtual logical devices used for more monitoring the sytem and alerting
the operators if process parameters exceeds specific limits.

Notice that all Alert devices return undefined if the readstring function is called as they
are virtual devices not intended for data logging.

12.16.1 Normal

Tag Description Values Default

device type Type of raw device

simplechann-
el
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
filter
logic
math
Adapter

simplechannel

device Raw device
read function Device function to use for read

operations
read

title Optional title
threshold Threshold over (or under) which

the devices triggeres an alert
mail. If the threshold value is
higher than the reset value the
device value must be higher than
the trigger level to trigger an
alert, if threshold is lowet than
reset value, a value below the
threshold value triggers an alert.

1

Continued on next page

334 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.128 – continued from previous page
Tag Description Values Default
reset Value under (or over) the device

resets the alert. If the thresh-
old value is higher than the re-
set value the device value must
be higher than the trigger level
to trigger an alert, if threshold is
lowet than reset value, a value be-
low the threshold value triggers
an alert.

0.5

retries The number of retries performed
before an alert is triggered (to
awoid single read errors to triger
alerts)

3

kill program Terminate any running sequential
program if alert is triggered (only
terminated once / alert)

Yes
No

No

execute commands Execute additional commands if
alert is triggered (only executed
once / alert)

Yes
No

No

command list List of commands to be executed
upon alert trigger. Uses ex-
actly same structure as normal
sequential programs. Do NOT
include comands which require a
komma (,) in the argument list or
any commands depending on ex-
ternal resources (timeslot and/or
impedance commands etc)

comments Description for this device. Do
not use ’,’ in text as that charac-
ter is used as newline substitute.

Table 12.128: Configuration tags for Alert device type
’Alert’. An empty value field generally indicates that the
tag value can be either a free text string or a number
(integer or floating point).

335 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

12.17 Adapter

Adapter devices are virtual logical devices used to supply functionality to normal devices
which does not themselves supply the needed functionality natively. For instance a device
may only have an option for specifying a setpoint but not a ramprate. By suing a ramprate
adapter the missing ramprate can be emulated.

The adpapter devices uses the GoF Adapter pattern allowing fo multiple adapters to be
applied to individual devices. A device wrapped in an adapter is automatically set to be
readonly, as the adapter device takes over the responsibility for controlling the wrapped
device.

Notice that all Adapter devices return undefined if the readstring function is called as
they are virtual devices not intended for data logging but only for process control.

12.17.1 Ramprate

Tag Description Values Default

class

Ramprate
Exponential-
Decay
TempControl

Ramprate

mode Device control mode
Manual
Automatic

device type Type of raw device

simplechann-
el
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

device Raw device
read function Device function to use for read opera-

tions. This value will be used as the
start value for the ramp operation

read read

Continued on next page

336 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.129 – continued from previous page
Tag Description Values Default
control function Device function to use for setpoint op-

erations
set set

minramp Minimum allowed ramprate for device.
Notice that seting the ramprate to 0
disables ramping entirely!

0

maxramp Maximum alllowed ramprate for device
comments Description for this device. Do not use

’,’ in text as that character is used as
newline substitute.

Table 12.129: Configuration tags for Adapter device type
’Ramprate adapter’. An empty value field generally in-
dicates that the tag value can be either a free text string
or a number (integer or floating point).

12.17.2 ExponentialDecay

Tag Description Values Default

class

Ramprate
Exponential-
Decay
TempControl

ExponentialDecay

mode Device control mode
Manual
Automatic

Continued on next page

337 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Table 12.130 – continued from previous page
Tag Description Values Default

device type Type of raw device

simplechann-
el
relay
templog
tempcontrol
MFC
water
gas
gasgroup
PSU
analog
multiplex
PID
logic
math
Alert

simplechannel

device Raw device
read function Device function to use for read opera-

tions. This value will be used as the
start value for the ramp operation

read read

control function Device function to use for setpoint op-
erations

set set

time constant Time constant for decay in seconds 10
cutoff If the difference between the local set-

point and target setpoint is below this
the decay is stopped and target set-
point is set

0.01

comments Description for this device. Do not use
’,’ in text as that character is used as
newline substitute.
Table 12.130: Configuration tags for Adapter device type
’Exponential decay adapter’. An empty value field gen-
erally indicates that the tag value can be either a free
text string or a number (integer or floating point).

12.17.3 TempControl

338 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Tag Description Values Default

class

Ramprate
Exponential-
Decay
TempControl

TempControl

mode Device control mode
Manual
Automatic

device Raw device
minramp Minimum allowed ramprate for device.

Notice that seting the ramprate to 0
disables ramping entirely!

0

maxramp Maximum alllowed ramprate for device
comments Description for this device. Do not use

’,’ in text as that character is used as
newline substitute.
Table 12.131: Configuration tags for Adapter device type
’Temperature controler adapter’. An empty value field
generally indicates that the tag value can be either a free
text string or a number (integer or floating point).

339 of 362 Implemented by Søren Koch

Chapter 13

Troubleshooting

13.1 The web server only returns ’Internal server er-

ror’ when trying to display the prelogin.cgi page

• Is SE-Linux running in enforcing mode?. If so, disable enforcing mode (Refer the
Linux manual as to how to do this). The non-standard location of the document
root necessary for NAME to run is incompatible with most standard configurations
of SE-Linux.

• Is the Apache web server running as group sofc?. If not, edit /etc/groups and add
Apache to the sofc group. Remember to check in httpd.conf if the Apache web
server is set to start as group sofc as well. Restart the web server after this.

• Check the errorlog of the web server (Often located in /var/log/httpd/error log) to
identify if file permission errors or other misconfiguration are the cause.

13.2 Data logging suddenly stops or user interface

appears unresponsive for a single rig

Does the rig use PID devices? If so, a potential cause could be too many open files for
that rig.

• In order to check this, in a terminal type (as root):
lsof | grep rigXX | wc
Where XX is the rig number. The response will look something like this:
400 3663 37848.
Where the first number is the number of open files for that rig user.

• This number has to be compared to any limits set by the operating system on open
files (refer the operating system manual as how to do this).

340

DTU energy RFCcontrol 5.5.4

• If the cause is too may open files, kill all instances of PID fast control.pl for the rig
in question and restart one instance again.

• If necessary a cron job may be needed to restart the PID fast control program
periodically.

The cause for the above problem can be that PID-devices are used with too complex
control structures causing the Perl garbage collector to not work properly. For instance
it is known that using feed-forward of gas flows in combination with sum devices and a
PID control can cause this.

13.3 Show current values does not work or shows

ERROR: ’xx.xx.xx.xx’ port refused

The likely cause for this error is that the CGI-server for the rig in question is not running.

Check that the CGI-server is running for the rig in question. To do this, in a terminal
write: ps -ef | grep CGI. The response should look something like like:
0 S rig10 1358 1 0 85 0 - 3481 ? Sep14 ? 00:00:00 /usr/bin/perl
/usr/local/bin/celltest/CGI-server 10
0 R sofc 5000 3387 0 78 0 - 999 - 12:52 pts/8 00:00:00 grep CGI
0 S rig1 14674 1 0 77 0 - 3351 ? Apr04 ? 00:00:00 /usr/bin/perl
/usr/local/bin/celltest/CGI-server 1
0 S rig2 25611 1 0 83 0 - 3447 ? Aug31 ? 00:00:00 /usr/bin/perl
/usr/local/bin/celltest/CGI-server 2
Check that each rig on the system has a CGI server running (in the above example, rig
1,2 and 10 has servers running).

The CGI-server should be restarted once every hour if it is not running, but can be
started explixcitly by running (as root) the following command:

/usr/local/bin/celltest/start servers

13.4 Sequential programs can not be started

The likely cause for this error is that the CGI-server for the rig in question is not running.

Check that the CGI-server is running for the rig in question. To do this, in a terminal
write: ps -ef | grep CGI. The response should look something like like:
0 S rig10 1358 1 0 85 0 - 3481 ? Sep14 ? 00:00:00 /usr/bin/perl
/usr/local/bin/celltest/CGI-server 10
0 R sofc 5000 3387 0 78 0 - 999 - 12:52 pts/8 00:00:00 grep CGI
0 S rig1 14674 1 0 77 0 - 3351 ? Apr04 ? 00:00:00 /usr/bin/perl
/usr/local/bin/celltest/CGI-server 1
0 S rig2 25611 1 0 83 0 - 3447 ? Aug31 ? 00:00:00 /usr/bin/perl
/usr/local/bin/celltest/CGI-server 2

341 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Check that each rig on the system has a CGI server running (in the above example, rig
1,2 and 10 has servers running).

The CGI-server should be restarted once every hour if it is not running, but can be
started explixcitly by running (as root) the following command:

/usr/local/bin/celltest/start servers

13.5 Daily graphs looks strange (sudden jumps in

values, missing graphs etc)

It is normal that the daily graphs of logged values may behave strangely if the number
(or order) of enabled devices has changed, as the graph subsystem only looks at the first
line of the daily data file to determine which data columns to plot as well as their names.

If a device has been added, the data of subsequent lines for that day may be misaligned
and thus the graphics will be displayed wrong. However all the data are still logged
correctly and can be viewed in the raadata file.

13.6 Specific device data are not shown in the daily

graphs

1. Is the device in question enabled in the configuration? If not, the data is not logged
and graphs can not be created for that device.

2. If the device is enabled, is the show plot key set to ’No’? If so, plotting this device
data is disabled.

3. Is there an other device (potentially with an other type) with the same name con-
figrued, and does this device have the show plot key set to ’No’. This will in some
cases override the true device configuration for plotting data, as due to historical
reasons, the device type is not stored as part of the device name when storeing
logged data. Thus the plotting system has to run through all device types untill it
finds one with the same name as the data it is to plot and then query the value of
the show plot key. There is thus a risk that the wrong value vill be used. The best
way to awoid this is to make sure that all devices (irrespectively of enabled status)
have unique names.

13.7 Font size on daily graphs too small

If the font on the daily graphs appears to be too small, lower the values in the GNUPLOT
section of the main configuration file for the keys ps-size and png-size:

ps-size = 1,1

342 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

png-size = 1,1

and replace with for instance:

ps-size = 0.6,0.6

png-size = 0.6,0.6

13.8 Program execution stops and / or command in-

terface behaves strangely (some commands

work but others does not)

Check that the default lock file (called SemaforeFile.lock) for the SemaforeFile.pm mod-
ule has the right permissions. It is located in /var/lock/Semaforefile and should have
permissions 666 (Yes, I know the number of all evil...). During normal operation, it will
be created with this permission, but sometimes the system may clean up the temp di-
rectory, and in this case sometimes it may be created with the wrong permissions. To
resolve this, simply remove the file or manually set the right permissions (both operations
may be necessary to do as root).

13.9 RFCcontrol-ssl-server can not start and exits

with ’Could not create socket Invalid Argument’

This error can arise if the hostname reported by the local system does not match the
hostname assigned by the DNS/DHCP server. If this is the case, the hostname or IP
address must be specified by starting the RFCcontrol-ssl-server with the –host argument
as shown below:

RFCcontrol-ssl-server –host IP ADDRESS

Where the IP-address is the address of the external IP, not 127.0.0.1, as the server must
be accessible from other systems.

13.10 report-server can not start and exits with ’Could

not create socket Invalid Argument’

This error can arise if the hostname reported by the local system does not match the
hostname assigned by the DNS/DHCP server. If this is the case, the hostname or IP
address must be specified by starting the report-server with the –host argument as shown
below:

report-server –host IP ADDRESS

343 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

Where the IP-address is the address of the external IP, not 127.0.0.1, as the server must
be accessible from other systems.

13.11 Users can not log in

If users can not log into the RFCcontrol system, check the following:

• Is the password server running (may be on the local server or on a remote server).

• is the password server using RSA encryption (started with the –ssl argument)?.

– Is the correct public keys found in the respective known hosts files (on both
password and RFC server)?.

– If remote password server is used, Is the local RFCcontrol-ssl-server running?

– Can it be accessed from the password server system?

• Is the password server accessible from the current system? To check this, in a
terminal write the following:
/usr/local/bin/celltest/passwd-client ping.
The response should be something like ABF-passwd-server on ABF-labsystem-devel-
01.RISOE.DK listening on port 2020. If no response is received or a connection error
is encountered, perhaps a firewall is blocking access.

13.12 Users can log in but not change anything or

view new data

Check the following:

• Check that the users has the right access privileges.

• Does the ’safety task access’ section exists in the global configuration file and is the
rig(s) listed in this? If so, does the users have authorization/certification for this
safety task (refer section 4.4).

• Check that the CGI-server is running for the rig in question. To do this, in a
terminal write: ps -ef | grep CGI. The response should look something like like:
0 S rig10 1358 1 0 85 0 - 3481 ? Sep14 ? 00:00:00 /usr/bin/perl
/usr/local/bin/celltest/CGI-server 10
0 R sofc 5000 3387 0 78 0 - 999 - 12:52 pts/8 00:00:00 grep CGI
0 S rig1 14674 1 0 77 0 - 3351 ? Apr04 ? 00:00:00 /usr/bin/perl
/usr/local/bin/celltest/CGI-server 1
0 S rig2 25611 1 0 83 0 - 3447 ? Aug31 ? 00:00:00 /usr/bin/perl
/usr/local/bin/celltest/CGI-server 2
Check that each rig on the system has a CGI server running (in the above example,
rig 1,2 and 10 has servers running).

344 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

13.13 Log-in page does not complete loading or the

list of servers is incomplete

Run the /usr/local/bin/celltest/test cluster.pl script to check if one or more of the servers
in the cluster is not responding on the server intercommunication.

If the script hangs on one or more of the servers it tries to test, likely the report-
server on that server in hanging for some unknown reason. In that case, log in to
the affected server using ssh and issue the command killall report-server followed by
/usr/local/bin/celltest/start servers.

13.14 Data logging on a rig is not running

• Check that data logging it is enabled in the crontab scheduler. From the rigs main
page, go to miscellaneous setup, and then to Rig scheduler and check that the line
with logfile.pl is not disabled.

• Test that the rig configuration is sane. In a terminal type the following as the
correct user (user ’rig5’ for rig 5 and so on):
/usr/local/bin/celltest/test rig conf.pl $rig. This will test the rig configuration in-
cluding test each individual device. If errors are reported, find and fix any critical
errors (It is possible to have non critical errors which the data logging system will
handle and just report an invalid data for that device, usually in the form of the
magic number -32768).

• Check that the logfile.pl program does not return errors for that rig. In a terminal
type the following as the correct user (user ’rig5’ for rig 5 and so on):
/usr/local/bin/celltest/logfile.pl $rig conf. This command will write the complete
rig configuration for data logging. If errors are reported, find and fix any critical
errors (It is possible to have non critical errors which the data logging system will
handle and just report an invalid data for that device, usually in the form of the
magic number -32768).

• Check that the cnv.pl program is also enabled in crontab as it is this program which
generates the web pages displaying the data.

13.15 Errors are reported when users are trying to

change process parameters

• In a terminal type the following as the correct user (user ’rig5’ for rig 5 and so on):
/usr/local/bin/celltest/test rig Conn.pl $rig. This will test the rig configuration
including test each individual device. If errors are reported, find and fix any critical
errors (It is possible to have non critical errors which the data logging system will

345 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

handle and just report an invalid data for that device, usually in the form of the
magic number -32768).

• Check that all serial servers are running as appropriate. To do this, in a terminal
write: ps -ef | grep serial. The response should look like:
4 S root 3682 1 0 75 0 - 2387 ? 09:26 ? 00:00:00 /usr/bin/perl
/usr/local/bin/celltest/serial-socket-server-9.0.pl ttyS0 9600
4 S root 3683 1 0 76 0 - 2387 ? 09:26 ? 00:00:00 /usr/bin/perl
/usr/local/bin/celltest/serial-socket-server-9.0.pl ttyS2 9600
4 S root 3684 1 0 76 0 - 2387 ? 09:26 ? 00:00:00 /usr/bin/perl
/usr/local/bin/celltest/serial-socket-server-9.0.pl ttyS3 9600
0 S sofc 9245 9214 0 78 0 - 1005 pipe w 12:58 pts/0 00:00:00 grep serial

• Check the individual device configuration under the device configuration page (go
to ’setup iv-curve parameters’ and then to ’rig configuration’ and select the devices
on at a time and run the test for each, refer section 6).

• If some of the tests described above fails, try communicating directly with the serial
servers and devices using the serial client interface described in section 8.3.

13.16 The logged data values from a Keithley 2700

/ 2750 are not correct, i.e. value -32768

.

• Check that the GPIB-server is running as appropriate. To do this, in a terminal
write ps -ef | grep gpib. The response should look like:
0 S root 3043 1 0 75 0 - 20725 415457 09:54 ? 00:00:01
/usr/local/bin/gpib socket server
If the gpib server is not running, it can usually be started in a terminal by writing
(as root):
/usr/local/bin/start servers.
Alternative it can be started by writing /usr/local/bin/gpib socket server. This will
give you a message if the GPIB-driver need an update as is sometimes necessary for
the drivers supplied by National Instruments R©. If so this can be done by writing
(as root) /usr/local/bin/updateNIDrivers after which the computer needs to be
rebooted.

• Is the correct GPIB-address and board number selected. To check this use the test
facility in the setup page: If the response is something like:
2011:10:25:15:10:39 1319548239 3:303 CHANNEL ERROR -32768.000000
-32768.000000
Then either the GPIB-address or the board / channel number is incorrect.

346 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

13.17 The temperature logging does not report the

right values

• If a temperature logging device reports only values close to room temperature irre-
spectively of the actual temperature, check the following:

– Is the channel measuring the thermovoltage configured to measure mV? To
check this, use the test facility, and in case of a Keithley channel, the last two
values in the reported raw measurement must be a factor of 1000 different, if
the numbers are equal, then the channel is configured for voltage and must
be reconfigured (refer the manual for the gpib-server as how to do this). A
correctly setup Keithley channel should report something like this:
2011:11:22:08:37:07 1321947427 1:102 volt:dc 0.000010 0.009622

– Is the thermocouple short circuited at a lower temperature (terminal block or
similar).

• The temperature device is reporting wrong values (either too large, or too small).

– Check the polarity of the thermocouple. If the temperature is above room
temperature, the raw voltage measured by a thermocouple must be positive.

– Check the thermocouple type (K, N, S etc).

– Check that the cold junction measurement is correct. If the temperature of the
terminal block is measured by a pT100/1000 and there is a loose connection,
then the temperature will be measured incorrectly.

13.18 Temperature control does not work correctly

or errors are reported when trying to change

temperature control setup

Check that only one version of the Eutotherm.pm module are installed. Older versions
of RFCcontrol installed modules in an other location, and depending on search path, this
may not have been detected by the NAME installer.

To resolve this, in a terminal type:

locate Eutotherm.pm

If more than one line is found beginning with /usr/lib, find which one is the newest, and
delete the rest.

13.19 Remote impedance does not work

If impedance spectroscopy measurements using the Elchemea system is not working, do
the following in order:

347 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

1. Check that a normal impedance spectrum can be acquired manually on the Elchemea
system. If errors are encountered, follow the Elchemea manual to correct this.

2. Check that communication between the RFCcontrol system and the Elchemea sys-
tem is working:

(a) Check that the Elchemea system is on-line by typing the following in a termi-
nal:
remote-client IP:port ping (IP and port should be substituted for the IP ad-
dress of the Elchemea system and the correct port number, usually 4040). The
response should be something like this:
CGI-remote-server on abf-impmultiplex-01 on addr: 10.0.3.203
Listening on port 4040
If not, check firewall settings or other network issues on the RFCcontrol or
Elchemea system.

(b) Get the measurement mode form the Elchemea system by by using the follow-
ing command:
remote-client IP:port mode

(c) Check that an impedance can be started remotely by executing the following
command:
remote-client IP:port impedance user mode session nr where the user is the
user-name (on the Elchemea system!) and the mode is the measurement
mode acquired in step 2b and session nr is the Elchemea system session num-
ber which configuration is to be used (usually it is best to select the cur-
rent Elchemea session). The response in case an impedance measurement was
started should be something like:
Impedance, Mode 1255, Session 10, File 1004, Totaltime 3756.74

3. Check that the correct frequency settings are used (including start frequency and
number of points / decade).

4. If automatic impedance compensation is to be used, check that the compensation
file to be used has the exact same frequencies at all data points and in the
same order. If ’impedance under current’ is used, the compensation files which
will be used are the ’short.i2b’ and ’shunt.i2b’ found in the imp comp directory in
the rigs main data directory. If the imp comp directory does not exist, it needs
to be created and the short and shunt file needs to be placed there for impedance
compensation to work correctly, check the Linux/Unix manual as how to do this.

5. Run an impedance from the program interface (select either ’single impedance’ or
’impedance under current’, but if ’single impedance is selected, the only compen-
sation which will be performed is the subtraction of the selected file!). Remember
to use correct user-name and session number as well as IP address and port num-
ber (Note that the user-name entered must be the one on the Elchemea system as
described above).

6. Check that the impedance measurement start on the Elchemea system.

348 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

7. Once the measurement is finished, check that it is transferred to the ’raw’ directory
in the ’impedance’ directory of the current test.

8. Check that it is compensated correctly, If the file only contains a few liens, likely
the wrong compensation files were chosen. To check/correct htis, do the following:

(a) In a terminal first change directory to the raw directory (refer any Unix/Linux
help page/manual how to do this) and type:
x hio korr -X filename of compensation file file to be compensated where X is
the compensation mode (S for subtract, M for multiply, A for add and D for
divide).

(b) Check the resulting compensated file and see that it has the same number of
lines as the original. The compensated file will be named as the original except
it will have ’ cor’ appended just before the extension. If not, check the original
file and the compensation file and carefully check that each data line begins
with the same frequency (to within 0.1%).

(c) If the compensation file is not correct, Either make a new compensation file
with correct frequency ranges or redo the measurement with frequency set-
tings which match the compensation file (which is often by far the easiest as
usually the compensation file is a short circuit measurement which can only
be performed without a sample in the test setup).

13.20 i-V curves bevave strangely

If multiple PSU devices are configrued, the default behaviour (that is to use the ifrst
PSU device listed for controlling the DC current durring an i-V curve) risks controlling
an other device than intended.

The fix for this is to explicitly specify which PSU device to use durring i-V curves. This
is done by setting the correct PSU name in the ’iv control names’ key in the ’IV control’
section of the rig’s configuration (refer section 6.2).

13.21 PID regulators does not work although they

are enabled and set-points can be set

Make sure that the following lines are included in the rig’s crontab file:

* * * * * /usr/local/bin/celltest/PID_fast_control.pl $rig &

* * * * * /usr/local/bin/celltest/PID_slow_control.pl $rig &

(substitute $rig for the appropriate rig number).

349 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

13.22 Automatic software updates are blocked by a

web proxy

In order for the automatic software updater (celltest updater.pl) to work through a web
proxy, add the following line to the configuration file:

In the ’main’ section add

proxy=http://proxy.foo.bar:1234

Remember to change the server name and port number to the settings for your proxy
server.

13.23 Alerts does not work or are not sent although

they are enabled

Make sure that the following line is included in the rig’s crontab file:

* * * * * /usr/local/bin/celltest/Check_alert.pl $rig &

(substitute $rig for the appropriate rig number).

13.24 Adapters does not work although they are en-

abled

Make sure that the following line is included in the rig’s crontab file:

* * * * * /usr/local/bin/celltest/Adapter_update.pl $rig &

(substitute $rig for the appropriate rig number).

13.25 Programs stops prematurely without any ap-

parent cause

Thes may result from the operating system preventing opening more file handles for the
rig user in question.

On most sytsems there is a limit on how many files can be open simultaneously for each
individual user.

To check this, run the following command:

lsof | grep $rig | wc -l

350 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

(where $rig is the username for the rig user, f.eks ’rig45’)

If the rig in question has a configuration with many individual devices, this number can
approach the limit as each program (logfile.pl, CGI-server or similar) will open lockfiles
for a number of the devices in order to prevent race conditions.

Refer your operating system manual as to how to increase this limit and restart the
CGI-server for the rigs in question.

13.26 CentOS 7 related issues

The introduction of CentOS 7 has changed a number of ways how the apache webserver
as well as CPAN works. Some of these changes is not ccompatible with the way Elchemea
works and the steps nescesarry to correct this is described in this setion.

13.26.1 Aapche can not see the modules installed by CPAN.

This is a know problem for CentOS 7 servers as discussed here: http://stackoverflow.com/
questions/33636231/installed-cpan-modules-in-problematic-location

The script ’centos7 CPAN configuration.bash’ script fixes this.

Unforthuately it may be nescesarry to reinstall the CPAN modules required by RFCcon-
trol, but this can usualy be fixed by running ’make CPAN’ in the RFCcontrol installation
directoy (as root).

Notice however that the script needs to be run in a separate su sesion (that is you need
to log out from root and log in again) before this wroks!

13.26.2 Programs can be started but not stopped again or UI
bahaves strangely

CentOS 7 has changed the way /tmp works for apache and has introduced the concept
of PrivateTmp.

This is not compatible with RFCcontrol and needs to be disabled.

To do this, do the following:

• cd into the /etc/systemd/system/ directory

• copy the httpd.service file to this directory: (use locate to find it)

cp /usr/lib/systemd/system/httpd.system .

• edit this file ad change ’PrivateTmp=true’ to ’PrivateTmp=false’

• restart systemd:

systemctl daemon-rload

351 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

• restart apache:

service httpd restart

352 of 362 Implemented by Søren Koch

Chapter 14

Examples

This chapter discusses a number of complex control situations which can be performed
by combining RFCcontrol devices.

14.1 Using a PID and a galvanostatic power supply

to emulate potentiostatic control

Usually when testing electrolysers of fuel cells, the DC current through the device is
controlled galvanostatically (that is a fixed current is specified) as this makes it easier to
avoid too high current which could result in damage to the tested device (for instance by
trying to convert more gas than is being fed to the device).

However in some cases it is desirable to run a test potentiostatically (could be at the
thermoneutral potential in case of a solid oxide electrolyser cell). In order to do this,
a software PID can be used to adjust the DC current so that the resulting cell voltage
matches the desired target value.

Figure 14.1 shows such an example.

Figure 14.1: Schematic of a PID device used to control a galvanostatic DC power supply
to emulate potentiostatic control. The user controllable manual (virtual) relay is used to
switch to and from potentiostatic control.

353

DTU energy RFCcontrol 5.5.4

The control loop consists of an input device (the cell voltage) a PID device and an
output device (the DC power supply in galvanostatic mode). However in order to be able
to switch to and from potentiostatic control, a output enable input is used. This virtual
relay can be set to off when the PID device is configured and tuned and then first set to
on when the user wants to ’close the loop’ (go to automatic potentiostatic control).

I order to make the switch to potentiostatic control as smooth as possible, the DC current
can be manually set (before enabling the PID output) so that the cell voltage is close to
the desired target.

However one must remember to set the integrated error to an appropriate value before
closing the loop as otherwise a large accumulated error could result in large deviations
before the PID loop stabilizes. Fortunately RFCcontrol PID devices is equipped with
a function to automatically set the integrated error to a value which would result in a
specified output based on the measured process variable. This function however is only
available to the certified users of a particular rig, as using this function can bring a PID
controlled system out of equilibrium.

So in order to go to potentiostatic control do the following:

• Configure the PID device to use the cell voltage as input, disable output and set
the DC power supply as output.

• Configure the PID to allow override of the output device (otherwise no GUI control
of the DC current will be possible).

• Preferable configure a manual (virtual) relay to control the output enable of the
PID device. If so set it to off and the ’output enable’ key in the PID setup to to
’relay’.

• manually set the DC current to a value close to where it is desired for the cell
voltage to be as wanted.

• In the PID setup, use the just set current value as input for the find int function
to set the integrated error for the PID to a value which does not result in large
over/under shoots.

• Toggle the virtual relay to on in order to close the PID loop.

When you then want to leave potentiostatic control, it is simply enough to disable the
PID output.

If no output enable relay is used, the output enabled can be controlled from the PID
setup page.

14.2 Potentiostatic control with fixed fuel utilization

It is possible to extend the potentiostatic control described in section 14.1 to also control
the gas flows so that a fuel cell or electrolyser cell can be run at constant voltage at a

354 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

fixed fuel utilization. Figure 14.2 shows a device schematic of how this can be done. In
the example described in the figure, an electrolyser cell is to be run at a constant fuel
utilization of 56% with an input gas composition of 10% hydrogen and 90% water. It is
assumed that the water is created by auto-thermal conversion of oxygen and hydrogen,
thus in order for the water-hydrogen ratio to be fixed at 90% water, the flow of oxygen
must in this case be 45% of the hydrogen flow. This is achieved by setting the oxygen
gas to have 45% flow of the master gas (hydrogen) as shown in the figure.

Figure 14.2: Schematic of a PID device used to control a galvanostatic DC power supply
to emulate potentiostatic control and at the same time having a fixed ratio between gas
flows and DC current (constant fuel utilization). The user controllable manual (virtual)
relay is used to switch to and from potentiostatic control. In this example the electrolyser
cell is run with a fixed fuel utilization of 56% and an inlet gas composition of 90% water
(the oxygen is used to burn hydrogen to make water).

The upper part of the figure 14.2 is like figure 14.1 and work as described above. However
the addition of the typecast device as well as the summing device necessitates a more
elaborate control sequence. First of all, if the summing device and the manual offset gas
was omitted, the gas flows would be set to 0 if the DC power supply was ever set to 0
Amp or OCV. To protect against this, the manual gas must be set to a sufficiently high
value before the current is shut off (so that the summing device output is higher than 0)

Notice that the summing device in the example has a negative offset. The reason for the
negative offset for the summing device is that it enables the possibility for reducing gas
flows below the theoretical if inaccuracies in the physical devices results i higher flows
than intended.

355 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

The procedure for setting up a control system like the one shown in figure 14.2 is as
follows:

1. Configure the potentiostatic PID control loop as described in section 14.1

2. Configure the typecast device to accept input from the PSU and output as gas.

3. Configure the manual offset gas and give it an appropriate initial flow (more than
the negative offset for the summing device).

4. Configure the summing device to accept inputs from the typecast device and manual
gas respectively. When configuring the summing device, use Faraday’s law
of electrolysis to calculate the input factor from the typecast device
according to the intended fuel utilization.

5. Test the summing device and check that the output would be above 0.

6. Configure any slave gas devices to have the correct flow according to the ’master
gas’ (the gas which is intended to be controlled, in the example, it is the hydrogen
flow)

7. Set the desired start gas flow of the master gas (from the GUI).

8. Check that all slave gas flows works as intended.

9. Set the DC current as close to the intended value (without potentiostatic control)

10. Check the summing device output.

11. If the summing device output is at least the value of the gas flow just set, configure
the output device for the summing device to be the master gas.

12. Set the current again to update all gas flows (and check that forwarding of com-
mands works).

13. Reduce the flow of the manual gas to an appropriate value. Ideally to the same
(positive) value as the summing device negative offset, in the example this would
be 3 L/h, but i some cases it may be necessary to set it at an other value.

14. Start the potentiostatic control as described in section 14.1.

If a true bipolar power supply is used, it will be necessary to configure a RFC::Math::abs
device between the PSU and the typecast device as in that case running in electrolysis
mode will result in negative currents being forwarded.

An additional complexity when running potentiostatic control with fixed fuel utilization
is that setting a DC current of 0 A (or OCV) will most likely result in shutting down the
gas flows completely. In order to prevent this, follow the following procedure when the
DC current is to be shut off.

• Stop the potentiostatic control PID by setting the control relay to off.

356 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

• Increase the gas flow of the manual offset gas to a value big enough to supply enough
gas even when the typecast device reports no (zero) flow.

• Shutdown the DC current (setting the current to 0 A or OCV). This will reduce
the gas flows to the minimum set by the manual offset gas above (corrected for
potential negative offset on the summing device).

Now the DC power has been shut off, however the gas flow is still linked to the power
supply and any future changes in DC current will result in changes in the gas flows
(although with an offset). In order to remove this linking do the following:

• Remove the output device for the summing device (Select the empty option).

• If the coupling between the individual linked gasses are to be discontinued, for each
of those gasses remove the ’master gas’ name (select the empty option).

Now the gasses can be controlled individually as can the DC power supply.

14.3 Pressure regulation using mass flow controllers

It is possible to control pressure in a pressure vessel by using pressure controllers. However
in some cases more precise control of the pressure is needed. Figure 14.3 shows a schematic
overview of a system where a device is tested at elevated pressures abut at the same time
one or more gasses is flowed through the device.

Figure 14.3: Schematic overview of a device tested under pressure and which requires gas
flowing trough it.

In figure 14.3 the yellow boxes are gas devices (refer section 5.4) and are assumed to be
connected to mass flow controllers and the lines connecting devices are the (simplified)
gas tubing. In order to control the pressure in the pressure vessel, the flow of gas in and
out must be balanced. This can be achieved by using a PID regulation loop as described
in figure 14.4.

357 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

For simple pressure regulation of the pressure vessel there may only be one input gas
(and in which case the first summing device will not be needed).

Figure 14.4: Logical diagram of simple pressure regulation using mass flow controllers,
pressure sensor and a PID regulator device using feed forward. Note that in this config-
uration the error gain in the PID must be negative. In this diagram all devices without
solid borders can be configured with the ’disable readstring’ option as in most cases their
value do not need to be stored as they are only necessary for control input forwarding
(only the input and output device values are necessary to log). As opposed to figure 14.3,
lines in this diagram does NOT represent physical wires or tubing, but instead the logical
connection between devices (both real and virtual / software devices).

The pressure in the vessel can then be controlled by setting the input flow to some fixed
value and regulating the output flow by the PID. The pressure in the vessel will then
be increased or decreased until it matches the PID setpoint. Notice however that if the
input flow is the fixed one, then the error gain in the PID device must be negative for
the regulation loop to work (if not exponential deviation from the desired setpoint will
be observed).

The same regulation loop described in figure 14.4 can also be used to balance the pressure
in a device relative to the device surroundings. In this case the pressure sensor should
then be replaced with a differential pressure sensor and the setpoint should be set to 0
(in case of complete balance) or some other desired value.

358 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

14.4 Pressure regulation accounting for production

/ removal of gas in the device under test

In some cases the flow of gas to a device may not be the same as the flow out of a
device. For instance in the case of a fuel cell, if DC current are passed through the
fuel cell, hydrogen is either converted to water or produced from water depending on
current direction. If a water trap is installed between the device and the output mass
flow controller (not shown in the diagrams), the gas flow in to and out from the device
will not be identical, and will vary with the DC current through the device. Water traps
are often necessary in this situation as most MFC’s designed for use with gasses do not
handle water well as condensation within the controller will result in wrong measurements
and / or unstable operation.

Figure 14.5: Logical diagram of a pressure regulation system where gas can be created
or removed from the system by a DC current (for instance by a fuel cell). For simplicity,
the input from the PID has been omitted. The value of x needs to be determined by
Faraday’s law of electrolysis converting current in amps to gas flow in L/hour.

Figure 14.5 shows an example of how pressure balancing of the gas flow can still be
achieved by RFCcontrol by utilizing typecast devices. By using the logical layout de-
scribed in figure 14.5 any changes in the DC current load and/or current direction (which
is assumed to be controlled by the relay device) is fed forward to the output controller.
The blue dotted lines in figure 14.5 indicate that the gas devices should be configured
with the same ’control name’ (the device name for the switching relay) but with different
value of the ’control value’ (zero for the ’Pos’ gas device and one for the ’Neg’ gas device).

359 of 362 Implemented by Søren Koch

DTU energy RFCcontrol 5.5.4

This is necessary as only one of the gas group devices at a time may supply a non-zero
value. This ensures that the ’gas’ from the PSU is either added to or subtracted from
the result of the other gasses depending on the setting of the switching relay (and thus
the direction of the current).

360 of 362 Implemented by Søren Koch

Chapter 15

FAQ / How-to

15.1 How to set up a stand-alone cell-test password

server on a system with no DNS name

1. edit the configuration file (/home/celltest/conf/celltest global.conf) and change the
’passwd server’ key in the ’paswds’ section to ’localhost’

2. In the ’servers’ section, change the ’listserver’ key to ’localhost’.

3. In the ’servers’ section, change the ’server names’ key to ’localhost’.

4. Add the line ’/bin/su -c “/usr/local/bin/celltest/celltest-passwd-server –ssl &” -
sofc’ to the /etc/rc.local file to make sure that the password server starts upon
reboot.

5. As the RFCcontrol system user (usually sofc), run the ’initialise passwdfile.pl’ script
in the installation directory and note the initial root password thus created.

6. make sure that the firewall does not block port 2020 (refer your operation system
manual, this should have been handled durring RFCcontrol installation, but do
make sure....).

7. Reboot the computer and it should be possible to log in using the password created
in step 5.

8. If it will not be possible to send emails from the server proceed to step 12.

9. Connect the computer to the Internet so that mails with new users passwords can
be sent.

10. Create at least a single non-superuser user for normal operation of the RFCcontrol
system and assign correct permissions.

11. Installation should be complete.

361

DTU energy RFCcontrol 5.5.4

12. Use the script create user.pl found in the installation directory to create non-
superuser accounts (note the passwords assigned to each user).

13. Check that the created users thus created can log into the RFCcontrol system.

14. If a user needs to have his/her password reset without sending emails (either because
no network connection is possible or if the MTA does not allow the host computer
to send mail), then use the command:
/usr/local/bin/celltest/celltest-passwd-client resetpwd cmd $user.

15.2 How to prevent setting gas flows / DC current

to zero upon starting a new test

Set the set zero output start test key in the main section of the rigs configuration to
’no’ (refer section 6.1). This will prevent setting gas flows to zero (and DC putputs to
zero) upon starting a new test. The setting has to be changed by manually editing the
configuration file (No special GUI function for this).

362 of 362 Implemented by Søren Koch

