
Manual for Elchemea Analytical

Søren Koch

April 24, 2015

Contents

1 Introduction to Elchemea Analytical 4

2 License 5

3 User interface 6

3.1 Simulation . 6

3.2 Data analysis . 9

3.3 Saving and reloading models . 12

3.4 Hints on fitting . 13

3.5 Batchfitting . 13

4 Plotting multiple files 14

5 File formats 16

6 Installation and system maintenance 18

6.1 Requirements . 18

6.2 Installation . 19

6.3 maintenance . 19

7 Server structure 21

7.1 LATEX-server . 21

8 System command interface (command line) 22

9 Impedance elements 23

9.1 Ohmic resistor (R) . 23

9.2 Inductor (L) . 23

9.3 Capacitor (C) . 23

1

DTU Energy Elchemea Analytical 1.3.3

9.4 Constant phase element (Q) . 24

9.5 Warburg impedance (W) . 24

9.6 Finite length warburg impedance (O) and depressed / flattend finite length
warburg
impedance (Od) . 24

9.7 Finite capacity warburg impedance (T) and depressed / flattned finite
capacity warburg
impedance (Td) . 25

9.8 Gerisher impedance (G) and depressed / flattend gerisher impedance (Gd) 25

9.9 Parallel R-C circuit (RC) . 26

9.10 Parallel R-Q circuit (RQ) . 26

9.11 Parallel R-L circuit (RL) . 26

9.12 Serial connection of elements (Ser) . 27

9.13 parallel connection of elements (Par) . 27

10 Module specifications 28

10.1 Debug . 29

10.2 SemaforeFile . 29

10.3 SocketClient . 31

10.4 Impedance::Header . 31

10.5 Impedance::IMPCGI . 32

10.6 Impedance::Base . 33

10.7 Impedance::RQ . 35

10.8 Impedance::W . 35

10.9 Impedance::Complex . 36

10.10Impedance::Device . 37

10.11Impedance::Model . 37

11 Web service interface 42

12 Troubleshooting 45

12.1 Server error is reportet wnen starting Elchemea Analytical 45

12.2 Model section of view is mangled . 45

12.3 After fitting, pressing the report button only says ’no report ready’ . . . 45

12.4 Fitting does not finish (page displays ’working...’ and stops) 46

12.5 Fitting takes too short time and no response is recieved 47

2 of 48 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.3.3

12.6 Graphs not shown correctly and/or pages does not finish loading 47

12.7 My screen is not wide enough to show all information 47

12.8 Multiplot graphs are sideways . 47

12.9 Multiplotting suddenly fails with an error message including the string ’all
points y value undefined’ . 48

12.10Some of the last tics on the graps is missing (graph goes to 100 but tics
only shown to 70 for instance). 48

3 of 48 Implemented by Søren Koch

Chapter 1

Introduction to Elchemea Analytical

Elchemea Analytical is a generalized visualization / fitting software package for visualizing
impedance data. The Elchemea Analytical system is based on Perl and Apache and all
graphics/fitting is done using Gnuplot R©.

The main features of Elchemea Analytical are listed below:

• Simulation of impedance spectra using a wide variety of discrete impedance elements
(R,C,L,Q,W,RQ,RC,O,Od,G,Gd,T,Td) as well as parallel and/or series connections
of those.

• Fitting of impedance models to measured impedance data in a wide frequency range
(from 10−100 to 10100 Hz).

• Easy determination of start parameters for a wide range of the predefined impedance
elements (RC,RQ,O,Od,G,Gd,T,Td) using the ’find-values’ build in algorithms.

• Easy integration to Elchemea c© and Risoe Fuel cells and solid stage chemistry
division Fuel Cell Control system c© impedance acquisition and test system control
software packages.

• Uses only open source software (OSS).

The first part of this documentation is an overview of the user interface (section 3) mainly
intended for new users of the system. The second part (chapter 6) is mainly intended
for more advanced users and system administrators as it contains information regarding
configuration. It is assumed that any administrators has a fairly advanced knowledge of
Unix system administration and Perl programming.

Chapter 10 contains the documentation for the different Perl module supplied by the
DTU Energy at Technical University of Denmark Impedance visualisation and analysis
control software software.

4

Chapter 2

License

Copyright (C) 2012 Søren Koch, Karin Vels Hansen, Christopher Graves, DTU Energy
at Technical University of Denmark.

This program is free software: you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program. If not, see http://www.gnu.org/licenses/.

5

Chapter 3

User interface

The DTU Energy at Technical University of Denmark Impedance visualisation and anal-
ysis control software system is based on the Apache web server software (Open Source
Software, OSS). In figure 3.1 the main page is shown as an example of the web pages.

Figure 3.1: The main page.

3.1 Simulation

In order to simulate spectra, press the ’New simulation’ button, and then build your
impedance model element by element by using the ’Add element’ button. In general, all
elements will be placed in series, except if they are part of an explicit parallel or serial
connection (by using the ’Par’ or ’Ser’ elements at the bottom of the element list). For
a description of the different possible impedance elements, refer chapter 9.

It is possible to view impedance models and data in the impedance plane (which is the

6

DTU Energy Elchemea Analytical 1.3.3

default), the admittance plane, the complex modulus plane and the complex capacitance
plane. To change between plotting planes, pres the ’Advanced plot options’ button and
select the desired plotting plane.

Figure 3.2 shows an example of a simple series connection of three impedance elements
plotted in the impedance plane. A Gerisher element (G) a RC element (parallel connec-
tion of a resistor and a capacitor) and an inductor (L) viewed i the impedance plane.

Figure 3.2: An example impedance simulation using simple series connection of three
impedance elements.

It is also possible to view impedance models and data in the admittance plane (Y = Z−1),
complex modulus plane (M = jωZ) and in the complex capacitance plane (C∗ = Y

jω
),

this can be changed in in the advanced setup. Default is to view in the impedance plane.

If custom series and / or parallel connection elements are used, the model description on
the left of the page looks slightly different than the one shown in figure 3.2. Figure 3.3
shows an example of how this may look. The way to read the complex models presented
in this way is as follows:

The first two red buttons (labeled ’L 1’ and ’R 2’) are simple impedance elements con-
nected in series (as normal) and in series with the third element represented by the
leftmost blue button (labeled ’Parallel ([L 5 R 6] C 8’). This button (labeled ’Parallel
([L 5 R 6] C 8’) indicates a parallel connection of all elements between the lines above
and below this button. In this case it is a parallel connection of two elements; an ca-
pacitor (’C 8’) and a series connection (labeled ’Serial [L 5 R 6]’). The series connection
(represented by the second blue button) contains all elements to the right of it which is
between the white lines above and below the blue button (in this case ’L 5’ and ’R 6’).

Thus the complete model is Z = L 1 + R 2 + Par(Ser(L 5 + R 6), C 8).

In this way it is possible to build arbitrary complex impedance models, either for simu-
lation purposes or for fitting to actual measured spectra.

7 of 48 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.3.3

Figure 3.3: An example impedance simulation using parallel and serial connections of
discrete elements.

If a model like the one in figure 3.3 is to be created, start a new simulation and follow
the steps below:

1. Press ’Add element’ and select ’L’.

2. Press ’Add element (in the pop-up window)’.

3. Press ’Add element’ and select ’R’.

4. Press ’Add element (in the pop-up window)’.

5. Press ’Add element’ and select ’Par’ (a new window will open).

6. Press red ’Add element’ button and select ’Ser’ (a new window will open).

7. Press red ’Add element’ button and select ’L’ (in the pop-up window).

8. Change value to 1e-8 and press blue ’Add element’ button

9. Press ’Add element’ and select ’R’ (in the pop-up window).

10. Press ’Add element’ (in the pop-up window).

11. Press ’Close serial’ (serial container window will close).

12. Press ’Add element’ and select ’C’.

13. Change value to 0.01 and press ’Add element’.

14. Press ’Close parallel’ (parallel container window will close).

8 of 48 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.3.3

15. The resulting model should now be identical to the one in figure 3.3.

From the above it can be seen that pressing the ’close’ buttons effectively acts as an end
parenthesis for the container element in question.

If an element is to be deleted, simple press the red button designating the element in
question. If deleting elements results in an empty container (parallel or serial), then the
container itself is also deleted.

It is also possible to manually edit the impedance model. To do this press the ’Manual
edit model’ button, this brings up a small editor where the model is displayed. The
model consists of a number of lines, each designating a single element (an exception to
this is the container elements, which takes up 2 lines). The container elements start
with a line with a single bracket. Angled brackets ’[’ for series connections and normal
brackets ’(’ for parallel connections. This is similar to the nomenclature used in the old
DOS program ’equivcrt’ by Dr. Bernard A. Boukamp. The corresponding line with the
end bracket denotes the end of the container element. Note that containers may contain
containers! Also note that if you are manually editing models, keep track of the brackets,
as misaligned brackets may invalidate the model and / or result in an unwanted model!

3.2 Data analysis

In order to analyze measured impedance spectra, use one of the load options on the
main page (figure 3.1). Figure 3.4 shows how an freshly loaded data file may look. If
no prior model has been defined and the data is viewed in the impedance plane, the
Elchemea Analytical generates a simple impedance model to start on. This consists of
an inductor in series with a resistor and the values are determined from the data points
in the highest frequency decade. The real value of the data point corresponding to the
highest frequency determines the resistance and the inductance is determined by doing
a Kramers Kröning transformation on the data points in the highest frequency decade
(Algorithm and program supplied by Christopher Graves). Notice however that in case
the Kramers Kröning method fails the imaginary value of the first data point (highest
frequency) is used instead. This is to ensure that a value is always obtained, and this is
known to happen for some combinations of Python and SE-Linux.

By using the radio button and dropdown menus on the right it is possible to switch
between Nyquist view and Bode view, set the fitting weight method, background color
and if the plot is to show sub-arcs or not (Notice that the last option only has effect if
plotting in the impedance plane).

If some data points are to be excluded from the analysis, click on the data graph and
then maneuver the pointer to the data point which is to be deleted and press the ’Delete’
button. Repeat this procedure until the data set has been sanitized from any erroneous
data.

Caution: Do not delete data points merely because they do not fit the chosen
model!

Only delete data points if they are known to be problematic (a single point lying far away

9 of 48 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.3.3

Figure 3.4: Example of an freshly loaded impedance spectrum.

from the rest is a good candidate, but not a sure sign)!

A special feature of the Elchemea Analytical is the ability to determine acceptable start
values for parameters for some of the predefined complex impedance elements (RC, RQ,
O, G and T). To use this, select the appropriate element to add, and then press the ’Find
values’ button, which will bring up an additional window like the one shown in figure 3.5.

Figure 3.5: Adding an impedance element to a model using the ’find-values’ system.

Use the arrow buttons to move the frequency marker to the desired data points and select
the right data points using the three blue buttons below (’Set maximum frequency’, ’Set

10 of 48 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.3.3

summit/bend frequency’ and ’Set minimum frequency’). Once these three frequencies
has been selected (which can be seen on the display as changes in the color and symbol
of the data points), press the red ’Find values’ button. This will cause the Elchemea
Analytical system to try and find sensible start parameters for the selected data range
for the element in question, and in case a fit converges the resulting impedance model will
be shown as seen in figure 3.6. If you are satisfied, simply press the ’OK’ button (which
causes the find values window to close) and then the ’Add element’ button, which will
add the chosen element with the determined start parameters to the current model. It is
possible to zoom using the X-range fields at the bottom (for instance if a small arc sits
next to a large one, the small one may be extremely hard to determine). Simply change
the minimum or maximum impedance to be displayed and the plot/select area will be
updated accordingly.

Figure 3.6: Finding the values for an RQ element using ’find-values’ on a measured
impedance spectrum.

Once a suitable model has been build, fit the model to the measured data by pressing
the ’Fit model to data’ button. This will cause the Elchemea Analytical to try and fit
the model to the data, and in case the fit converges, the resultant parameter values will
be displayed and the system will ask if the values should be copied to the model. If the
resulting values are sensible, press ’Yes’ and the resulting fit parameters will be displayed
in the model section as well as appended to the fit result table. This table contains a line
for each accepted fit and includes all model parameters as well as the mean and maximum
error for the fit in question. Thus if more than one file is fitted (or a single data set is
fitted to more than one model), it is possible to get a list of all the fitted data afterwords
for later comparison / further data analysis. To access the fit result table, press the ’Show
fit table’ below the graph. This brings up a new window with a tab delimited table which
can be copied / saved to a local file as appropriate. Figure 3.7 shows an example of a fit
result.

It is possible to exclude some parameters from the fitting (in effect locking them to the

11 of 48 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.3.3

Figure 3.7: Example result of a fit of a model to an actually measured impedance spec-
trum.

current value) by unclicking the check box associated with the parameter in question.
This is useful if external information indicates that a specific impedance parameter must
have a specific value. After the fit has been run, press the ’Report’ button to get a
pdf report of the fit in question. This report will include parameter values, statistics
regarding accuracy of the fit, parameter correlation as well as Nyquist, Bode and error
plots of the model and data.

It is known that some versions of AdobeReader R© in some cases has problems displaying
the pdf documents created by Elchemea Analytical, however the fast open source pdf
viewer Ghosview R© (http://pages.cs.wisc.edu/˜ghost/) is available for free for a wide
range of operating systems.

3.3 Saving and reloading models

Once a model has been created it is possible to save the model (and any associated data).
To do so, press the ’Save model and data’ button, which will open a save dialog asking
where to place the save data.

In order to load a saved data set/model, press the ’Load saved model’ button on the main
page and select the data file to load (The default extension will be .ea).

It is also possible to save just the model, if this is to be desired, simple open the ’manual
edit model’ page and copy the model to the clipboard and then save it in a local text file.
To restore a model thus saved, open a new simulation or data file and press the ’manual
edit model’ button and then paste the saved model instead of the present model. Finish
by pressing ’OK’.

12 of 48 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.3.3

3.4 Hints on fitting

Fitting impedance data is as much an art as it is science. The most important part
of data modeling / fitting is to select the most appropriate model, and in this respect
Occam’s Razor is an extremely important tool! Do not select a more complex model than
necessary based on the available information as it is always possible to get a good fit if
enough impedance elements are added to the model.

Due to the mathematics in some of the impedance elements distributed with Elchemea
Analytical, sometimes the fitting does not terminate or crash (indicated by either an error
message or simply that no response is received from the fitting attempt). Especially the
Gerisher, Finite length warburg and bounded warburg elements are prone to this as
they include one or more of the hyperbolic trigonometric functions, and in some cases
the fitting algorithm will select values which results in a singularity (division by zero or
infinite) and the fitting algorithm fails. When this happens, try to slightly change the
start parameters and see if it is possible to avoid the singularity.

3.5 Batchfitting

It is possible to do batch process fitting without using the GUI. To do this use the
command line program batchfit.pl (usually located in /usr/local/bin/analytic/). If the
program is called without any arguments a description of how to use it is output. In
the batchtest directory found in the Elchemea Analytic distribution directory there is an
example of how to use it. Simply run the run batchfit test.bash program to test with the
files in that directory.

13 of 48 Implemented by Søren Koch

Chapter 4

Plotting multiple files

It is also possible to plot multiple impedance file in the same plot by using the multiplot
module of Elchemea Analytical. To access this module, navigate to the front page and
press the ’Plot multiple files’ button, which brings the multiplot page up as shown in
figure 4.1.

Figure 4.1: Multiplot page showing an example of 2 impedance spectra plotted on the
same graph.

The left part is the file control section. It contains a multi select box showing both the
available and selected files. To plot files load the impedance files from your local system
by pressing the ’load local file’ or select user name, session number and files (in case the
Elchemea c© or RFCcontroll c© software is installed on the server along with Elchemea
Analytic). Note that the user/rig name and test/session select boxes are only available
as indicated above. If files are loaded from a local resource, it is automatically selected
for plot. To deselect/deselect a file press ’Ctrl’ and click on the file to select/deselect. If
the order of the legend keys are to be changed, move the file names up and down in the

14

DTU Energy Elchemea Analytical 1.3.3

file list as appropriate as Elchemea Analytics always uses the files/legends in the order
they are shown in the file list. To move a file, select it and use the ’u’ and ’d’ keys to
move the file up and down in the list (Note that only one file can be moved at a time).

If the legend for a particular file is to be changed, simply double click on the file to specify
a new legend for that file.

The center part of the multiplot page is the plot control area, where placement of legend,
frequency labels, plot ranges etc. can be controlled. If ’User defined’ is selected for
frequency labels, an additional field becomes visible where the frequencies to show on
the plot can be typed in. For each frequency in this list (separated by commas) the first
data point in each file below the frequency is indicated along with a label showing the
frequency. The text field at the bottom is for additional Gnuplot commands if additional
labels, arrows or similar is to be included in the graph (refer the Gnuplot manual for
information on gnuplot commands).

The resulting graph shown on the right part of the page can simply be copied or saved
(right click on the graph) and if an postscript file is preferred (for use with Latex docu-
ments for instance) press the ’Save postscript image’ button.

It is possible to save the data and plot definitions for the current work by pressing the
’save plot definition’ button. The resulting file can then be reloaded at a later time for
further work. It is important to note, that as Elchemea Analytical is a multi user system,
it includes an automatic clean up facility which removes files (uploaded data files and
generated image files) after one hour of inactivity. Thus if the user expects to take a
break from the Elchemea Analytical system, remember to use the ’save plot definition’
beforehand so as to not loose any work.

If the scaling of the data is not as intended, the scaling of the data can be changed by
changing the ’z(x)’ function definition (default is z(x) = x). To do so, simply write the
new definition in the ’additional gnuplot commands’ field. For instance if the sample has
a 6 cm2 area and the graph should report the impedance in area specific resistance, write
the following in the text area:

z(x) = x * 6

set ylabel ’-Z_{imag} ({/Symbol W} cm^2)’

set xlabel ’Z_{real} ({/Symbol W} cm^2)’

The first line changes the scaling and the two following lines change the axis descriptions
to include cm2 (leave them out if only the scaling are to be changed). Notice however that
you likely can not simply use copy and paste as the ’ in the above text will be represented
as a utf-8 character (type manually instead)!

The above lines can also be used in the fitting part of Elchemea Analytical, however as
this part uses the png output device (in order tom be able ot plot on black background),
some of the text may look different from what is expected (specifically ’{/Symbol W}’ is
interpreted entirely as text).

15 of 48 Implemented by Søren Koch

Chapter 5

File formats

DTU Energy at Technical University of Denmark Impedance visualisation and analysis
control software supports a number of different file formats including gamry(R) and
ZPlot(R) / ZView(tm) files.

The native file format is the i2b file format however. The file format is described below
with an example file:

Idun:/home/EFA/rig14/1255/4/s4_1007.i2b

Desc: 14test78_PS128052

:2009:01:17:23:17:30 1232230650 , Meas.:

37

82451 0.006685137356 0.00141940337

56173 0.0070404900979 0.0002431376363

38270 0.007484563409 -0.000686494133

26073 0.008028417169 -0.001394965951

17764 0.008634536255 -0.001947261525

12102 0.009370725592 -0.002396327231

8245 0.010187221398 -0.002722736196

5617 0.011033464434 -0.002911896725

3827 0.011876708228 -0.003031150569

2607 0.012699248889 -0.002996166924

1776 0.013426438402 -0.002909587586

1210 0.014135420185 -0.00274866887

824.5 0.014798469288 -0.002688357568

561.7 0.015415708783 -0.002545973023

382.7 0.016064610363 -0.002514285078

260.7 0.016722169513 -0.002355489951

177.6 0.017329395388 -0.002180886816

121 0.017877782005 -0.001969379374

82.45 0.018305518738 -0.001746990494

56.17 0.018698563455 -0.00151536534

38.27 0.01889247348 -0.001359174472

16

DTU Energy Elchemea Analytical 1.3.3

26.07 0.019155759436 -0.00132627701

17.76 0.019422716189 -0.001266016758

12.1 0.019661051995 -0.001295590415

8.245 0.019888830093 -0.001464146169

5.617 0.020308127403 -0.001725404958

3.827 0.020971000603 -0.001804639011

2.607 0.021602216143 -0.001638322228

1.776 0.02195975717 -0.00134448105

1.21 0.022350984057 -0.001060789257

0.8245 0.022530834712 -0.000697843738

0.5617 0.022641762282 -0.0004145079483

0.3827 0.0226543601828 -0.0003907922012

0.2607 0.0227450009778 -0.0003855313026

0.1776 0.0228211856604 -0.0001882806252

0.121 0.0229167510741 -0.0001616599266

0.0825 0.0229392097983 -0.0002138122947

The first 6 lines can contain text information (including meta information). Usually the
third line contains a time stamp, but DTU Energy at Technical University of Denmark
Impedance visualisation and analysis control software does not use this.

The 7’th line contains an integer describing the number of data points, and the following
lines (nr 8 and onwards) is the actual data. Each data point is in the format:

Frequency Real part Imaginary part

17 of 48 Implemented by Søren Koch

Chapter 6

Installation and system maintenance

This chapter describes how to install or upgrade a Elchemea Analytical system.

6.1 Requirements

The Elchemea Analytical requires the following software to be installed on the target
system prior to installation:

• A Linux type operating system (Only tested with CentOS R© 5 and 6, but will likely
work on other Linux type systems as well).

• Gnuplot R© version 4.0 or later.

• The Apache R© web server version 2.2.3-43 or later (it is possible that earlier versions
of Apache will also work, however this is not tested).

• The Perl R© interpreter version 5.8.8 or later.

• The Perl Time::Hires module (installation of this varies between distributions, thus
needs to be installed manually, refer your distribution manual as to how).

• ImageMagick version 6.2.8 05/07/12 Q16 or later.

• GPL Ghostscript version 8.70 (2009-07-31) or later.

• Gnu ’make’. Other ’make’ packages than the one from Gnu may also work, but has
not been tested.

• A functioning connection to the Internet. The reason for this is that Elchemea
Analytical downloads and installs several Perl modules from CPAN.org during the
installation.

18

DTU Energy Elchemea Analytical 1.3.3

6.2 Installation

In order to install the Elchemea Analytical system, unpack the tar-ball in a suitable
location, cd into the resulting ElchemeaAnalytical directory and run make.

Inspect the output of the make program and resolve any errors.

Once all errors have been resolved, run make test followed by make install.

In order to ensure that all servers start upon system reboot, add the following line to
/etc/rc.local :

/usr/local/bin/analytic/start servers &

Finally, start up a web browser and point to this address
hostname.domain/cgi-bin/analytic/main.cgi (substitute host name and domain with the
appropriate values for your system) to check if the system is properly configured, the
resulting page should look like figure 3.1;

6.2.1 Command line only installation

It is possible to install Elchemea Analytical as a command line only tool (for instance on
workstations without a web server). In order to do this follow the above steps except in-
stead of running make install, one should run make install cmdonly and omit start servers
part as this is only needed for the server installation.

The command line only mode is useful for workstation use if multiple impedance files are
to be fitted using the same model. In this case it may be too tedious to manually upload
each file to a server and fit and much simpler to use the ’batchfit.pl’ program supplied
with Elchemea Analytical in both server and command line only mode.

6.2.2 SE-Linux

If SE-Linux is installed on the serer and running in enforcing mode, the default configura-
tion of SE-Linux will prevent the Apache web server from accessing the LATEX server lis-
tening on port 4050 as well as the execution of various scripts in /usr/local/bin/analytic.

To allow Apache to connect to port 4050 as well as execute the scripts in
/usr/local/bin/analytic/, (on CentOS) execute the script set SELinux rules.bash found
in the Elchame Analytical installation directory.

6.3 maintenance

Generally the Elchemea Analytical system requires little maintenance and the Elchemea
Analytical system includes a facility for automatic software updates, to enable this, simply
add the following line to root’s crontab file:

0 8 * * 1 /usr/local/bin/analytic/analytic updateer.pl ≫ /root/update log.txt &

19 of 48 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.3.3

This will update the system once every Monday. The automatic update system then
fetches any new version which may have been deployed within the last week and installs
this if it passes the software test (make test).

20 of 48 Implemented by Søren Koch

Chapter 7

Server structure

The programs mentioned in italics below all reside in the /usr/local/bin/analytic and are
written in Perl.

7.1 LATEX-server

The Latex server (LATEX-server) is responsible for compiling Latex reports of the fit
results of individual fits. It honors the following commands:

• debug: Turns debug on and off.

• exit: Shuts down the server cleanly.

• unlink: Unlink the specified file name. Note this is a potential security risk, so the
Latex server should not be accessible from external sources!

• compile: compiles the document with the specified file name. The resulting pdf file
is placed in ’/home/http/html/analytic/png/’.

21

Chapter 8

System command interface
(command line)

Although the Elchemea Analytical is designed to be used primarily through the web
interface some programs can be accessed from the command line. Below is a list of the
most used command line tools for the Elchemea Analytical system:

• /usr/local/bin/analytic/z to i2b: This program converts Z-plot files to the ’i2b’ file
format.

• /usr/local/bin/analytic/gamry to i2b: This program converts a Gamry R© file to the
’i2b’ format.

• /usr/lcoal/bin/analytic/batchfit.pl : This program can be used to fit multiple spectra
to the same model. Call the program without any arguments to get a description
of how to use it as well as a list of possible options.

22

Chapter 9

Impedance elements

Elchemea Analytical supports a number of discrete impedance elements. The follow-
ing sections describe each element. In all the following sections, ω denotes the angular
frequency (ω = 2πf), j the entity

√
−1 and Z the complex impedance.

9.1 Ohmic resistor (R)

The most simple impedance elements is the ohmic resistor. The impedance of this element
is does not have an imaginary component, and is simply the resistance R:

Z = R (9.1)

It is not possible to use the ’find values’ function on this element.

9.2 Inductor (L)

The inductive element L has no real component in the impedance and the impedance of
the C element can be described as:

Z = jωL (9.2)

It is not possible to use the ’find values’ function on this element.

9.3 Capacitor (C)

The capacitive element C does also not have a real part and is:

Z =
1

jωC
(9.3)

It is not possible to use the ’find values’ function on this element.

23

DTU Energy Elchemea Analytical 1.3.3

9.4 Constant phase element (Q)

The constant phase element Q has both a real and an imaginary part and can be expressed
as:

Z =
1

Y (jω)n
(9.4)

It is not possible to use the ’find values’ function on this element.

9.5 Warburg impedance (W)

The classical warburg diffusion element is infinite and the impedance of this element is:

Z =
σ√
jω

(9.5)

where σ is the warburg coefficient.

It is not possible to use the ’find values’ function on this element.

9.6 Finite length warburg impedance (O) and de-

pressed / flattend finite length warburg

impedance (Od)

The finite length warburg impedance (also sometimes called finite diffusion impedance
with transmissive boundry conditions) behaves as the Warburg element at high frequency,
but at low frequency behaves more like an RC circuit (refer section 9.9). The impedance
of this element is normally defined as:

Z =
tanh ((Bjω)n)

(Y jω)n
(9.6)

However in Elchemea Analytical the following transformation is used:

Z =
tanh ((Bjω)n)

(Y jω)n
(9.7)

Z =
Bn tanh ((Bjω)n)

Y n(Bjω)n
(9.8)

Z =
(

B

Y

)n tanh ((Bjω)n)

(Bjω)n
(9.9)

Z = Z0

tanh ((Bjω)n)

(Bjω)n
(9.10)

(9.11)

where

Zo =
(

B

Y

)n

(9.12)

24 of 48 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.3.3

For the normal finite length warburg element (O) n is fixed at 1

2
whereas it is below this

for the depressed version (Od).

The ’find values’ function can be used on O and Od elements.

9.7 Finite capacity warburg impedance (T) and de-

pressed / flattned finite capacity warburg

impedance (Td)

The finite capacity warburg diffusion element (also sometimes called finite diffusion
impedance with blocking boundry conditions) behaves like the classical Warburg at high
frequency (as the O element does) but as the frequency gets lower the imaginary part of
the impedance goes asymptotically towards infinite. The impedance or the T element is:

Z =
coth ((Bjω)n)

(Y jω)n
(9.13)

where coth is the hyperbolic co-tangent function. However in Elchemea Analytical the
following transformation is used:

Z =
coth ((Bjω)n)

(Y jω)n
(9.14)

Z =
Bn coth ((Bjω)n)

Y n(Bjω)n
(9.15)

Z =
(

B

Y

)n coth ((Bjω)n)

(Bjω)n
(9.16)

Z = Z0

coth ((Bjω)n)

(Bjω)n
(9.17)

(9.18)

where

Zo =
(

B

Y

)n

(9.19)

For the normal finite capacity warburg element (T) n is fixed at 1

2
whereas it is below this

for the depressed version (Od). Also note that for the depressed version the asymptote
is not vertical when viewed in the complex plane.

The ’find values’ function can be used on T and Td elements.

9.8 Gerisher impedance (G) and depressed / flattend

gerisher impedance (Gd)

The Gerisher and depressed Gerisher element has the same overall features as the O
element in that they behave like the Warburg element at high frequencies and like an RC

25 of 48 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.3.3

circuit at low frequencies, however the mathematical desorption is different than that for
the O element as described below:

Z =
1

Y (k + jω)n
(9.20)

For the normal Gerisher (G) element n is fixed at 1

2
whereas it is below this for the

depressed gerisher (Gd).

The ’find values’ function can be used on G and Gd elements.

9.9 Parallel R-C circuit (RC)

The RC circuit is a parallel connection of a normal resistor and a capacitor. The complex
impedance of this circuit is

Z =
1

R−1 + Cjω
(9.21)

The reason for using the RC element as a separate element and not using the Par element
to ’build’ one is that by utilizing the analytical description of the RC circuit, it is possible
to use the ’find values’ function to obtain good start guesses for the parameters. which
would not be possible for a custom designed ’Par’ elements with a R and a C element
(refer section 9.13).

9.10 Parallel R-Q circuit (RQ)

Similar to the RC element the RQ element is a parallel connection of a resistor and a
capacitive element, but in this case the constant phase element. The impedance of the
RQ elements is:

Z =
1

R−1 + Y (jω)n
(9.22)

Similarly to the RC circuit it is possible to use the ’find values’ function on the RQ
element in order to obtain good start guesses for the parameters as opposed to a custom
Par element with a R and a Q element.

9.11 Parallel R-L circuit (RL)

The RL circuit is a parallel connection of a normal resistor and an inductor. The complex
impedance of this circuit is

Z =
1

R−1 + 1

Ljω

(9.23)

The reason for using the RL element as a separate element and not using the Par element
to ’build’ one is that by utilizing the analytical description of the RL circuit, it is possible
to use the ’find values’ function to obtain good start guesses for the parameters. which

26 of 48 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.3.3

would not be possible for a custom designed ’Par’ elements with a R and a L element
(refer section 9.13).

9.12 Serial connection of elements (Ser)

This element is merely a container element which consists of a number of serially con-
nected impedance elements and the combined impedance is:

Z = Z1 + Z2 + Z3 + . . . + Zn (9.24)

Due to the fact that the elements within the container may be any impedance element
(including other container elements!) it is impossible to use the find values function
on a ’Ser’ element.

9.13 parallel connection of elements (Par)

As with the Ser element, this element is a container but instead of serially connected
impedance elements it is a number of parallel connected impedance elements, thus the
impedance of the element is:

Z =
1

1

Z1

+ 1

Z2

+ 1

Z3

+ . . . + 1

Zn

(9.25)

Due to the fact that the elements within the container may be any impedance element
(including other container elements!) it is impossible to use the find values function
on a ’Par’ element.

27 of 48 Implemented by Søren Koch

Chapter 10

Module specifications

This chapter contains the module specification for the Perl modules supplied as part of
the ElchemeaAnalytic software suite. It includes function descriptions including number
and type of any function arguments. Some of the modules are object oriented (with only
a publicly accessible constructor) and in other cases the modules are function orientated.

In the case of function orientated modules, any functions exported by the module are
described, both for what it does, as well as number and types of arguments.

In the case of the object oriented modules, any inheritance is also described (usually
in the beginning of the module description). For the object instances, usually only the
member functions intended to be public is described (as Perl does not have a true private
function declaration). Note that some of the object orientated modules define more than
one class type, but as all the class types in this case behave similarly (polymorphic), only
the main class is described as the subsequent class definitions implements the main class
type behavior.

Each module is described in it’s own section.

28

DTU Energy Elchemea Analytical 1.3.3

10.1 Debug

Use: my $id = Debug→new();

This class is intended to be a base class for other classes to derive from so that easy debug
functionality can be included.

Utility class for debugging. It contains the following member functions:

$id→debug() Sets or gets the debug level: level 0 is no debug, level
5 is complete debug including stack backtrace. This
class only uses level 0 (no debug), level 1-4 (debug
iformation displayed) and 5 , debug info displayed
with complete stack backtrace. The levels 1-4 lets
other modules define debug levels inbetween the ones
used here.

$id→writedebug($,[$]) Writes the string to standard error if debuglevel is
1 or higher. If overide is specified (second argument
which is optional), debug level 5 is assumed for this
debug.

$id→die($) Appends stack backtrace to argument string and calls
CORE::die

$id→print setup() Prints out the complete current setup includ-
ing all member functions and data fields (uses
Class::Inspector).

10.2 SemaforeFile

Inherits from Debug (refer section 10.1).

This package makes file inout/output on multiprocess systems more easy by encapsulating
file locking. To define a new semaforefile use the new method:

my $id = SemaforeFile→new($filename,$lockfile);

my $id = SemaforeFile→new($filename);

If the lockfile is not specified, the default (/var/lock/SemaforeFile/SemaforeFile.lock or
/tmp/SemaforeFile.lock) is used instead. This form should generally notbe used however,
as in some cases /var/lock/SemaforeFile/SemaforeFile.lock can not be used and files in
/tmp/ will from time to time be deleted...

The package includes the following simple public methods on semafore files:

$id→readonly() Returns true if the file is readonly for the current user
$id→exist() Returns false if the file does not exists;
$id→chmod($) Sets the file permissions according to CORE::chmod
$id→filename() Returns the filename of the semafore file

29 of 48 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.3.3

$id→readlines() Returns the content of the file as an array with one
line in each element Note thet it removes any trailing
newline from the read lines!

$id→writeline(@) Writes the arguments to the file (NB: Overwrites file
and add a newline to each argument if they do not
already have it).

$id→append(@) Appends the arguments to the file (Also adds new-
lines if nescesarry).

It is not nescesarry to check for file esistence in readlines as an empty array is returned if
the file does note exist Note that the readlines function should only be used on small files
as it globs the entire content to memory! For large files, use the more advanced member
functions (see below). Also note that trailing newlines are removed from the individual
lines. If this are not desired, use the readline() method described below.

The module also includes the following methods for advanced use: Note none of these
functions check if the file exist before trying to open! The unsafe versions of open and
close does not lock or unlock (assumes the user does this explicitly!)

$id→lock ex() Locks file for exclusive use (Read, Write or Anppend)
$id→lock sh() Locks file for shared access (Read only)
$id→lock ex nb() Locks file for exclusive use non blocking (Check re-

turn status!)
$id→lock sh nb() Locks file for shared access non blocking (Check re-

turn status!)
$id→unlock() Unlocks file
$id→open read() Opens the file for reading (locks file shared if not

already locked)
$id→open readback() Opens the file for reading backwards (locks file shared

if not already locked)
$id→open write() Opens the file for writing (locks file exclusive if not

already locked exclusive)
$id→open append() Opens the file for appending (locks file exclusive if

not already locked exclusive)
$id→close() Closes the file and unlocks it
$id→open read unsafe()
$id→open readback unsafe()
$id→open write unsafe()
$id→open append unsafe()
$id→close unsafe()
$id→mtime() Returns the time of modification of the file as re-

ported by File::stat→mtime, returns 0 if the file does
not exist.

$id→readline() Reads and returns the next line from the file, assumes
an open file Raises an excpeption (die) if not.

$id→fh() Returns the underlying file handle for direct IO (Use
with care!)

30 of 48 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.3.3

Additionally the $id→debug($) member function (inherited from Debug.pm) can turn
debug information on and off $id→debug($level) turns debug on and $id→debug(0) turns
debug off ($level is the debug level, 1 - 5) This may be usefull if deadlock is encountered
(so that the individual file locking operations can be monitored! If $id→debug() is called
without arguments it returns the status (i-e if debug in on 1 is returned else 0.

10.3 SocketClient

This module defines a number of communication functions used for accessing tcp:IP
sockets on local and/or remote systems. The functions defined are listed below:

socket client raw($$@) Base function used by all subsequent functions, han-
dles the raw tcp:IP cummunication. Arguemnts: server,
port, [additional args to server]. The server can either be
a ip-address or a hostname. Any additional arguments
gets serialised with tab characters and 2 newlines are
appended to the resulting string before transmission.

socket client($$@) Same as above, but catches any communication errors
in an eval guard.

socket client nocr($$@) Same as above, but do not append any newlines to the
transmitted string.

socket client raw nocr($$@) same as socket client raw() but do not append newlines.
serial client($@) communicates with a local serial server (which handles

hardware communication on the serial port. Arguments:
tty, args to server. The server is assumed to be the local
server (either localhost or the public IP address of the
server) and the port number is the tty number added to
202020 (Note wraparound!).

GPIB client() Communicates with the GPIB-server. Arguments are
passed to the GPIB-server serialised with tab characters
using socket client nocr(). The server is assumed to be
the local server (either localhost or the public IP address
of the server) and the port number is 12345.

serial client raw($@) Same as serial client() but without eval guard.
GPIB client raw() Same as GPIB client() but without eval guard.

10.4 Impedance::Header

This module specifies global file locations and other global variables used for the Elchemea-
Analytical software package.

The module also specifies the colors of the resulting gnuplot figures (this is specified in
the $gpheader variable).

31 of 48 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.3.3

10.5 Impedance::IMPCGI

This module contains a number of utility functions for outputting properly formatted
html code for user interface generation. Thus it mainly extends the CGI.pm module by
Lincoln D. Stein. The module exports these functions in two groups.

The :html group exports these functions:

print header($[%]) Prints the header information. Arguments: title. Any
additional optional arguments (in the form of a hash)
will be parsed along to the header() function supplied
by CGI.pm. The functionautomatically appends a call
to a javascript function logging users out after some time
of no actions.

print end() Prints the help button and ends the html output with
the proper tag.

print hidden() Prints a number of hidden fields used to maintain state.
logout() Printys a logout button.
action($) Prints a hidden field with an action parameter with the

specified value which can be used for program control
flow.

EFA start html() A wrapper for CGI::start html. Any arguments (in the
form of a hash) are passed to CGI::start html. Auto-
matically appends a reference to the javascript source
file on the server.

js back() Prints the javascript for gping backwards (uses the
browser.back() fjavascrpt call).

get CGI value($) Retrieves the value of the specified CGI parameter (sup-
plied by the web browser.

get CGI value clean($) Same as get CGI value, but does pattern match on the
retrieved value and only returns the part that matches.
The pattern match is [\w\s\.\,]*. This has the benefit
of untainting the returned parameter value (For taint
checks in perl and web access, refer Lincoln D. Steins
book Official Guide to Programming with CGI.pm)

The :cgi group of functions include the following:

get CGI value($) See above.
get CGI value clean($) See above.
action($) See above
menu button(@) Prints a menu button. Arguments: name, value, style.

The name will be the CGI parameter name, the value
vill be the text on the button and the style is a style
class name to use for displaying.

create menu field Prints the html tags to create a menu field.

32 of 48 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.3.3

top nav bar start() Prints the html tags to start the top navigation bar (ta-
ble specifications etc.)

top no button() Prints a no action button (goes nowhere) in the top
navigation bar.

top nav bar button() prints a top navigation button. Arguments: File, name,
value, style, [optional additional name, value and force
triplets]. The file is the cgi-script to be called upon
button press, the name,value and style arguments are
passed to menu button() and the additional optional
arguments are used to initialise and print hidden html
fields in the form of name-value pairs and a force argu-
ment (1 for force value, 0 for allow reuse of value).

tab newrow() Prints a new row in the top navigation bar.
top js return() Prints a top navigation return button (uses the

javascript printed by js back(), see above)
end top bar() Prints the end of the top navigation bar.

An additional function which is often used (but which is not exported by default) is the
format model($) function which parses a given impedance model and removes any empty
serial or parallel connections as well as empty lines. The format model function also
removes any ”\r” characters which may have been added by Microsoft based browsers.
The function returns the resulting model.

10.6 Impedance::Base

Inherits from Debug (refer section 10.1).

This module defines all member functions which an ElchemeaAnalytical Impedance ele-
ment must honor. Most of the functions are merely stups intended to be overloaded by
the individual class definitions.

The module also includes class defininitions on the basic discrete elements (R, C, L and
Q, Q beeing the constant phase element).

The module is intended to be used in conjunction with gnuplot but can be used as is (but
no fitting will be possible).

To obtain a element instance call one of the constructors as show below:

$id = Impedance::Base→new($);

$id = Impedance::R→new($);

$id = Impedance::C→new($);

$id = Impedance::L→new($);

$id = Impedance::Q→new($);

All the constructors accepts a single argument which must be the impedance element
number. It is advisable to make sure that element id’s are unique in order to be able to

33 of 48 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.3.3

distinguish.

All Impedance element instances has the following member functions:

$id→type() Returns the type of impedance element.
$id→name() Returns the name of the element (usually the type

and the id)
$id→nr() Returns the element id.
$id→function name() Returns the Gnuplot function name of the element.
$id→value($[$]) Sets or gets the value of the specified element param-

eter (If 2 arguments are specified, the second is the
value to be set).

$id→description($) Returns the description for the specified tag. valid
tags are ’name’ and the tags returned by the tags()
member function. The ’name’ tag returns a text
string describing the whole element and the other
strings descriobe the specified parameter. If called
with no arguments, it returns the string for the ’name’
tag.

$id→tags() Return a list of valid element parameter names.
$id→functions() Returns a string containing all the functions and vari-

able decleratins for gnuplot.
$id→F($) Returns the impedance value of the element at the

specified frequency. The returned impedance is of
type Math::Complex.

$id→fit() Returns a list of possible fit variables (all starting
with value 1) for use with gnuplot.

$id→save() Returns a string containing functions to save the final
fit variables (base value multiplied with fit variable).
This is also for gnuplot use.

$id→print line() Returns a string defining the impedance element.
The format is described below.

$id→helperfunctions() Returns a list of paramter names for which spe-
cial help functions exist for calculating usefull esti-
mates for start values for fitting. Note, that some
impedance elements does not have any way of de-
termining good start values in which case the helper-
functions() member function simply returns an empty
list.

34 of 48 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.3.3

$id→helpfunction(@) This function has multiple uses. If called without
any arguments, it returns the list from the helper-
functions() member function. If called with one ar-
gument it returns a string describing how many ad-
ditional arguments must be parsed to it (which may
wary depending on impedance element) and in which
order. If called with more than one argument, the
first Argument is the parameter name to calculate
start value for, and the additional arguments (which
must be a string of the form: ”$frequency $real value
$imaginary value”) are used for the calculation.

$id→f imax() Returns the frequency for which the imaginary value
of the impedance is at it’s maximum (negative) value.
If the element type makes such a calculation invalid,
the function returns undefined. If the frequency is
either infinite or the DC case, the reported frequen-
cies will be 1e100 Hz and 1e-100 Hz respectively. For
frequency independent elements the function returns
0.

The print line member function returns a string which can be used to reload an impedance
element. The format is:

Type: parameter1=value1, parameter2=value2,

An exception to this is the container elements (serial and parallel) which is defined and
implemented in the Impedance::Complex class.

10.7 Impedance::RQ

Inherits from Impedance::Base (refer section 10.6).

This module implements Impedance::Base for R-C and R-L parallel connections as well
as the R-Q parallel connection. (The Q beeing a constant phase element).

To obtain an instance, call one of the constructors:

$id = Impedance::RC→new($id);

$id = Impedance::RL→new($id);

$id = Impedance::RQ→new($id);

The module defines no additional member functions.

10.8 Impedance::W

Inherits from Impedance::Base (refer section 10.6).

35 of 48 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.3.3

This module implements Impedance::Base for diffusion type elements (W, O, Od, G, Gd
and T). W is the Warburg element, O is the Finite length Warburg element, Od is a
depressed / flattened finite length warburg element, G is the Gerisher element, Gd is a
depressed / flattened Gerisher element and T is the ’Bounded Warburg’ element.

To obtain an instance call one of the constructors:

$id = Impedance::W→new($nr);

$id = Impedance::O→new($nr);

$id = Impedance::Od→new($nr);

$id = Impedance::G→new($nr);

$id = Impedance::Gd→new($nr);

$id = Impedance::T→new($nr);

The module defines no additional member functions.

10.9 Impedance::Complex

Inherits from Impedance::Base (refer section 10.6).

This module defines series and parallel connections of impedance elements. The resulting
element can be treated as any other Impedance::Base derived element, thus it is possible
using the serial and parralel elements to build arbitrary complex circuit layouts!

In effect the module defines two container types which from the outside behaves as a
single impedance element.

To obtain an element instance, call one of the constructors:

$id = Impedance::Ser→new($id);

$id = Impedance::Par→new($id);

The module defines four new member functions:

$id→elements() Returns a list of Impedance::Base (or derived) ele-
ments.

$id→elements all() Returns the complete element list for all elements in
the container (recursively).

$id→element($) Returns the element instance with the specified id
(usually obtained from the elements member func-
tion).

$id→add element($$) Adds an element ot the list of elements contained
within the element instance. The arguments are type
and id of the element to add. It returns the element
instance created. The element is created using the
Impedance::Device::new device($$) factory function.

The print line() function inherited from Impedance::Base is overloaded with slightly dif-

36 of 48 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.3.3

ferent behaviour. Instead of a string containing just a single line, the return value of
print line() contains multiple lines. The first line contains a start identifier (either ’(’ or
’[’ depending on type) and the last line contains the corresponding end identifier (’)’ or ’]’
). All intermediate lines are obtained by calling print line() on the individual element(s)
in the container. Note that this may include additional complex elements resulting in
nested parantheses (Which is completely valid behaviour)!

Additionally the tags() function is also overloaded so that it returns a list of the elements
in the container instead of valid parameter names (as the complex element is a container
it does not by itself have any parameters of which to set or get the value).

It is also not possible to define any help functions on complex elements, thus any calls to
helperfunctions() merely results in the empty list.

Notice that f imax() can only report summit frequencies between 1e-100 and 1E100 Hz
Thus if the true sumit frequency of the complex element used is outside this range it
will be reported wrongly! Additionally, the f imax() function first tries to determine a
maximum frequency in the R,-X quadrant (corresponding to where an arc from a parallewl
RC circuit will be found). If no maximum frequency is found it reports the maximum
frequency in the R,X plane (Where an parallel R-L circuit will be found).

10.10 Impedance::Device

This module defines two functions, the first is list device types() which returns a list of
valid impedance element type names.

The second function is a factory function: new device($$). It accepts two arguments, the
first is an element type name (one of the types returned by list device types()) and the
second argument is the element id (integer). The new device($$) function returns the
impedance instance created.

10.11 Impedance::Model

Inherits from Debug (refer section 10.1).

This module defines how to handle impedance models. It utilises the impedance elements
defined by Impedance::Base and the derived classes.

To obtain an instance, call one of the constructors:

$id = Impedance::Model→new();

$id = Impedance::Model→new($data);

$id = Impedance::Model→new($model ref);

$id = Impedance::Model→new($model ref,$minf,$maxf);

The first constructor merely initialises a new empty model. The second constructor
initalises an empty model but adds the impedance data in in the supplied data string
to the model instance. The third constructor copies the model from the supplied model

37 of 48 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.3.3

reference and copies the data from that instance as well. The fourth constructor copies
as the third, but only copies those data which lies within the frequency range specified
by the last two arguments! This can be used for partial fitting where only a specific
frequency range is needed.

The individual impedance elements are strored in internal data structure which makes
sure that only unique impedance element id’s are used.

All Impedance::Model instance has the following public member functions:

$id→parse($) This function accepts a string defining an impedance
model. The string must be lines of the format defined
by the Impedance::Base function print line(). The
function parses this string and initialises the correct
impedance elements based on this. The function re-
turns the id number of the last impedance element
added.

$id→print model() Returns a string which can be parsed by
$id→parse($)

$id→device types() Wrapper for Impedance::Device::list device types().
$id→elements() Returns a list of impedance element names (nr).
$id→element($) Returns the impedance element specified. The func-

tion also gets elements from inside containers!
$id→elements all() Returns the complete element list of the model. Re-

cursively calls into any container elements. Note
that unlike the elements() function, the actual de-
vice instances are returned as opposed to the element
names.

$id→model text() Returns a string representing the impedance model
$id→delete element($) Deletes the specified impedance element.
$id→add element($[$]) Adds an impedance element of the specified type. If

an additional arguemnt is specified, the id of the new
element will be set to this number. If no second ar-
gument is specified, hte next id is simply chosen. The
function returns a reference to the added element.

$id→fit() Returns a list of possible fit paramerters for current
model.

$id→data([$]) Gets or sets the impedance data in the internal data
field.

$id→delete point($) Deletes the point specified from the internal data ar-
ray. Returns the new data in the same way as data().
Note that index 0 is the point at the highest fre-
quency.

$id→print fit([$]) Returns a string containing all the functions nesce-
sarry for gnuplot to initialise and fit the given model
to the impedance data either in the specified filename
or (in absence of an argument) in the internal data
field. All data points are given even weight.

38 of 48 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.3.3

$id→print fit weight([$]) Same as print fit(), however the actual fitting is done
with uneven weight, so that data points with small
values (absolute length of impedance vector) gets
higher weight than points with larger values (weight
inversely proportional to length).

$id→set show arcs($) Sets wether the plot functions should include the in-
dividual arcs in the plots or not. An argument of 0
disabels the arcs, 1 includes them.

$id→print plot([$]) Returns a string containing the function declerations
and plot definitions for gnuplot to plot the specified
data (if any) if no datafile name is specified, it uses
the data in the internal data field.

$id→print plot range($$[$]) Similar to print plot, except it must have the min and
max range specified as the first 2 arguments. The
effect is that any labels are only printed if they have
x-values within the specified range.

$id→print bode([$]) Same as above, but for bode plots.
$id→print plot eps([$]) Same as print plot, but for eps file output.
$id→print bode eps([$]) Same as above, but for bode plots.
$id→print plot error([$]) Returns a string containing the function declerations

and plot definitions for gnuplot to plot the difference
between the model and the specified data (if any) if
no datafile name is specified, it uses the data in the
internal data field.

$id→print imp sim($$) Returns the function declaratioins nescesarry for gnu-
plot to plot an impedance plot of the current model.
Arguments are the frequency range to plot (min and
max).

$id→print bode sim($$) Same as above, but for bode plot.
$id→F($) Returns the impedance of the current model for the

specified frequency. The returned impedance is of
type Math::Complex.

$id→subset($$) Returns a subset of the data in the internal data field
based on the specified minimum and maximum fre-
quency.

$id→subtract model() Returns the residual of the data in the data field
once the impedance of the current model has been
subtracted (subtraction done in the indivudual data
points!).

39 of 48 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.3.3

$id→get error() Returns the mean and maximum error for the data
and model chosen The error is calculated as the ab-
solute difference of the data from the mode both the
real and for the imaginary part. The error is then
normalised with the modulus of the data value. This
is calculated for all frequencies in the data set and
the mean and maximum values are returned (as per-
centages).

$id→minf() Returns the minimum frequency in the data set.
$id→maxf() Returns the maximum frequency in the data set.
$id→minr() Returns the minimum real part of the impedance in

the data set.
$id→maxr() Returns the maximum real part of the impedance in

the data set.
$id→mini() Returns the minimum imaginary part of the

impedance in the data set.
$id→maxi() Returns the maximum imaginary part of the

impedance in the data set.
$id→scale factor([$]) Sets the scale factor function to the specified value.

If no arguments, the scale factor function is set to the
default 1, that is no scaling. Note that only simple
proportionality scaling is possible.

$id→get scale() Returns the current scale factor.
$id→set limit($$) Sets the plot limit of one of the fololowing tags:

’xmin’, xmax’, ’ymin’ and ’ymax’ to the specified
value. Arguments: tag, value.

$id→get limit($) Returns the limit of the specified tag (see set limit()).
$id→set xlabel($) Explicitly sets the text string to be displayed in the

xlabel.
$id→set ylabel($) Explicitly sets the text string to be displayed in the

ylabel.
$id→set ylabel bode($) Explicitly sets the text string to be displayed in the

ylabel in bode plots.
$id→set bode mode($) Sets wether bode plot should only plot imaginary

value or both real and imaginary (default). If called
with a true argument mode is set to only imaginary
values.

$id→set admittance mode($) Sets wether or not the plots should be of the
impedance, admittance, complex modulus or com-
pelx capacitance. Default is impedance. Valid values
can be obtained from admittance mode values().

$id→admittance mode values() Returns a list of valid values for
set admittance mode($).

40 of 48 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.3.3

$id→adv opt([@]) Sets or gets a list of additional gnuplot commands (for
instance user defined axis labels etc.). Arguments are
a list of commands. If called without arguments, the
current list of additional commands is returned

Additionally the following private member functions are also defined. Although Perl
does not permit true private functions, do not use these functions from outside the class
instances!

$id→print plot common() This function returns the function declarations for all
elementsin the impedance model.

$id→print plot main() This function does the actual work of print plot() and
print bode()

$id→print plot main range() This function does the actual work of
print plot range().

$id→print plot eps common() Similar as above, bur for eps output.
$id→dev sort fmax() Returns a hash of device names and summit frequen-

cies Only returns devices for which summit frequen-
cies can be correctly calculated.

$id→print simulation() This function does the actual work of print imp sim()
and print bode sim().

$id→save() This function saves the content of the data field to a
temporary file (in /temp) It returns the filename of
the temporary file.

$id→file() Returns the name of the data file.

41 of 48 Implemented by Søren Koch

Chapter 11

Web service interface

It is possible to use Elchemea Analytical as an web service. To do so call the following
ajax model.cgi web script with the parameters specified below. The script is located
in host.domain/cgi-bin/analytic/ajax model.cgi (substitute host.domain with the correct
host name and domain name of your Elchemea Analytical installation).

1. ’ajax’, value: ’1’

2. ’action’, value: ’fit’ or ’fitlist’. If fitlist is selected, the web service returns a list of
possible free fit parameters for the specified model

3. ’model’, value: the impedance model as specified in chapter 3.

4. ’fitmode’, value: ’Even’ or ’Inverse’. Determines if data points have even weight
(which is default) or weight is inversely proportional to absolute value of impedance
(length of impedance vector). Optional parameter, only used for ’fit’ action.

5. ’data’, value: Impedance data in the form of multiple lines, each line in the form:
frequency real value imaginary value
Note that the first line must be the highest frequency. Only used for ’fit’ action

6. ’fitlist’, value: comma separated list of free fitting parameters. The elements speci-
fied must be from the list returned by the fitlist action (refer item 2), only used for
’fit’ action.

In the case ’fit’ action is selected and the fit converges, the resulting response would start
with the string ’OK’ on a single line followed by the fit result. This would include arc
summit frequencies as well as pseudo capacitance’s (in the case of RQ elements) as well
as the full set of final parameter values. The output would also include references to a
number of png files temporarily located on the web server (of approx 10 minutes or so).
These images can be downloaded separately and shows the fit result and error plot for
the data and model in question.

The file webservice.html found by pointing your browser to
host.domain/analytic/webservice.html contains two web forms with the necessary form

42

DTU Energy Elchemea Analytical 1.3.3

elements to do a impedance fitting using the web interface as well as testing the ’fitlist’
action. By submitting the ’fit’ test form with the default parameters, the output should
look like this (Your browser likely ’eats’ the newlines, so use view source):

OK

L_1:1.509e-08

R_2:0.01823

R_3:0.009409

Y_3:0.0387

n_3:0.7735

INFO: Maximum frequency for arc for element RQ_3: 4442

INFO: Pseudo capacitance for arc for element RQ_3: 0.003808

R_4:0.00219

Y_4:3.358

n_4:0.8441

INFO: Maximum frequency for arc for element RQ_4: 53.64

INFO: Pseudo capacitance for arc for element RQ_4: 1.355

R_5:0.008561

Y_5:29.01

n_5:0.9397

INFO: Maximum frequency for arc for element RQ_5: 0.7008

INFO: Pseudo capacitance for arc for element RQ_5: 26.53

FITDATA

Wed Dec 7 12:26:16 2011

FIT: data read from ’/tmp/fitset_26083.dat’ u 2:1:3:(1)

#datapoints = 74

function used for fitting: h(x,y)

fitted parameters initialized with current variable values

Iteration 0

WSSR : 1.32424e-05 delta(WSSR)/WSSR : 0

delta(WSSR) : 0 limit for stopping : 1e-05

lambda : 0.00565434

initial set of free parameter values

fl_1 = 1

fr_2 = 1

fy_3 = 1

n_3 = 0.8003

fr_3 = 1

fy_4 = 1

n_4 = 0.7235

fr_4 = 1

fr_5 = 1

fy_5 = 1

n_5 = 0.9762

After 9 iterations the fit converged.

final sum of squares of residuals : 2.32063e-07

rel. change during last iteration : -8.43531e-07

degrees of freedom (ndf) : 63

rms of residuals (stdfit) = sqrt(WSSR/ndf) : 6.06922e-05

variance of residuals (reduced chisquare) = WSSR/ndf : 3.68354e-09

Final set of parameters Asymptotic Standard Error

======================= ==========================

fl_1 = 1.10797 +/- 0.008277 (0.7471%)

fr_2 = 0.97708 +/- 0.003211 (0.3286%)

43 of 48 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.3.3

fy_3 = 1.16728 +/- 0.1147 (9.828%)

n_3 = 0.773495 +/- 0.01046 (1.352%)

fr_3 = 1.01687 +/- 0.01714 (1.686%)

fy_4 = 0.519381 +/- 0.09599 (18.48%)

n_4 = 0.844051 +/- 0.04384 (5.194%)

fr_4 = 0.670101 +/- 0.05151 (7.687%)

fr_5 = 1.08185 +/- 0.01273 (1.177%)

fy_5 = 0.928554 +/- 0.01251 (1.347%)

n_5 = 0.9397 +/- 0.007901 (0.8408%)

correlation matrix of the fit parameters:

fl_1 fr_2 fy_3 n_3 fr_3 fy_4 n_4 fr_4 fr_5 fy_5 n_5

fl_1 1.000

fr_2 -0.623 1.000

fy_3 0.485 -0.773 1.000

n_3 -0.536 0.837 -0.992 1.000

fr_3 0.510 -0.822 0.923 -0.930 1.000

fy_4 -0.104 0.185 -0.319 0.305 -0.483 1.000

n_4 0.225 -0.379 0.586 -0.566 0.742 -0.924 1.000

fr_4 -0.317 0.520 -0.757 0.735 -0.870 0.767 -0.928 1.000

fr_5 0.114 -0.196 0.314 -0.303 0.429 -0.755 0.720 -0.740 1.000

fy_5 -0.102 0.177 -0.282 0.272 -0.380 0.633 -0.612 0.584 -0.441 1.000

n_5 -0.075 0.128 -0.207 0.199 -0.288 0.555 -0.515 0.566 -0.876 0.140 1.000

END_TEXT

FILE:model_26083.png

REPORT:report_model_26083.png

ERROR:report_error_26083.png

Note that some of the numbers may be slightly different as a randum number generator
is invovlved. The last three lines indicates filenames, and in order to access the individual
files, point your browser to host.domain/analytic/png/ and select the file(s) specified.

44 of 48 Implemented by Søren Koch

Chapter 12

Troubleshooting

12.1 Server error is reportet wnen starting Elchemea

Analytical

• Inspect /var/log/httpd/error log

• If SE-linux running in enforcing mode, try and disable it by using ’setenforce 0’.

• If htis resolved the error, inscpect the file /var/log/audit/audit.log and find the
files/directories with conflicting SElinux labels. The likely culprits may be
’/var/lock’ and ’/var/SemaforeFile/’, refer SE-linux documentation as to how to do
see and change labels.

• Reenable SE-linux by running ’setenforce 1’ and check.

12.2 Model section of view is mangled

It is known that some versions of Microsoft Internet Explorer R© display some of the html
elements wrongly, thus leading to mangled model views. In this case either upgrade your
browser, or switch to Firefox or Google Chrome (ElchemeaAnalytical has not been tested
with Apples Safari browser).

12.3 After fitting, pressing the report button only

says ’no report ready’

• Check that the LATEX server is running. To do this type the following in a terminal:

ps -ef | grep LATEX

The output should look something like this:

45

DTU Energy Elchemea Analytical 1.3.3

sofc 10320 10297 0 10:17 pts/3 00:00:00 grep LATEX

sofc 19042 1 0 Aug02 ? 00:00:00 /usr/bin/perl /usr/local/bin/analytic/LATEX-server

If the last line is not observed, start it by calling
/usr/local/bin/analytic/start servers as root.

• If the server is running, check that only one version of the LATEX.pm module
is installed. Older versions fo Risø Fuel Cells and Solid State Chemistry division
fuel cell control system installed modules in a different location than Elchemea
Analytic, and depending on search path, the Elchemea Analytic installer may not
have discovered the older version and installed the new wersion independently. If
this happens, the old version may be used by the LATEX-server, and unfortunately
the old module misses some functions needed by the server.

To fix this, locate and delete the old module.

• If the problem persists (or only one version of LATEX.pm exists, then if SE-Linux
is running in enforcing mode, then it may prevent the Apache webserver from
accessing the LATEX-server on localhost port 4050. The easiest way to fix this
is to run SE-Linux in permissive mode (nonenforcing). However, be aware that
SE-Linux is part of the Linux intrusion detection system / security system, and
thus running SE-Linux in nonenforcing mode may potentially expose the system
to external threats it would otherwise be protected from. To run SE-Linux in non-
enforcing mode in oreder to check if this is the cause of the problem, consult your
Linux distribution manual (on CentOS version 6.x SE-Linux can be turned off by
typing ’setenforce 0’ in a root terminal).

The specific problem with SELinux is that Apache needs to be able to connect to
port 4050 (the LATEX-server) and be able to read the corresponding PDF file (a
separate issue). To allow apache to connect to port 4050 as well as execute the
scripts in /usr/local/bin/analytic/ (on CentOS) execute the script
set SELinux rules.bash found in the ElchameAnalytics installation directory.

12.4 Fitting does not finish (page displays ’work-

ing...’ and stops)

Check that the ’utf8.def’ file is included in your LATEX installation, if not, locate the
following line in LATEX.pm and uncoment it (place a # in front)

$res .= ’ \usepackage[utf8]{inputenc}’.’’\n’’ if ($utf8);

Note that this has to be done in the LATEX.pm file used by the implementation (Not
the one in the insttall directory!).

46 of 48 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.3.3

12.5 Fitting takes too short time and no response is

recieved

Likely your model contains one or more of the elements which contains a trigonometric
function in the mathematical description (this includes Gerisher, Finite length Warburn
and Bounded Warburg) and the fitting routine hit a value which resulted in infinite
impedance (refer section 3.4).

12.6 Graphs not shown correctly and/or pages does

not finish loading

Check that the default lock file (called SemaforeFile.lock) for the SemafoeFile.pm module
has the right permissions. It is located in /tmp and should have permissions 666 (Yes,
I know the number of evil...) Durring normal operation, it will be created with this
permission, but sometimes the system mauy clean up the temp directory, and in this case
sometimes it may be created with the wrong permissions. To resolve this, simply remove
the file or manually set the right permissions (both operations may be nescesarry to do
as root).

12.7 My screen is not wide enough to show all infor-

mation

This can happen if you are using an older screen/projector which only allows a maxi-
mum horisontal resolution of 1024 pixels. To correct this, edit the file Header.pm in the
Impedance direstory (likely placed somewhere under /lib) and change the size variable
from “set size 1.3,1.1” to “set size 0.9,0.7” as well as the pssize varialbe from “800x600”
to “600x400” (Remember to change both variables!). Notice however that this is a site
wide variable, so all users of Elchemea Analytic on this server will be affected.

12.8 Multiplot graphs are sideways

Make sure that gnuplot, ImageMagick and Ghostscript are up to date. On Centos/RHEL
this can be achieved by executing the following commands as root:

yum update gnuplot

yum update ImageMagick

yum update ghostscript

Other distributions handle this in a different way, refer the distribution manual as to hwo
to update software packages.

47 of 48 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.3.3

12.9 Multiplotting suddenly fails with an error mes-

sage including the string ’all points y value un-

defined’

Due to the multiuser nature of the Elchemea Analytical system, uploaded files can not
be saved indefinite on the server, and if a file has been left unused for some time (usually
an hour) it will be deleted. This usually does not happen when working normally, but if
the user leaves the Elchemea analytical session for extended time and then returns, this
may happen (see section 4).

12.10 Some of the last tics on the graps is missing

(graph goes to 100 but tics only shown to 70

for instance).

This is caused by certain versions of Gnuplot. Version 4.2.6 is known to do this. To
correct this, edit the file Header.pm in the Impedance direstory (likely placed somewhere
under /lib) and change the size variable from “set size 1.3,1.1” to “set size 1,1”. Notice
however that this is a site wide variable, so all users of Elchemea Analytic on this server
will be affected.

48 of 48 Implemented by Søren Koch

