Manual for Elchemea Analytical

Sgren Koch

April 10, 2013

Contents

1 Introduction to Elchemea Analytical
2 License

3 User interface

3.1 Simulationo
3.2 Dataanalysis
3.3 Saving and reloading models
3.4 Hintson fitting
3.5 Batchfittingo

4 Plotting multiple files
5 File formats

6 Installation and system maintenance

6.1 Requirements
6.2 Installation
6.3 maintenance s,

7 Server structure
7.1 LATEX-server o s,

8 System command interface (command line)

9 Module specifications

9.1 Debug
9.2 SemaforeFile
9.3 SocketClient

12

14

16
16
17
17

19
19

20

DTU Energy conversion 1.2.1

9.4 Impedance:Header 24
9.5 Impedance:IMPCGI 25
9.6 Impedance:Base 26
9.7 Impedance:RQ 28
9.8 Impedance:W 28
9.9 Impedance:Complex 29
9.10 Impedance::Device 30
9.11 Impedance::Model 30

10 Web service interface 34

11 Troubleshooting 37
11.1 Server error is reportet wnen starting Elchemea Analytical 37
11.2 Model section of view is mangled 37
11.3 After fitting, pressing the report button only says 'no report ready’ . .. 37
11.4 Fitting does not finish (page displays 'working...” and stops) 38
11.5 Fitting takes too short time and no response is recieved 39
11.6 Graphs not shown correctly and/or pages does not finish loading 39
11.7 My screen is not wide enough to show all information 39
11.8 Multiplot graphs are sideways 39
11.9 Multiplotting suddenly fails with an error message including the string ’all

points y value undefined” L 40

11.10Some of the last tics on the graps is missing (graph goes to 100 but tics

only shown to 70 for instance). 40

2 of 40 Implemented by Seren Koch

Chapter 1

Introduction to Elchemea Analytical

The Department of Energy Conversion and Storage at Technical University of Denmark
Impedance visualisation and analysis control software system (Elchemea Analytical) is a
generalised visualisation / fitting software package for visualising impedancs data. The
Elchemea Analytical system is based on Perl and Apache and all graphics/fitting is done
using Gnuplot®).

The main features of Elchemea Analytical are listed below:

e Simulation of impedance spectra using a wide variety of discrete impedance elements
(R,C,L,Q,RQ,RC,W,0,G,T) as well as parallel and/or series conenctions of those.

e Fitting of impedance models to measured impedance data in a wide frequency range
(from 10719 to 10'%° Hz).

e Easy determination of start parameters for a vide range of the predefined impedance
elements (RC,RQ,0,G,T) using the ’find-values’ build in algorithms.

e Easy integration to Elchemea(c) and Risoe Fuel cells and solid stage chemistry
division Fuel Cell Controll system(c) impedance aquisition and test system control
software packages.

e Uses only open source software (OSS).

The first part of this documentation is an overview of the user interface (section 3) mainly
intended for new users of the system. The second part (chapter 6) is mainly intended
for more advanced users and system administrators as it contains information regarding
configuration. It is assumed that any administrators has a fairly advanced knowledge of
Unix system administration and Perl programming.

Chapter 9 contains the documentation for the different perl module supplied by the
Department of Energy Conversion and Storage at Technical University of Denmark
Impedance visualisation and analysis control software software.

Chapter 2

License

Copyright (C) 2012 Sgren Koch, Karin Vels Hansen, Christopher Graves, Department of
Energy Conversion and Storage at Technical University of Denmark.

This program is free software: you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY:; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program. If not, see http://www.gnu.org/licenses/.

Chapter 3

User interface

The Department of Energy Conversion and Storage at Technical University of Denmark
Impedance visualisation and analysis control software system is based on the Apache web
server software (Open Source Software, OSS). In figure 3.1 the main page is shown as an
example of the web pages.

Elchemea Analytical - Mozilla Firefox 13 4)) 11:49AM 1 SorenKoch 1
& - [0 abrelchemea-develot risoe. dk ~le] (3 K-

tvisited v WWikipedia $JGoogle §aFurnace controlsystem [Labsystem [MGmail-inbox (1) [JHome-ABF intranet @ Risoe Fuel cell and So... @Citrix XenApp-Logon [Technical Universi tyo,

alytical

New simulation Save Model and data

E | Ch e m e a Analytical

Simulation and NLLS fitting direct from Elchemea

Copyright © 2011 Saren Koch, Risa DTU Fuel

Figure 3.1: The main page.

3.1 Simulation

In order to simulate spectra, press the 'New simulation’ button, and then build your
impedance model element by element by using the ’Add element’ button. In general,
all elements will be placed in series, except if they are part of an explicit paralell or
serial connection (by using the 'Par’ or 'Ser’ elements at the bottom of the element list).
Figure 3.2 shows an example of a simple serises connection of three impedance elements,

DTU Energy conversion 1.2.1

a Gerisher element (G) a RC element (parallel connection of a resistor and a capacitor)
and an inductor (L).

Elchemea Analytical - Mozilla Firefox 1y 4) 11:50AM 2 SorenKoch 3
e risoe.dk e |- Qo

& EgMostVisited v Wwikipedia #Google EgFurnace controlsystem [Labsystem MGmail-inbox (1) |jHome-ABFintranet #¥ Risoe Fuelcell and So... @CitrixXenApp-Logon | Technical University o,

[L Elchemea Analytical

Add element Manual edit model

Z=G_1RC2L3

0.0

1
Z_real(ohmy

Copyright © 2011 Saren Koch, Risg DTU Fuel cells and Solid State Chemistry Division

Figure 3.2: An example impedance simulation using simple series connection of three
impedance elements..

If custom series and / or parallel connection elements are used, the model description on
the left of the page looks slightly different than the one shown in figure 3.2. Figure 3.3
shows an example of how this may look. The way to read the complex models presented
in this way is as follows:

Elchemea Analytical - Mozilla Firefox 1ty) 1215PM 1 SorenKoch 3
& risoe.dk, +le] (|- Q&
@ BIMostvisited Wwikipedia $JGoogle F§Furnace controlsystem [fLabsystem B4Gmail-inbox (1) [fHome-ABF ntranet B Risoe Fuelcell andSo... @CitrixXenApp-Logon (i Technical Universityo.

| Technical University of Den... % | | | Elchemea Analytical *® | | Microsoft Exchange - Outlo... % |

New simulation
Add element Manual edit model

Z=L_1R.2 (IL5R.6] C_8)

Z_real(0hw

Copyright © 2011 Saren Koch, Risa DTU Fuel cells and Solid State Chemistry Division

Figure 3.3: An example impedance simulation using parallel and serial connections of
discrete elements.

6 of 40 Implemented by Sgren Koch

DTU Energy conversion 1.2.1

The first two red buttons (labeled 'L_1" and 'R-2’) are simple impedance elements con-
nected in series (as normal) and in series with the third element represented by the
leftermost blue button (labeled "Parallel ([L_5 R_6] C_8’). This button (labeled "Parallel
([L-5 R-6] C_8’) indicates a parallel connection of all elements between the lines above
and below this button. In this case it is a parallel connection of two elements; an ca-
pacitor (C_8’) and a series connection (labeled ’Serial [L._5 R_6]"). The series connection
(represented by the second blue button) contains all elements to the right of it which is
between the white lines above and below the blue button (in this case 'L_5" and 'R_6").

Thus the complete model is Z = L_1 + R_2 4 Par(Ser(L_5 + R_6), C_8).

In this way it is possible to build arbitrary complex impedance models, either for simu-
lation purposes or for fitting to actual measured spectra.

If an element is to be deleted, simple press the red button designating the element in
question. If deleting elements results in an empty container (parallel or serial), then the
container itself is also deleted.

It is also possible to manually edit the impedance model. To do this press the ’Manual
edit model” button, this brings up a small editor where the model is displayed. The
model consists of a number of lines, each designating a single element (an exception to
this is the container elements, which takes up 2 lines). The container elements start
with a line with a single bracket. Angled brackets ’[" for series connections and normal
brackets ’(” for parallel connections. This is similar to the nomenclature used in the old
DOS program ’equivert’ by Dr. Bernard A. Boukamp. The corresponding line with the
end bracket denotes the end of the container element. Note that containers may contain
containers! Also note that if you are manually editing models, keep track of the brackets,
as misaligned brackets may invalidate the model and / or result in an unwanted model!

3.2 Data analysis

In order to analyse measured impedance spectra, use one of the load options on the
main page (figure 3.1). Figure 3.4 shows how an freshly loaded data file may look. If
no prior model has been defined, the Elchemea Analytical generates a simple impedance
model to start on. This consists of an inductor in series with a resistor and the values
are determined from the data points in the highest frequency decade. The real value
of the data point corresponding to the highest frequency determines the resistnace and
the inductance is determined by doing a Kramers Kroning transformation on the data
points in the highest frequency decade (Algorithm and program supplied by Christopher
Graves). Notice however that in case the Kramers Kroning method fails the imaginary
value of the first data point (highest frequency) is used instead. This is to ensure that a
value is always obtained, and this is known to happen for some combinations of Python
and SE-Linux.

By using the radio button on the right it is possible to switch between Nyquist view and
Bode view.

If some data points are to be excluded from the analysis, click on the data graph and
then maneuver the pointer to the data point which is to be deleted and press the 'Delete’

7 of 40 Implemented by Sgren Koch

DTU Energy conversion 1.2.1

Elchemea Analytical - Mozlla Firefox

Fit model to data

Figure 3.4: Example of an freshly loaded impedance spectrum.

button. Repeat this procedure untill the data set has been sanitised from any erroneous
data.

Caution: Do not delete data points merely because they do not fit the chosen
model!

Only delete data points if they are known to be problematic (a single point lying far away
from the rest is a good candidate, but not a sure sign)!

A special feature of the Elchemea Analytical is the ability to determine acceptable start
values for parameters for some of the predefined complex impedance elements (RC, RQ,
O, G and T). To use this, select the apropriate element to add, and then press the 'Find
values’ button, which will bring up an additional window like the one shown in figure 3.5.

Use the arrow buttons to move the frequency marker to the desired data points and selct
the right data points using the three blue buttons below (’Set maximum frequency’, ’Set
summit /bend frequency’ and ’Set minimum frequency’). Once these three frequencies
has been selected (which can be seen on the display as changes in the color and symbol
of the data points), press the red 'Find values’ button. This will cause the Elchemea
Analytical system to try and find sensible start parameters for the selected data range
for the element in question, and in case a fit converges the resulting impedance model will
be shown as seen in figure 3.6. If you are sattisfied, simply press the 'OK’ button (which
causes the find values window to close) and then the ’Add element’ button, which will
add the chosen element with the determined start parameters to the current model. It is
possible to zoom using the X-range fields at the bottom (for instance if a small arc sits
next to a large one, the small one may be extremely hard to determine). Simply change
the minimum or maximum impedance to be displayed and the plot/select area will be
updated accordingly.

Once a suitable model has been build, fit the model to the measured data by pressing

8 of 40 Implemented by Sgren Koch

DTU Energy conversion 1.2.1

Firefox Web Browser 13 €)) 11:52AM 2 SerenKoch ¥
= risoe.dk, [e] [4g- a &
& BaMostVisited v Wwikipedia #JGoogle [F§Furnace control system | jLabsystem M Gmail-Inbox (1) |‘jHome-ABF Intranet ¥ Risoe Fuelcelland So... @Citrix XenApp-Logon | ' Technical University o.

(L Elchemea Analytical

Taad si o Save Model and data
©2® Elchemea analytical efox

Fit model to data |

risoe.dk

Select minimum frequency, summit frequency and maximum frequency for arc

LI ¢ 555609
LR 0.006:25

8,003

Add element to model:

8,004

-o.005
0.002 X 0.006 0.008 001
® _real(ohm
" y <0 | <axt0 ’Zl Find values B 2>x5 | | >>x10 | >>x30.
(o - I
Add element oK

Figure 3.5: Adding an impedance element to a model using the 'find-values’ system.

Firefox Web Browser 13 4)) 11:53AM 2 SerenKoch ¥
©® O Elchemea analytical - Mozilla Firefox e (43~

Select minimum frequency, summit frequency and maximum frequency for arc

 Manual edit model Fit model to data |

6.002 6.004 6,006 0.008
2Z_real(thmy

<o00 [<ato [<os [< Firg values | = 555 e [
[T‘ 2Z_real{Ohn)

s and Solid State Chemistry Division

Figure 3.6: Finding the values for an RQ element using ’find-values’ on a measured
impedance spectrum.

the 'Fit model to data’ button. This will cause the Elchemea Analytical to try and fit
the model to the data, and in case the fit converges, the resultant parameter values will
be displayed and the system will ask if the values should be copied to the model. If the
resulting values are sensible, press "Yes’ and the resulting fit parameters will be displayed
in the model section as well as appended to the fit result table. This table contains a line
for each accepted fit and includes all model paremeters as well as the mean and maximum
error for the fit in question. Thus if more than one file is fitted (or a single data set is

9 of 40 Implemented by Sgren Koch

DTU Energy conversion 1.2.1

fitted to more than one model), it is possible to get a list of all the fitted data afterwords
for later comparison / further data analysis. To access the fit result table, press the ’Show
fit table’ below the graph. This brings up a new window with a tab delimited table which
can be copied / saved to a local file as appropriate. Figure 3.7 shows an example of a fit
result.

Elchemea Analytical - Mozilla Firefox

Fit model to data

Figure 3.7: Example result of a fit of a model to an actually measured impedance spec-
trum.

It is possible to exclude some parameters from the fitting (in effect locking them to the
current value) by unclicking the checkbox asociated with the parameter in question. This
is usefull if extenal information indicates that a specific impedance parameter must have
a specific value. After the fit has been run, press the 'Report’ button to get a pdf report
of the fit in question. This report will include parameter values, statistics regarding
accuracy of the fit, parameter correlation as well as Nyquist, Bode and error plots of the
model and data.

It is known that some versions of AdobeReader®) in some cases has problems displaying
the pdf documents created by Elchemea Analytical, however the fast open source pdf
viewer Ghosview® (http://pages.cs.wisc.edu/ ghost/) is avaliable for free for a wide
range of operating systems.

3.3 Saving and reloading models

Once a model has been created it is possible to save the model (and any asociated data).
To do so, press the ’Save model and data’ button, which will open a save dialog asking
where to place the save data.

In order to load a saved dataset/model, press the 'Load saved model” button on the main
page and select the data file to load (The default extension will be .ea).

10 of 40 Implemented by Sgren Koch

DTU Energy conversion 1.2.1

It is also possible to save just the model, if this is to be desired, simple open the 'manual
edit model’ page and copy the model to the clipboard and then save it in a local text file.
To restore a model thus saved, open a new simulation or data file and press the 'manual
edit model’ button and then paste the saved model instead of the present model. Finish
by pressing ’ok’.

3.4 Hints on fitting

Fitting impedance data is as much an art as it is science. The most important part
of data modeling / fitting is to select the most appropriate model, and in this respect
Ockhams Razor is an extremely important tool! Do not select a more complex model
than nescessarry based on the avaliable information as it is always possible to get a good
fit if enough impedance elements are added to the model.

Due to the mathematics in some of the impedance elements distributed with Elchemea
Analytical, sometimes the fitting wil not terminate or crash (indicated by either an error
message or simply that no response is recieved from the fittting attempt). Especially
the Gerisher, Finite length warburg and bounded warburg elements are prone to this as
they include one or more of the hyberbolic trigonometric functions, and in some cases
the fitting algorithm will select values which results in a singularity (division by zero or
infinite) and the fitting algorithm fails. When this happens, try to slightly change the
start parameters and see if it is possible to avoid the singularity.

3.5 Batchfitting

It is possible to do batch process fitting without using the GUI. To do this use the
command line program batchfit.pl (usually located in /usr/local/bin/analytic/). If the
program is called without any arguments a description of how to use it is output. In
the batchtest directory found in the Elchemea Analytic distribution directory there is an
example of how to use it. Simply run the run_batchfit_test.bash program to test with the
files in that directory.

11 of 40 Implemented by Sgren Koch

Chapter 4

Plotting multiple files

It is also possible to plot multiple impedance file in the same plot by using the multiplot
module of Elchemea Analytical. To access this module, navigate to the front page and
press the 'Plot multiple files’ button, which brings the multiplot page up as shown in
figure 4.1.

Elchemea Analytical - Mozilla Firefox = 13) 10:42AM 2 SerenKoch {F

risoe.dk

& BMostvisited v Wwikipedia #JGoogle EaFurnace controlsystem (jLabsystem MGmail-Inbox (1) {jHome-ABF Intranet 4 Risoe Fuelcellandso... @Citrix XenApp-Logon {7 Technical Universityo.

W DTU Energikonvertering % | O Elchemea Analytical % | 7] Elchemea Analytical LI

(-]
w

Plot control

————— e
Keytopright.. 3 : Helios_s21_1084_cor_cor.i2b --------
: A

Plot range

Helios_s21_1094_cor_cor.izb
Helios_s21_1096_cor_cor.izb

Load local file |

25
Z g (M)

Copyright © 2011 Seren Koch, Risa DTU Fuel cells and Solid State Chemistry Division

Figure 4.1: Multiplot page showing an example of 2 impedance spectra plotted on the
same graph.

The left part is the file control section. It contains a multi select box showing both the
avaliable and selected files. To plot files load the impedance files from your local system
by pressing the ’load local file’ or select username, session number and files (in case the
Elchemea(c) or RFCcontroll(©) software is installed on the server along with Elchemea
Analytic). Note that the user/rig name and test/session select boxes are only avaliable
as indicated above. If files are loaded from a local resource, it is automatically selected
for plot. To deselect/deselect a file press 'Ctrl’ and click on the file to select/deselect. If
the order of the legend keys are to be changed, move the file names up and down in the

12

DTU Energy conversion 1.2.1

file list as appropriate as Elchemea Analytics always uses the files/legends in the order
they are shown in the file list. To move a file, select it and use the 'u’ and 'd’ keys to
move the file up and down in the list (Note that only one file can be moved at a time).

If the legend for a particular file is to be changed, simply doubleclick on the file to specify
a new legend for that file.

The center part of the multiplot page is the plot control area, where placment of legend,
frequency labels, plot ranges etc. can be controlled. The textfield at the bottom is for
additional Gnuplot commands if additional labels, arrows or similar is to be included in
the graph (refer the Gnuplot manual for information on gnuplot commands).

The resulting graph shown on the rigth part of the page can simply be copied or saved
(right click on the graph) and if an postscript file is prefered (for use with Latex documents
for instance) press the 'Save postscript image’ button.

It is possible to save the data and plot definitions for the current work by pressing the
‘save plot definition’ button. The resulting file can then be reloaded at a later time for
further work. It is important to note, that as Elchemea Analytical is a multi user system,
it includes an automatic clean up facility which removes files (uploaded data files and
generated image files) after one hour of inactivity. Thus if the user expects to take a
break from the Elchemea Analytical system, remember to use the ’save plot definition’
beforehand so as to not loose any work.

If the scaling og the data is not as intended, the scaling of the data can be changed by
changing the ’z(x)’ function definition (default is z(x) = x). To do so, simply write the
new definition in the 'additional gnuplot commands’ field. For instance if the sample has
a 6 cm? area and the graph should report the impedance in area specific resistance, write
the following in the text area:

z(x) =x *x 6
set ylabel ’-Z_{imag} ({/Symbol W} cm~2)’
set xlabel ’Z_{real} ({/Symbol W} cm~2)’

The first line changes the scaling and the two following lines change the axis descriptions
to include cm? (leave them out if only the scaling are to be changed).

13 of 40 Implemented by Sgren Koch

Chapter 5

File formats

Department of Energy Conversion and Storage at Technical University of Denmark
Impedance visualisation and analysis control software supports a number of different
file formats including gamry(R) and ZPlot(R) / ZView(tm) files.

The native file format is the i2b file format however. The file format is described below
with an example file:

Idun:/home/EFA/rigl14/1255/4/s4_1007.1i2b
Desc: 14test78_PS128052
:2009:01:17:23:17:30

1232230650 , Meas.:

37
82451 0.006685137356 0.00141940337
56173 0.0070404900979 0.0002431376363
38270 0.007484563409 -0.000686494133
26073 0.008028417169 -0.001394965951
17764 0.008634536255 -0.001947261525
0

12102 0.009370725592 -0.002396327231

8245
5617
3827
2607
1776
1210
824.
561.
382.
260.
177.
121

82.45
56.17
38.27

O OO NN NO

O O O O OO

.010187221398
.011033464434
.011876708228
.012699248889
.013426438402
.014135420185

.002722736196
.002911896725
.003031150569
.002996166924
.002909587586
.00274866887

0.014798469288 -0.002688357568
0.015415708783 -0.002545973023
0.016064610363 -0.002514285078
0.016722169513 -0.002355489951
0.017329395388 -0.002180886816
.017877782005 -0.001969379374

0.018305518738 -0.001746990494
0.018698563455 -0.00151536534
0.01889247348 -0.001359174472

14

DTU Energy conversion 1.2.1

26.07 0.019155759436 -0.00132627701
17.76 0.019422716189 -0.001266016758
12.1 0.019661051995 -0.001295590415
.245 0.019888830093 -0.001464146169
.617 0.020308127403 -0.001725404958
.827 0.020971000603 -0.001804639011
.607 0.021602216143 -0.001638322228
.776 0.02195975717 -0.00134448105

.21 0.022350984057 -0.001060789257
.8245 0.022530834712 -0.000697843738
.5617 0.022641762282 -0.0004145079483
.3827 0.0226543601828 -0.0003907922012
.2607 0.0227450009778 -0.0003855313026
.1776 0.0228211856604 -0.0001882806252
.121 0.0229167510741 -0.0001616599266
.0825 0.0229392097983 -0.0002138122947

O O O OO OO KL, NWOU

The first 6 lines can contain text information (including meta information). Usually the
third line contians a time stamp, but Department of Energy Conversion and Storage at
Technical University of Denmark Impedance visualisation and analysis control software
does not use this.

The 7’th line contains an integer describing the number of data points, and the following
lines (nr 8 and onwards) is the actual data. Each data point is in the format:

Frequency Real_part Imaginary_part

15 of 40 Implemented by Sgren Koch

Chapter 6

Installation and system maintenance

This chapter describes how to install or upgrade a Elchemea Analytical system.

6.1 Requirements

The Elchemea Analytical requires the following software to be installed on the target
system prior to installation:

e A Linux type operating sytem (Only tested with CentOS-5®), but will likely work
on other Linux type systems as well).

e Gnuplot®) version 4.0 or later.

e The Apache®) web server version 2.2.3-43 or later (it is possible that earlier versions
of apache will also work, however this is not tested).

e The Perl®) interpreter version 5.8.8 or later.

e The Perl Time::Hires module (installation of this vaires between distributions, thus
needs to be installed manually, refer your deistrbution manual as to how).

e ImageMagick version 6.2.8 05/07/12 Q16 or later.
e GPL Ghostscript version 8.70 (2009-07-31) or later.

e Gnu 'make’. Other 'make’ packages than the one from Gnu may also work, but has
not been tested.

e A functioning connection to the internet. The reason for this is that Elchemea
Analytical downloads and installs several Perl modules from CPAN.org durring the
installation.

16

DTU Energy conversion 1.2.1

6.2 Installation

In order to install the Elchemea Analytical system, unpack the tar-ball in a suiatable
location, cd into the resulting ElchemeaAnalytical directory and run make.

Inspect the output of the make program and resolve any errors.
Once all errors have been resolved, run make test folloved by make install.

In order to ensure that all servers start uppon system reboot, add the following line to

Jete/re.local:
Jusr/local/bin/analytic/start_servers &

Finally, start up a web browser and point to this address
hostname.domain/cgi-bin/analytic/main.cgi (substitute hostname and domain with the
appropriate values for your system) to check if the system is properly configured, the
resulting page should look like figure 3.1;

6.2.1 Command line only installtion

It is possible to install Elchemea Analytical as a command line only tool (for instance
on workstations without a web server). In order to do this follow the aboove steps
except insteas of running make install, one should run make install_cmdonly and ommit
start_servers part as this is only needed for the server installation.

The command line only mode is usefull for workstation use if multiple impedance files
are to be fitted using the same model. In this case it may be too teedious to manually
upload each file to a server and fit and much simpler to use the ’batchfit.pl” program
supplied with Elchemea Analytical in both server and command line oknly mode.

6.2.2 SE-Linux

If SE-Linux is installed on the serer and running in enforcing mode, the default configura-
tion of SE-Linux will prevent the apache web server from accessing the LATEX server lis-
tening on port 4050 as well as the execution of various scripts in /usr/local/bin/analytic.

To allow apache to connect to port 4050 as well as execute the scripts in
/usr/local /bin/analytic/, (on CentOS) execute the script set_SELinux_rules.bash found
in the ElchameAnalytics installation directory.

6.3 maintenance

Generally the Elchemea Analytical system requires little maintenance and the Elchemea
Analytical system includes a facility for automatic software updates, ot enable this, simply
add the following line to root’s crontab file:

08 **1 fusr/local/bin/analytic/analytic_updateer.pl > /root/update_log.tzt &

17 of 40 Implemented by Sgren Koch

DTU Energy conversion 1.2.1

This will update the system once every monday. The automatic update system then
fetches any new version which may have been deployed within the last week and installs
this if it passes the software test (make test).

18 of 40 Implemented by Sgren Koch

Chapter 7

Server structure

The programs mentioned in italics below all reside in the /usr/local/bin/analytic and are
written in Perl.

7.1 LATEX-server

The LaTeX server (LATEX-server) is responsible for compiling LaTeX reports of the fit
results of individual fits. It honors the following commands:

e debug: Turns debug on and off.
e cxit: Shuts down the server cleanly.

e unlink: Unlinks the specified filename. Note this is a potential security risk, so the
LaTeX server should not be accessible from external soruces!

e compile: compiles the document with the specified filename. The resulting pdf file
is placed in ’/home/http/html/analytic/png/".

19

Chapter 8

System command interface
(command line)

Although the Elchemea Analytical is designed to be used primarily through the web
interface some programs can be accessed from the command line. Below is a list of the
most used command line tools for the Elchemea Analytical system:

e /usr/local/bin/analytic/z_to_i2b: This program converts Z-plot files to the 'i2b’ file
format.

e /usr/local/bin/analytic/gamry_to_i2b: This program converts a Gamry(®) file to the
'i2b” format.

o /Jusr/lcoal/bin/analytic/batchfit.pl: This program can be used to fit multiple spectra
to the same model. Call the program without any arguments to get a description
of how to use it as well as a list of possible options.

20

Chapter 9

Module specifications

This chapter contains the module specification for the perl modules supplied as part of
the ElchemeaAnalytic software suite. It includes function descriptions including number
and type of any function arguments. Some of the modules are object oriented (with only
a publicly accessable constructor) and in other cases the modules are function orientated.

In the case of function orientated modules, any functions exported by the module are
described, both for what it does, as well as number and types of arguments.

In the case of the object oriented modules, any inheritance is also described (usually
in the beginning of the module description). For the object instances, usually only the
member functions intended to be public is described (as perl does not have a true private
function decleration). Note that some of the opject orientated modules define more than
one class type, but as all the class types in this case behave similarly (polymorphic), only
the main class is described as the subsequent class definitions implements the main class
type behaviour.

Each module is described in it’s own section.

21

DTU Energy conversion 1.2.1

9.1 Debug

Use: my $id = Debug—new();

This class is intended to be a base class for other classes to derive from so that easy debug
functionality can be included.

Utility class for debugging. It contains the following member functions:

$id—debug() Sets or gets the debug level: level 0 is no debug, level
5 is complete debug including stack backtrace. This
class only uses level 0 (no debug), level 1-4 (debug
iformation displayed) and 5 , debug info displayed
with complete stack backtrace. The levels 1-4 lets
other modules define debug levels inbetween the ones
used here.

$id—writedebug($,[$]) Writes the string to standard error if debuglevel is
1 or higher. If overide is specified (second argument
which is optional), debug level 5 is assumed for this

debug.

$id—die(9) Appends stack backtrace to argument string and calls
CORE:die

$id—print_setup() Prints out the complete current setup includ-

ing all member functions and data fields (uses
Class::Inspector).

9.2 SemaforeFile

Inherits from Debug (refer section 9.1).

This package makes file inout /output on multiprocess systems more easy by encapsulating
file locking. To define a new semaforefile use the new method:

my $id = SemaforeFile—new($filename);

If the lockfile is not to be the default (/var/lock/SemaforeFile/SemaforeFile.lock) specify
as second argument to new:

my $id = SemaforeFile—new($filename,$lockfile);

The package includes the following simple public methods on semafore files:

$id—readonly() Returns true if the file is readonly for the current user

$id—exist() Returns false if the file does not exists;

$id—filename() Returns the filename of the semafore file

$id—readlines() Returns the content of the file as an array with one
line in each element Note thet it removes any trailing
newline from the read lines!

22 of 40 Implemented by Sgren Koch

DTU Energy conversion

1.2.1

$id—writeline(@) Writes the arguments to the file (NB: Overwrites file
and add a newline to each argument if they do not
already have it).

$id—append(@) Appends the arguments to the file (Also adds new-
lines if nescesarry).

It is not nescesarry to check for file esistence in readlines as an empty array is returned if
the file does note exist Note that the readlines function should only be used on small files
as it globs the entire content to memory! For large files, use the more advanced member
functions (see below). Also note that trailing newlines are removed from the individual

lines. If this are not desired, use the readline() method described below.

The module also includes the following methods for advanced use: Note none of these
functions check if the file exist before trying to open! The unsafe versions of open and

close does not lock or unlock (assumes the user does this explicitly!)

$id—lock_ex()
$id—lock_sh()
$id—lock_ex nb()
$id—lock_sh_nb()

$id—unlock()
$id—open_read()

$id—open_readback()
$id—open_write()
$id—open_append()

id—-close()
id—open_read_unsafe()

id—open_readback _unsafe()

id—open_append_unsafe()
id—close_unsafe()

$
$
$
$id—open_write_unsafe()
$
$
$id—mtime()

$id—readline()

$id—th()

Additionally the $id—debug($) member function (inherited from Debug.pm) can turn

Locks file for exclusive use (Read, Write or Anppend)
Locks file for shared access (Read only)

Locks file for exclusive use non blocking (Check re-
turn status!)

Locks file for shared access non blocking (Check re-
turn status!)

Unlocks file

Opens the file for reading (locks file shared if not
already locked)

Opens the file for reading backwards (locks file shared
if not already locked)

Opens the file for writing (locks file exclusive if not
already locked exclusive)

Opens the file for appending (locks file exclusive if
not already locked exclusive)

Closes the file and unlocks it

Returns the time of modification of the file as re-
ported by File::stat—mtime, returns 0 if the file does
not exist.

Reads and returns the next line from the file, assumes
an open file Raises an excpeption (die) if not.
Returns the underlying file handle for direct 10 (Use
with care!)

23 of 40 Implemented by Sgren Koch

DTU Energy conversion 1.2.1

debug information on and off $id—debug($level) turns debug on and $id—debug(0) turns
debug off ($level is the debug level, 1 - 5) This may be usefull if deadlock is encountered
(so that the individual file locking operations can be monitored! If $id—debug() is called
without arguments it returns the status (i-e if debug in on 1 is returned else 0.

9.3 SocketClient

This module defines a number of communication functions used for accessing tcp:IP
sockets on local and/or remote systems. The functions defined are listed below:

socket_client_raw ($$Q) Base function used by all subsequent functions, han-
dles the raw tcp:IP cummunication. Arguemnts: server,
port, [additional args to server|. The server can either be
a ip-address or a hostname. Any additional arguments
gets serialised with tab characters and 2 newlines are
appended to the resulting string before transmission.

socket_client($3@) Same as above, but catches any communication errors
in an eval guard.
socket_client_nocr($3Q) Same as above, but do not append any newlines to the

transmitted string.

socket_client_raw_nocr($$@) same as socket_client_raw() but do not append newlines.

serial_client($Q) communicates with a local serial server (which handles
hardware communication on the serial port. Arguments:
tty, args_to_server. The server is assumed to be the local
server (either localhost or the public IP address of the
server) and the port number is the tty number added to
202020 (Note wraparound!).

GPIB _client() Communicates with the GPIB-server. Arguments are
passed to the GPIB-server serialised with tab characters
using socket_client_nocr(). The server is assumed to be
the local server (either localhost or the public IP address
of the server) and the port number is 12345.

serial_client_raw($Q) Same as serial_client() but without eval guard.

GPIB_client_raw() Same as GPIB_client() but without eval guard.

9.4 Impedance::Header

This module specifies global file locations and other global variables used for the Elchemea-
Analytical software package.

The module also specifies the colors of the resulting gnuplot figures (this is specified in
the $gpheader variable).

24 of 40 Implemented by Sgren Koch

DTU Energy conversion 1.2.1

9.5 Impedance::IMPCGI

This module contains a number of utility functions for outputting properly formatted
html code for user interface generation. Thus it mainly extends the CGI.pm module by
Lincoln D. Stein. The module exports these functions in two groups.

The :html group exports these functions:

print_header($[%)]) Prints the header information. Arguments: title. Any
additional optional arguments (in the form of a hash)
will be parsed along to the header() function supplied
by CGLpm. The functionautomatically appends a call
to a javascript function logging users out after some time
of no actions.

print_end|() Prints the help button and ends the html output with
the proper tag.

print_hidden() Prints a number of hidden fields used to maintain state.

logout() Printys a logout button.

action($) Prints a hidden field with an action parameter with the
specified value which can be used for program control
flow.

EFA start_html() A wrapper for CGlL::start_html. Any arguments (in the

form of a hash) are passed to CGl:start_html. Auto-
matically appends a reference to the javascript source
file on the server.

js-back() Prints the javascript for gping backwards (uses the
browser.back() fjavascrpt call).
get_CGIL_value($) Retrieves the value of the specified CGI parameter (sup-

plied by the web browser.

get_CGl_value_clean($) Same as get_CGI_value, but does pattern match on the
retrieved value and only returns the part that matches.
The pattern match is [\w\s\.\,]*. This has the benefit
of untainting the returned parameter value (For taint
checks in perl and web access, refer Lincoln D. Steins
book Official Guide to Programming with CGILpm)

The :cgi group of functions include the following:

get_CGI_value($) See above.
get_CGI_value_clean($) See above.
action($) See above
menu_button(Q) Prints a menu button. Arguments: name, value, style.

The name will be the CGI parameter name, the value
vill be the text on the button and the style is a style
class name to use for displaying.

create_menu_field Prints the html tags to create a menu field.

25 of 40 Implemented by Sgren Koch

DTU Energy conversion 1.2.1

top-_nav_bar_start() Prints the html tags to start the top navigation bar (ta-
ble specifications etc.)

top_no_button() Prints a no action button (goes nowhere) in the top
navigation bar.

top_nav_bar_button() prints a top navigation button. Arguments: File, name,
value, style, [optional additional name, value and force
triplets|. The file is the cgi-script to be called upon
button press, the name,value and style arguments are
passed to menu_button() and the additional optional
arguments are used to initialise and print hidden html
fields in the form of name-value pairs and a force argu-
ment (1 for force value, 0 for allow reuse of value).

tab_newrow() Prints a new row in the top navigation bar.
top_js_return() Prints a top navigation return button (uses the

javascript printed by js_back(), see above)
end_top_bar() Prints the end of the top navigation bar.

An additional function which is often used (but which is not exported by default) is the
format_model($) function which parses a given impedance model and removes any empty
serial or parallel connections as well as empty lines. The format_model function also
removes any ”\r” characters which may have been added by Microsoft based browsers.
The function returns the resulting model.

9.6 Impedance::Base

Inherits from Debug (refer section 9.1).

This module defines all member functions which an ElchemeaAnalytical Impedance ele-
ment must honor. Most of the functions are merely stups intended to be overloaded by
the individual class definitions.

The module also includes class defininitions on the basic discrete elements (R, C, L and
Q, Q beeing the constant phase element).

The module is intended to be used in conjunction with gnuplot but can be used as is (but
no fitting will be possible).

To obtain a element instance call one of the constructors as show below:

$id = Impedance::Base—new($);

$id = Impedance::R—new($);

$id = Impedance::C—new($);

$id = Impedance::L—new($);

$id = Impedance::Q—new($);

All the constructors accepts a single argument which must be the impedance element
number. It is advisable to make sure that element id’s are unique in order to be able to

26 of 40 Implemented by Sgren Koch

DTU Energy conversion 1.2.1

distinguish.

All Impedance element instances has the following member functions:

$id—type() Returns the type of impedance element.

$id—name() Returns the name of the element (usually the type
and the id)

$id—nr() Returns the element id.

$id—function_ name() Returns the Gnuplot function name of the element.

$id—value(3$[$]) Sets or gets the value of the specified element param-

eter (If 2 arguments are specified, the second is the
value to be set).

$id—description($) Returns the description for the specified tag. valid
tags are 'name’ and the tags returned by the tags()
member function. The 'name’ tag returns a text
string describing the whole element and the other
strings descriobe the specified parameter. If called
with no arguments, it returns the string for the 'name’

tag.
$id—tags() Return a list of valid element parameter names.
$id—functions() Returns a string containing all the functions and vari-
able decleratins for gnuplot.
$id—F(3) Returns the impedance value of the element at the

specified frequency. The returned impedance is of
type Math::Complex.

$id—fit() Returns a list of possible fit variables (all starting
with value 1) for use with gnuplot.
$id—save() Returns a string containing functions to save the final

fit variables (base value multiplied with fit variable).
This is also for gnuplot use.

$id—print_line() Returns a string defining the impedance element.
The format is described below.

$id—helperfunctions() Returns a list of paramter names for which spe-
cial help functions exist for calculating usefull esti-
mates for start values for fitting. Note, that some
impedance elements does not have any way of de-
termining good start values in which case the helper-
functions() member function simply returns an empty
list.

27 of 40 Implemented by Sgren Koch

DTU Energy conversion

1.2.1

$id—helpfunction(Q)

$id—f imax()

This function has multiple uses. If called without
any arguments, it returns the list from the helper-
functions() member function. If called with one ar-
gument it returns a string describing how many ad-
ditional arguments must be parsed to it (which may
wary depending on impedance element) and in which
order. If called with more than one argument, the
first Argument is the parameter name to calculate
start value for, and the additional arguments (which
must be a string of the form: ”$frequency $real value
$imaginary _value”) are used for the calculation.
Returns the frequency for which the imaginary value
of the impedance is at it’s maximum (negative) value.
If the element type makes such a calculation invalid,
the function returns undefined. If the frequency is
either infinite or the DC case, the reported frequen-
cies will be 1e100 Hz and 1e-100 Hz respectively. For
frequency independent elements the function returns
0.

The print_line member function returns a string which can be used to reload an impedance

element. The format is:

Type: parameterl=valuel, parameter2=value2,

An exception to this is the container elements (serial and parallel) which is defined and
implemented in the Impedance::Complex class.

9.7 Impedance::RQ

Inherits from Impedance::Base (refer section 9.6).

This module implements Impedance::Base for R-C parallel connections as well as the R-Q
parallel connection. (The Q beeing a constant phase element).

To obtain an instance, call one of the constructors:
$id = Impedance::RC—new($id);
$id = Impedance::RQ—new($id);

The module defines no additional member functions.

9.8 Impedance::W

Inherits from Impedance::Base (refer section 9.6).

This module implements Impedance::Base for diffusion type elements (W, O, G, Gd and
T). W is the Warburg element, O is the Finite length Warburg element, G is the Gerisher

28 of 40

Implemented by Sgren Koch

DTU Energy conversion 1.2.1

element, Gd is a depressed / flattened Gerisher element and T is the 'Bounded Warburg’
element.

To obtain an instance call one of the constructors:
$id = Impedance:: W—new($nr);

$id = Impedance::O—new($nr);

$id = Impedance::G—new($nr);

$id = Impedance:: Gd—new($nr);

$id = Impedance:: T—new($nr);

The module defines no additional member functions.

9.9 Impedance::Complex

Inherits from Impedance::Base (refer section 9.6).

This module defines series and parallel connections of impedance elements. The resulting
element can be treated as any other Impedance::Base derived element, thus it is possible
using the serial and parralel elements to build arbitrary complex circuit layouts!

In effect the module defines two container types which from the outside behaves as a
single impedance element.

To obtain an element instance, call one of the constructors:
$id = Impedance::Ser—new($id);

$id = Impedance::Par—new($id);

The module defines three new member functions:

$id—elements() Returns a list of Impedance::Base (or derived) ele-
ments.

$id—elements_all() Returns the complete element list for all elements in
the container (recursively).

$id—element($) Returns the element instance with the specified id
(usually obtained from the elements member func-
tion).

$id—add_element($$) Adds an element ot the list of elements contained
within the element instance. The arguments are type
and id of the element to add. It returns the element
instance created. The element is created using the
Impedance::Device::new_device($$) factory function.

The print_line() function inherited from Impedance::Base is overloaded with slightly dif-
ferent behaviour. Instead of a string containing just a single line, the return value of
print_line() contains multiple lines. The first line contains a start identifier (either ’(’ or
'[depending on type) and the last line contains the corresponding end identifier (’)’ or ’]’

29 of 40 Implemented by Sgren Koch

DTU Energy conversion 1.2.1

). All intermediate lines are obtained by calling print_line() on the individual element(s)
in the container. Note that this may include additional complex elements resulting in
nested parantheses (Which is completely valid behaviour)!

Additionally the tags() function is also overloaded so that it returns a list of the elements
in the container instead of valid parameter names (as the complex element is a container
it does not by itself have any parameters of which to set or get the value).

It is also not possible to define any help functions on complex elements, thus any calls to
helperfunctions() merely results in the empty list.

Notice that fiimax() can only report summit frequencies between 1e-100 and 1E100 Hz
Thus if the true sumit frequency of the complex element used is outside this range it will
be reported wrongly!

9.10 Impedance::Device

This module defines two functions, the first is list_device_types() which returns a list of
valid impedance element type names.

The second function is a factory function: new_device($$). It accepts two arguments, the
first is an element type name (one of the types returned by list_device_types()) and the
second argument is the element id (integer). The new_device($$) function returns the
impedance instance created.

9.11 Impedance::Model

Inherits from Debug (refer section 9.1).

This module defines how to handle impedance models. It utilises the impedance elements
defined by Impedance::Base and the derived classes.

To obtain an instance, call one of the constructors:

$id = Impedance::Model—new();

$id = Impedance::Model—new($data);

$id = Impedance::Model—new($model ref);

$id = Impedance::Model—new($model ref $minf,$maxf);

The first constructor merely initialises a new empty model. The second constructor
initalises an empty model but adds the impedance data in in the supplied data string
to the model instance. The third constructor copies the model from the supplied model
reference and copies the data from that instance as well. The fourth constructor copies
as the third, but only copies those data which lies within the frequency range specified
by the last two arguments! This can be used for partial fitting where only a specific
frequency range is needed.

The individual impedance elements are strored in internal data structure which makes

30 of 40 Implemented by Sgren Koch

DTU Energy conversion

1.2.1

sure that only unique impedance element id’s are used.

All Impedance::Model instance has the following public member functions:

$id—parse($)

$id—print_model()
$id—device_types()
$id—elements()

$id—element($)

$id—elements_all()

$id—model_text()
$id—delete_element($)
$id—add_element ($[$])

$id—fit()
$id—data([$])

$id—delete_point($)

$id—print_fit([$])

$id—print_fit_weight([$])

This function accepts a string defining an impedance
model. The string must be lines of the format defined
by the Impedance::Base function print_line(). The
function parses this string and initialises the correct
impedance elements based on this. The function re-
turns the id number of the last impedance element
added.

Returns a string which can be parsed by
$id—parse($)

Wrapper for Impedance::Device::list_device_types().
Returns a list of impedance element names (nr).
Returns the impedance element specified. The func-
tion also gets elements from inside containers!
Returns the complete element list of the model. Re-
cursively calls into any container elements. Note
that unlike the elements() function, the actual de-
vice instances are returned as opposed to the element
names.

Returns a string representing the impedance model
Deletes the specified impedance element.

Adds an impedance element of the specified type. If
an additional arguemnt is specified, the id of the new
element will be set to this number. If no second ar-
gument is specified, hte next id is simply chosen. The
function returns a reference to the added element.
Returns a list of possible fit paramerters for current
model.

Gets or sets the impedance data in the internal data
field.

Deletes the point specified from the internal data ar-
ray. Returns the new data in the same way as data().
Note that index 0 is the point at the highest fre-
quency.

Returns a string containing all the functions nesce-
sarry for gnuplot to initialise and fit the given model
to the impedance data either in the specified filename
or (in absence of an argument) in the internal data
field. All data points are given even weight.

Same as print_fit(), however the actual fitting is done
with uneven weight, so that data points with small
values (absolute length of impedance vector) gets
higher weight than points with larger values (weight
inversely proportional to length).

31 of 40

Implemented by Sgren Koch

DTU Energy conversion 1.2.1

$id—set_show_arcs($) Sets wether the plot functions should include the in-
dividual arcs in the plots or not. An argument of 0
disabels the arcs, 1 includes them.
$id—print_plot([$]) Returns a string containing the function declerations
and plot definitions for gnuplot to plot the specified
data (if any) if no datafile name is specified, it uses
the data in the internal data field.
$id—print_plot_range($$[$]) Similar to print_plot, except it must have the min and
max range specified as the first 2 arguments. The
effect is that any labels are only printed if they have
x-values within the specified range.
$id—print_bode([$]) Same as above, but for bode plots.
$id—print_plot_eps([$]) Same as print_plot, but for eps file output.
$id—print_bode_eps([$]) Same as above, but for bode plots.
$id—print_plot_error([$]) Returns a string containing the function declerations
and plot definitions for gnuplot to plot the difference
between the model and the specified data (if any) if
no datafile name is specified, it uses the data in the
internal data field.
$id—print_imp_sim($9) Returns the function declaratioins nescesarry for gnu-
plot to plot an impedance plot of the current model.
Arguments are the frequency range to plot (min and

max).
$id—print_bode_sim($$) Same as above, but for bode plot.
$id—F($) Returns the impedance of the current model for the

specified frequency. The returned impedance is of
type Math::Complex.

$id—subset($%) Returns a subset of the data in the internal data field
based on the specified minimum and maximum fre-
quency.

$id—subtract_model() Returns the residual of the data in the data field

once the impedance of the current model has been
subtracted (subtraction done in the indivudual data
points!).

$id—get_error() Returns the mean and maximum error for the data
and model chosen The error is calculated as the ab-
solute difference of the data from the mode both the
real and for the imaginary part. The error is then
normalised with the modulus of the data value. This
is calculated for all frequencies in the data set and
the mean and maximum values are returned (as per-

centages).
$id —minf() Returns the minimum frequency in the data set.
$id—maxf() Returns the maximum frequency in the data set.
$id—minr() Returns the minimum real part of the impedance in

the data set.

32 of 40 Implemented by Sgren Koch

DTU Energy conversion 1.2.1

$id—maxr() Returns the maximum real part of the impedance in
the data set.

$id—mini() Returns the minimum imaginary part of the
impedance in the data set.

$id—maxi() Returns the maximum imaginary part of the
impedance in the data set.

$id—scale_factor([$]) Sets the scale factor function to the specified value.

If no arguments, the scale factor function is set to the
default 1, that is no scaling. Note that only simple
proportionality scaling is possible.

$id—get_scale() Returns the current scale factor.

$id—set_limit($%) Sets the plot limit of one of the fololowing tags:
'xmin’, xmax’, 'ymin’ and ’ymax’ to the specified
value. Arguments: tag, value.

$id—get_limit($) Returns the limit of the specified tag (see set_limit()).

$id—set_xlabel($) Explicitly sets the text string to be displayed in the
xlabel.

$id—set_ylabel($) Explicitly sets the text string to be displayed in the
ylabel.

$id—set_ylabel_bode($) Explicitly sets the text string to be displayed in the
ylabel in bode plots.

$id—set_bode_mode($) Sets wether bode plot should only plot imaginary
value or both real and imaginary (default). If called
with a true argument mode is set to only imaginary
values.

Additionally the following private member functions are also defined. Although Perl
does not permit true private functions, do not use these functions from outside the class
instances!

$id—print_plot_common() This function returns the function declarations for all
elementsin the impedance model.
$id—print_plot_main() This function does the actual work of print_plot() and

print_bode()

$id—print_plot_main range() This function does the actual work of
print_plot_range().

$id—print_plot_eps_common() Similar as above, bur for eps output.

$id—print_simulation() This function does the actual work of print_imp_sim()
and print_bode_sim().
$id—save() This function saves the content of the data field to a

temporary file (in /temp) It returns the filename of
the temporary file.
$id—file() Returns the name of the data file.

33 of 40 Implemented by Sgren Koch

Chapter 10

Web service interface

It is possible to use Elchemea Analytical as an web service. To do so call the following
ajax_model.cgi web script with the parameters specified below. The sctipt is located
in host.domain/cgi-bin/analytic/ajax_model.cgi (substitute host.domain with the correct
hostname and domain name of your Elchemea Analytical installation).

1. 'ajax’, value: "1’

2. ’action’, value: ’fit’ or ’fitlist’. If fitlist is selected, the webservice returns a list of
possible free fit paramerters for the specified model

3. 'model’, value: the impedance model as specified in chapter 3.

4. ’fitmode’; value: 'Even’ or 'Inverse’. Determines if data points have even weight
(which is default) or weight is inversely proportional to absolute value of impedance
(length of impedance vector). Optional parameter, only used for ’fit’ action.

5. ’data’, value: Impedance data in the form of multiple lines, each line in the form:
frequency real_value imaginary_value
Note that the first line must be the highest frequency. Only used for ’fit” action

6. ’'fitlist’, value: comma separated list of free fitting parameters. The elements speci-
fied must be from the list returned by the fitlist action (refer item 2), only used for
fit” action.

In the case 'fit” action is selected and the fit converges, the resulting response would start
with the string ’OK’ on a single line followed by the fit result. This would include arc
summit frequencies as well as pseudo capacitances (in the case of RQ elements) as well
as the full set of final parameter values. The output would also include references to a
number of png files temporarily located on the web server (of approx 10 minutes or so).
These immages can be downloaded separately and shows the fit result and error plot for
the data and model in question.

The file webservice.html found by pointing your browser to
host.domain/analytic /webservice.html contains two web forms with the nescesarry form

34

DTU Energy conversion 1.2.1

elements to do a impedance fitting using the web interface as well as testing the 'fitlist’
action. By submitting the 'fit’ test form with the default parameters, the output should
look like this (Your browser likely ’eats’ the newlines, so use wiew source):

0K
L_1:1.509e-08
R_2:0.01823
R_3:0.009409
Y_3:0.0387
n_3:0.7735

INFO: Maximum frequency for arc for element RQ_3: 4442
INFO: Pseudo capacitance for arc for element RQ_3: 0.003808
R_4:0.00219

Y_4:3.358

n_4:0.8441

INFO: Maximum frequency for arc for element RQ_4: 53.64
INFO: Pseudo capacitance for arc for element RQ_4: 1.355
R_5:0.008561

Y_5:29.01

n_5:0.9397

INFO: Maximum frequency for arc for element RQ_5: 0.7008
INFO: Pseudo capacitance for arc for element RQ_5: 26.53
FITDATA

sk ok ok sk sk ok ok o o ok sk sk sk ok o o ks sk sk sk ok o koK ok sk ok o o o koK sk sk ok o o sk sk sk sk ok o o ok ok sk sk sk sk sk o o ok ok sk sk sk sk o o koK sk sk ok o o ok koK ok
Wed Dec 7 12:26:16 2011

FIT: data read from ’/tmp/fitset_26083.dat’ u 2:1:3:(1)
#datapoints = 74

function used for fitting: h(x,y)

fitted parameters initialized with current variable values

Iteration O

WSSR : 1.32424e-05 delta(WSSR)/WSSR : 0
delta(WSSR) : O limit for stopping : 1e-05
lambda : 0.00565434

initial set of free parameter values

f1_1 =
fr_2 =
fy_3 =
n_3 =
fr_3 =
fy_4 =

.8003

.7235

OrRrPrRFPORFRRFPLRORFRRERBEL

n_5 = 0.9762

After 9 iterations the fit converged.

final sum of squares of residuals : 2.32063e-07
rel. change during last iteration : -8.43531e-07

degrees of freedom (ndf) : 63
rms of residuals (stdfit) = sqrt(WSSR/ndf) 1 6.06922e-05
variance of residuals (reduced chisquare) = WSSR/ndf : 3.68354e-09

Final set of parameters Asymptotic Standard Error
f1_1 = 1.10797 +/- 0.008277 (0.7471%)
fr_2 = 0.97708 +/- 0.003211 (0.3286%)

35 of 40 Implemented by Sgren Koch

DTU Energy conversion

1.2.1

correlation matrix of

f1_1
fr_2
fy_3
n_3

fr_3
fy_4
n_4

fr_4
fr_5
fy_5
n_5

END_TEXT

f1_
1.
-0.
0.
-0.
0.
-0.
0.
-0.
0.
-0.
-0.

.16728
. 773495
.01687
.519381
.844051
.670101
.08185
.928554
.9397

OO OO O O~

1 fr 2
000

623 1.000
485 -0.773
536 0.837
510 -0.822
104 0.185
225 -0.379
317 0.520
114 -0.196
102 0.177
075 0.128

FILE:model_26083.png

REPORT :report_model_26083.png

ERROR:report_error_26083.png

fy_3

.000
-0.
.923
-0.
.586
-0.
.314
-0.
.207

992

319

757

282

+/-
+/-
+/-
+/-
+/-
+/-
+/-
+/-
+/-

n_3

.1147

.01046
.01714
.09599
.04384
.05151
.01273
.01251
.00790

[elelNelNeNeNe NeNeNe]

the fit parameters:

fr_

.000

.930 1.
.305 -0.
.566 0.
.735 -0.
.303 0.
.272 -0.
.199 -0.

1

3

000
483
742
870
429
380
288

fy_

(9.828%)
(1.352%)
(1.686%)
(18.48%)
(5.194%)
(7.687%)
(1.177%)
(1.347%)
(0.8408%)

4 n_4

.000

.924 1.000
.767 -0.928
.755 0.720

fr_4

1.000
-0.740

fr_5 fy_5 n_5

1.000

.633 -0.612 0.584 -0.441 1.000
.6556 -0.515 0.566 -0.876 0.140 1.000

Note that some of the numbers may be slightly different as a randum number generator
is invovlved. The last three lines indicates filenames, and in order to access the individual
files, point your browser to host.domain/analytic/png/ and select the file(s) specified.

36 of 40

Implemented by Sgren Koch

Chapter 11

Troubleshooting

11.1 Server error is reportet wnen starting Elchemea
Analytical

e Inspect /var/log/httpd/error_log
e [f SE-linux running in enforcing mode, try and disable it by using ’setenforce 0.

e If htis resolved the error, inscpect the file /var/log/audit/audit.log and find the
files/directories with conflicting SElinux labels. The likely culprits may be
’/var/lock’ and ’/var/SemaforeFile/’, refer SE-linux documentation as to how to do
see and change labels.

e Reenable SE-linux by running ’setenforce 1’ and check.

11.2 Model section of view is mangled

It is known that some versions of Microsoft Internet Explorer®) display some of the html
elements wrongly, thus leading to mangled model views. In this case either upgrade your
browser, or switch to Firefox or Google Chrome (ElchemeaAnalytical has not been tested
with Apples Safari browser).

11.3 After fitting, pressing the report button only
says 'no report ready’

e Check that the LATEX server is running. To do this type the following in a terminal:

ps -ef | grep LATEX
The output should look something like this:

37

DTU Energy conversion 1.2.1

sofc 10320 10297 0 10:17 pts/3 00:00:00 grep LATEX
sofc 19042 1 0 Aug02 ? 00:00:00 /usr/bin/perl /usr/local/bin/analytic/LATEX-server

If the last line is not observed, start it by calling
/usr/local/bin/analytic/start_servers as root.

e [f the server is running, check that only one version of the LATEX.pm module
is installed. Older versions fo Risg Fuel Cells and Solid State Chemistry division
fuel cell control system installed modules in a different location than Elchemea
Analytic, and depending on search path, the Elchemea Analytic installer may not
have discovered the older version and installed the new wersion independently. If
this happens, the old version may be used by the LATEX-server, and unfortunately
the old module misses some functions needed by the server.

To fix this, locate and delete the old module.

e If the problem persists (or only one version of LATEX.pm exists, then if SE-Linux
is running in enforcing mode, then it may prevent the Apache webserver from
accessing the LATEX-server on localhost port 4050. The easiest way to fix this
is to run SE-Linux in permissive mode (nonenforcing). However, be aware that
SE-Linux is part of the Linux intrusion detection system / security system, and
thus running SE-Linux in nonenforcing mode may potentially expose the system
to external threats it would otherwise be protected from. To run SE-Linux in non-
enforcing mode in oreder to check if this is the cause of the problem, consult your
Linux distribution manual (on CentOS version 6.x SE-Linux can be turned off by
typing ’setenforce 0’ in a root terminal).

The specific problem with SELinux is that Apache needs to be able to connect to
port 4050 (the LATEX-server) and be able to read the corresponding PDF file (a
separate issue). To allow apache to connect to port 4050 as well as execute the
scripts in /usr/local/bin/analytic/ (on CentOS) execute the script
set_SELinux_rules.bash found in the ElchameAnalytics installation directory.

11.4 Fitting does not finish (page displays ’work-

ing...” and stops)

Check that the 'utf8.det’ file is included in your ITEX installation, if not, locate the
following line in LATEX.pm and uncoment it (place a # in front)

$res .= ’ \usepackage[utf8]{inputenc}’.’’\n’’ if ($utf8);

Note that this has to be done in the LATEX.pm file used by the implementation (Not
the one in the insttall directory!).

38 of 40 Implemented by Sgren Koch

DTU Energy conversion 1.2.1

11.5 Fitting takes too short time and no response is
recieved

Likely your model contains one or more of the elements which contains a trigonometric
function in the mathematical description (this includes Gerisher, Finite length Warburn
and Bounded Warburg) and the fitting routine hit a value which resulted in infinite
impedance (refer section 3.4).

11.6 Graphs not shown correctly and/or pages does
not finish loading

Check that the default lock file (called SemaforeFile.lock) for the SemafoeFile.pm module
has the right permissions. It is located in /tmp and should have permissions 666 (Yes,
I know the number of evil...) Durring normal operation, it will be created with this
permission, but sometimes the system mauy clean up the temp directory, and in this case
sometimes it may be created with the wrong permissions. To resolve this, simply remove
the file or manually set the right permissions (both operations may be nescesarry to do
as root).

11.7 My screen is not wide enough to show all infor-
mation

This can happen if you are using an older screen/projector which only allows a maxi-
mum horisontal resolution of 1024 pixels. To correct this, edit the file Header.pm in the
Impedance direstory (likely placed somewhere under /lib) and change the size variable
from “set size 1.3,1.1”7 to “set size 0.9,0.7” as well as the pssize varialbe from “800x600”
to “600x400” (Remember to change both variables!). Notice however that this is a site
wide variable, so all users of Elchemea Analytic on this server will be affected.

11.8 Multiplot graphs are sideways

Make sure that gnuplot, ImageMagick and Ghostscript are up to date. On Centos/RHEL
this can be achieved by executing the following commands as root:

yum update gnuplot
yum update ImageMagick
yum update ghostscript

Other distributions handle this in a different way, refer the distribution manual as to hwo
to update software packages.

39 of 40 Implemented by Sgren Koch

DTU Energy conversion 1.2.1

11.9 Multiplotting suddenly fails with an error mes-

sage including the string ’all points y value un-
defined’

Due to the multiuser nature of the Elchemea Analytical system, uploaded files can not
be saved indefinite on the server, and if a file has been left unused for some time (usually
an hour) it will be deleted. This usually does not happen when working normally, but if
the user leaves the Elchemea analytical session for extended time and then returns, this
may happen (see section 4).

11.10 Some of the last tics on the graps is missing
(graph goes to 100 but tics only shown to 70
for instance).

This is caused by certain versions of Gnuplot. Version 4.2.6 is known to do this. To
correct this, edit the file Header.pm in the Impedance direstory (likely placed somewhere
under /lib) and change the size variable from “set size 1.3,1.1” to “set size 1,1”. Notice
however that this is a site wide variable, so all users of Elchemea Analytic on this server
will be affected.

40 of 40 Implemented by Sgren Koch

