
Manual for Elchemea version 6.1.0

Søren Koch

October 30, 2018

Contents

1 Introduction 3

2 License 4

3 User interface 5

3.1 Device initialization . 6

3.2 Setting up impedance . 6

3.3 Setting up potential sweep . 7

3.4 Setting up chrono potentiometry/amperometry 8

3.5 Setting up a sequential program . 9

3.6 setting up data logging . 10

3.7 setting up temperature control . 12

4 Installation and system maintenance 14

4.1 requirements . 14

4.2 Installation . 14

4.3 maintenance . 15

5 Global configuration 16

6 user configuration 19

7 Server structure 22

7.1 CGI-server . 22

7.2 CGI-remote-server . 24

7.3 Serial server . 25

7.4 GPIB-server . 29

8 System command interface (command line) 31

1

DTU Energy 6.1.0

9 Remote control 32

10 Module specifications 33

10.1 Debug . 34

10.2 SemaforeFile . 34

10.3 ElchemeaConfig . 36

10.4 SocketClient . 37

10.5 RemoteExec . 38

10.6 Elchemea . 39

10.7 ElchemeaUser . 41

10.8 ElchemeaProgram . 42

10.9 ElchemeaCGI . 45

10.10FDEV . 46

10.11Solartron1250 . 50

10.12Solartron1255 . 50

10.13Solartron1260 . 50

10.14Solartron1287 . 50

10.15Solartron1280 . 51

10.16Hioki . 51

10.17Stanford . 51

10.18Elchemeadevice . 51

10.19VirtualFRA . 52

11 Troubleshooting 53

11.1 Automatic software updates are blocked by a web proxy 53

11.2 The web server only returns ’Internal server error’ when trying to display
the prelogin.cgi page . 53

11.3 Users can not start new sessions or measurements 53

11.4 Program execution not possible although no programs are running 54

11.5 Impedance aquisition not starting . 54

11.6 Temperature control does not work correctly or errors are reported when
trying to change temperature control setup 54

11.7 Program execution stops and/or command interface behaves strangely
(some commands work but others does not) 55

11.8 Remote command execution does not work 55

11.9 CentOS 7 related issues . 56

Elchemea 2 of 56 Implemented by Søren Koch

Chapter 1

Introduction

The Elchemea system is a generalized control software system which makes it possible
to acquire impedance spectra, potential sweeps and chrono potentiometry/amperometry
data by controlling a potentiostat in combination with a frequency response analyzer. The
Elchemea software is based on a web based user interface, which controls the physical
devices through a software interface. This interface is based on an object oriented class
hierarchy enabling a wide range of hardware devices to be configured and controlled by
similar function calls making the actual user control generic in nature.

The main features of Elchemea are listed below:

• Wide range of devices supported, including but not limited to:

– Solartron R©1250/1255/1260/1280 Frequency response analyzers

– Solartron R©1286/1287 Electrochemical interfaces

– Hioki R©3522/3532 component testers.

– Stanford Research Systems R© lock-in amplifiers

• Possibility for automatic software updates.

• Graphical display of all logged data.

• Easy integration to Elchemea Analytic c© impedance analysis software package.

• Easy integration with the RFCcontrol software package.

• Uses only open source software (OSS).

The first part of this documentation is an overview of the user interface (section 3) mainly
intended for new users of the system. The second part (chapters 4 to 8) is mainly intended
for more advanced users and system administrators as it contains information regarding
configuration and hardware set-up of the system. It is assumed that any administrators
has a fairly advanced knowledge of Unix system administration and Perl programming.

Chapters 5 and 6 describes configuration of a Elchemea system (both global and for each
user).

Chapter 10 contains the documentation for the different Perl module supplied by Elchemea.

3

Chapter 2

License

Copyright (C) 2012 Søren Koch, Karin Vels Hansen, DTU Energy at Technical University
of Denmark.

This program is free software: you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program. If not, see http://www.gnu.org/licenses/.

4

Chapter 3

User interface

The Elchemea system is based on the Apache web server software (Open Source Software,
OSS).

The control part of the software is in the form of a number of interactive web pages
where one must first log in to use some of them. Figure 3.1 shows the log-in page to the
Elchemea system and figure 3.2 shows the uses main control page. The main control page
consists of a top navigation bar with 10 buttons. The test log is shown in the text area
on the left and the action buttons on the right (some of which may be missing depending
on system setup) either leads to measurement setup or measurements.

Figure 3.1: Log-in page to Elchemea.

The individual measurement setup pages is discussed further in sections 3.2 to 3.4.

5

DTU Energy 6.1.0

Figure 3.2: Main control page for Elchemea.

3.1 Device initialization

The Button labeled ’Initialize devices’ resets/initializes the attached devices (potentiostat
and/or frequency response analyzers). Part of his initialization sequence is to set all
output to either ’OFF/OCV’ (for devices which offers this option) or 0 Volt / 0 Amp
DC and as low AC amplitude as the device allows. Notice that for some devices (notably
Solartron R© 1260’s) the DC output can not be disconnected, and thus initializing the
device will result in 0V DC output. If the sample/device under test (DUT) possesses it’s
own DC bias, this may result in sample/DUT damage!

In order to overcome this, consult the device manual and determine how a DC bias may
be manually specified and do so accordingly if the sample/DUT requires this.

The Elchemea software package is designed so that it stores any device settings before
doing an impedance, potential sweep or chrono amperometry/potentiometry measure-
ment and then restores the saved setup afterward. Thus if the user sets up manually any
DC bias/other settings required, then they will be maintained after the measurement.
However make sure that the same settings are selected for the measurement as otherwise
damage to the sample/DUT may occur during the measurement!

3.2 Setting up impedance

Pressing the ’setup impedance’ action button on the main page (refer figure 3.2) takes
the user to a page like the one shown in figure 3.3. On this page it is possible to setup
the most common impedance parameters:

• number of frequency segments.

Elchemea 6 of 56 Implemented by Søren Koch

DTU Energy 6.1.0

• frequency ranges.

• number of measurement points / decade (either global or for each frequency segment
depending on device and/or selection).

• generator mode (voltage or current control).

• measure resistors / ranges (either global or for each frequency segment depending
on device and/or selection).

• polarization offset program.

as well as others.

For more advanced users, pressing the ’advanced setup’ button takes the user to the
advanced setup page where all device configurations are shown. Notice however that
only advanced users should normally have to access the advanced page as changing any
of these values may adversely affect your measurements. Only change process parameters
according to the specifications in the device manual (supplied by the device vendor!).

One of the setup options needs to be discussed further: The ’polarization offset program’
setting specifies which (if any) program is to be executed during setup to specify any
DC bias offset. Any program placed in the /usr/local/bin/elchemea/user exec/ directory
can be selected for execution, but only one program can be selected at any time. Each
program in this directory must be so constructed as to print a number as the first line
of output. This number is interpreted by the Elchemea program as the DC bias offset
which has to be added to the DC bias setting. If the program does not have to report
a DC bias, remember to make the program so that it prints ’0.00’ as the first line! Any
additional lines of output is simply treated as a comment and added to the comment
string in the impedance file.

As any program executed as a polarization offset program is executed as the Elchemea
root user, make sure that any programs placed in the /usr/local/bin/elchemea/user exec/
directory can only do what is intended and can not be hijacked to do malicious things.
The program is called without any arguments during impedance setup, but must accept
the ’test’ argument in which case it should report the approximate number of seconds a
real execution is expected to take and then exit (this option is used to report the expected
time for an impedance scan).

3.3 Setting up potential sweep

Pressing the ’setup potential sweep’ button on the main page (refer figure 3.2) accesses
the potential sweep setup page as shown in figure 3.4. On this page the setup options for
potential sweeps are shown and a figure displaying the resulting potential sweep based
on the current setup is shown.

Elchemea 7 of 56 Implemented by Søren Koch

DTU Energy 6.1.0

Figure 3.3: Impedance setup page.

Figure 3.4: Potential sweep setup page.

3.4 Setting up chrono potentiometry/amperometry

The ’setup chrono’ button takes the user to the chrono amperometry/potentiometry page
as shown in figure 3.5.

The only special part of this page is the ’keep potential’ setting, which determines if the
potentiostat polarization should be maintained after the specified measurement time has
elapsed or the potentiostat should switch off (either 0 Volt or OCV depending on device

Elchemea 8 of 56 Implemented by Søren Koch

DTU Energy 6.1.0

type, check vendor manual!).

One thing which sets chrono potentiometry/amperometry measurements apart from the
other measuremnt modes is that if a potnetiostat (notably a Solartron 1286/1287) is used,
the measuremnt can be run without engaging the potentiostat output. The effect of this
is to use the potentiostat as a simple voltmeter (the measured current should be zero).
In order to select this mode of operation, set the polarisation to the special value ’OCV’
(short for open circuit voltage). This value will prevent the potentiostat from engaging
the output. Notice however that not all devices may support this mode of operation, so
remember to consult the vender manual berforehand!

Figure 3.5: Chrono potentiometry/amperometry setup page.

3.5 Setting up a sequential program

Apart from setting up new programs, it is possible to load old programs for new execution.
It should be noted, that a loaded program can be edited before execution and that all
executed programs are saved for later analysis/documentation. The text box on the left
shows the currently selected program and the buttons on the center of the page is for
adding the indicated actions with the parameters as defined by the right text fields.

If a program is already running, pressing the ’setup program’ button on the main page
(refer figure 3.2) a page resembling figure 3.7 will be shown. This page will show the
current program being run, and makes it possible to terminate the running program.

All programs are directly executable Perl scripts and it is thus possible to add loops and
other control structures not directly available from the graphical programming interface
(by using the ’manual edit’ button), but in this case, notice that the estimated execution
time printed on the button of the page will not be accurate (and can not be used at all!).
Also notice that if the program is edited manually, syntax errors or run time errors may

Elchemea 9 of 56 Implemented by Søren Koch

DTU Energy 6.1.0

Figure 3.6: Sequential programming setup.

Figure 3.7: What the setup program page will look like if a program is already running.

be introduced which the Elchemea system may not be able to correctly handle!

3.6 setting up data logging

In order to setup simple data logging (that is measuring some voltages and/or temper-
atures before and/or after an impedance measurement for instance). first access the

Elchemea 10 of 56 Implemented by Søren Koch

DTU Energy 6.1.0

miscellaneous setup page, and then press the ’setup data logging’ button. This leads to
the data logging setup page which looks like figure 3.8.

Figure 3.8: The data log setup page.

New channels can be created by pressing the ’New channel’ button, and one a channel
have been created it is accessible from the drop down menu. To configure a channel,
select it and the channel definitions will show up below as shown in figure 3.8. Each
channel must have a channel number (a string containing a digit, followed by a colon
and then 3 digits: D:DDD). The significance of these values are as such: The first digit
(before the colon) is the GPIB-address of the Keithley 2700/2750 multimeter and the
first digit after the colon is the board number (1 or 2 in case of a 2700 and 1-5 in case
of a 2750). The last 2 digits are the channel number on the board. Thus channel 13 on
board 2 at GPIB-address 3 would have channel number ’3:213’. The type variable can
be one of the following values:

• no value for the simple voltage channels

• ’pt100’ (Pt-100 resistor)

• ’pt1000’ (Pt-1000 resistor)

• ’N’ (N-type thermocouple)

• ’S’ (S-type Thermocouple)

• ’K’ (K-type thermocouple)

In each case, the Keithley channel must be configured correctly to measure either resis-
tance (for the resistors) or mV for the thermocouples. In order to configure the Keithley
channels correctly, refer the GPIB-server manual (separate software).

Elchemea 11 of 56 Implemented by Søren Koch

DTU Energy 6.1.0

For the thermocouple channels it is also necessary to setup a cold junction channel, s̊a
that the software knows what the temperature of the cold junction is. This setup is
performed on the miscellaneous setup page (refer figure 3.9).

Each channel can be tested individual with the ’test channel’ button shown in figure 3.8.

The cold junction channel variable must contain a string like the one shown here: ’1:101,pt1000’.
The value is split up in two parts, the first part before the comma is the channel number
(similar to the channel number specified above), and the second part after the comma
specifies if a Pt-100 or Pt-1000 resistor is used to measure the temperature of the cold
junction. In the case of a Pt-100 it is important that the ’lead resistance’ value is speci-
fied correctly, as a few ohms of lead resistance can result in significant errors in the cold
junction temperature determination!

Figure 3.9: The miscellaneous setup page.

Once all data logging channels have been configured, they can be added to the channels
that are to be logged. This is also done on the miscellaneous setup page, where the fields
’channels temp’, ’channels simpletemp’ and ’channels voltage’ must be updated. Each of
those can contain a comma separated list of channel names to be logged (note names, not
channel numbers). Notice however that the channel names must be spelled correctly, as
the software does not check for existence/correctness of these lists. As with the individual
channels, the complete data log setup can be tested by pressing the ’test datalog’ button.

3.7 setting up temperature control

In the miscellaneous setup page it is also possible to setup simple temperature control.
In order to do so, specify the tty, the address, the controller mode and controller type
and then press the ’test temperature’ button. If the specified parameters are correct and
the communication is working, the current set point, ramp rate and active temperature

Elchemea 12 of 56 Implemented by Søren Koch

DTU Energy 6.1.0

should be displayed. If not, find out if the settings are correct and retry (refer section
11).

Elchemea 13 of 56 Implemented by Søren Koch

Chapter 4

Installation and system maintenance

This chapter describes how to install or upgrade a Elchemea system.

4.1 requirements

In order to install the Elchemea system, the following must be available:

• A Red-hat based Linux operating system (Fedora, RH-EL or CentOS). It is likely
that Elchemea will install on other Linux operating systems, but it has not been
tested.

• An Apache web server.

• Gnuplot version 4.0 or later.

• Gnu make or similar functionality

• an updated locate database (to update the locate database manually run
/usr/bin/updatedb as root

• A functioning connection to the Internet. The reason for this is that the Elchemea
installer downloads and installs additional Perl modules from CPAN.org.

4.2 Installation

In order to install the Elchemea system, unpack the tar-ball in a suitable location, cd
into the resulting Elchemea directory and run make.

Inspect the output of the make program and resolve any errors.

Once all errors have been resolved, run make test followed by make install.

In order to ensure that all servers start upon system reboot, add the following line to
/etc/rc.local :

14

DTU Energy 6.1.0

/usr/local/bin/elchemea/start servers &

Finally if SELinux is enabled, it is nescesarry to run make fix SELinux to properly set
the SELinux permissions for Elchemea to run properly.

4.2.1 Steps to do before installation on a CentOS 7 system

As described in section 11.9 a number of things has changed between version 6 and 7 of
CentOS, and before installing elchemea on a centOS 7 system, run the ’centos7 CPAN configuration.bash’
script as root.

Notice that you need to log out of root before you proceed with the instalation as otherwise
the .bashrc file for root does not get rerun!

4.3 maintenance

Generally the Elchemea system requires little maintenance, however make sure that a
proper backup/restore procedure is in place, as any data logged by the Elchemea system
is likely costly in time and / or money and thus should not be lost by hardware or software
failures.

The Elchemea system includes a facility for automatic software updates, to enable this,
simply add the following line to root’s crontab file:

0 8 * * 1 /usr/local/bin/elchemea/elchemea updater.pl ≫ /root/update log.txt &

This will update the system once every Monday (thus leaving several working days to
fix things if anything went wrong). The automatic update system then fetches any new
version which may have been deployed within the last week and installs this if it passes
the software test (make test).

Elchemea 15 of 56 Implemented by Søren Koch

Chapter 5

Global configuration

The global configuration of the Elchemea contains site wide configuration values which
are not user specific. Below is a section by section description of the configuration file
which should only be changeable by the site administrators.

SECTION global

use_time = no

logoutdelay = +10min

use_passwd = no

#passwd_server = abf-labsystem.risoe.dk

#passwd_server_port = 2020

#passwd_server_auth_cmd = checkuser

File locations, do not change these values unless you know what

Youare doing!!!

splineinterpol = /usr/local/bin/splinterpol

splineinterpoldata = /home/elchemea/convert-tables

allow_manual_edit = no

debug = 0

number_of_segments = 6

copmatibility = yes

ENDSECTION

The global section contains a number of site wide configuration parameters. Amongst
those are a number of file locations, and those should under normal circumstances NEVER
be changed. The use time key specifies if users are automatically logged out after the
time specified in the logoutdelay key (for standalone systems this is rarely necessary).
Similarly the use password key specifies if users are required to use a password to log in.
Again for stand alone systems password log-in is usually only a nuisance as users will
have directly physical access to the system anyways (they are after all measuring using
the physical system). The passwd server and passwd server port keys specifies which
server (if any) handles the password authentication. For a stand alone system, leave
those lines commented out. The allow manual edit key specifies if users are allowed to
manually edit their program files. Since this is a potential huge security risk (basically
allowing any use with access to the user interface to execute arbitrary code as the Apache

16

DTU Energy 6.1.0

user), this key should be set to ’no’. The debug key specifies the default debug level.
The number of segments key specifies the maximum number of frequency segments it is
possible for a user to specify (too large a number may cause the user interface to look
bad!) the compatibility key determines if the CGI-remote-server maintains the same API
as the one for Elchemea version 5.x (only significant for the ’mode’ request for the remote
server, see section 7.2).

SECTION network

startcmd = /sbin/ifup eth0

stopcmd = /sbin/ifdown eth0

ENDSECTION

The two keys in the network section specifies which commands to run to connect and
disconnect to the network (usually ifup and ifdown).

SECTION remote

allow_remote = YES

port = 4040

ENDSECTION

The remote section configures if remote execution is possible (used by RFCcontrol test
facility control software).

SECTION storage

mount = /bin/mount

unmount = /bin/umount

device = /mnt/usb/

ziplocation = /usr/bin/zip

unix2dos = /usr/bin/unix2dos

dos2unix = /usr/bin/dos2unix

ENDSECTION

The storage section defines how the usb subsystem is accessed (which may differ on
different Linux systems). It also specifies where the zip program as well as the unix2dos
and dos2unix programs reside.

SECTION GNUPLOT

potsize = 1,0.5

impsize = 0.83,0.63

chronosize_view = 1.4,1

impsize_view = 1.4,1

chronosize = 1,0.63

location = /usr/bin/gnuplot

term = png x000000 xffffff x000000 xfff500 x00ff00 xffff00 xff0000

temperaturetm = png x000000 xffffff x000000 xfff500 x8fd400 xffff00 x00ffff

ENDSECTION

Elchemea 17 of 56 Implemented by Søren Koch

DTU Energy 6.1.0

The GNUPLOT section contains specifications for the creation of graphs of measured
data using the Gnuplot R© software package. The keys ending in ’size’ determines the size
of the plots and the ’term’ and ’temperature’ keys specifies the terminal to use (usually
png).

SECTION equipment

potentiostat = Solartron1287

#potentiostat = NONE

FRA = Solartron1255B

#FRA = NONE

potentiostat_address = 16

FRA_address = 12

parallel_port = /dev/lp0

parallel_port_controler = YES

parallel_port_channels = 0,1,2,3

ENDSECTION

The equipment section defines which type of equipment is connected to the Elchemea
system. The potentiostat key specifies which potentiostat/electrochemical interface is
attached to the system, and the FRA key specifies which frequency response analyzer is
attached. The special value NONE must be used if no device of the indicated type is
attached (as the software then uses a default device (virtual) instead. The address keys
specify the GPIB-address of the devices.

The keys beginning with ’parallel port’ is used if a special multiplexer system is attached
to the Elchemea system (by using the parallel port device on the computer). The interface
is that data pin 0 through 3 on the parallel port is used for individual device selection
and data pin 4 is used as device enable (data pins 5 to 7 is unused).

SECTION misc

sections = gnuplot,measure,temperature,datalog

keys_gnuplot = bode_plot_min_freq,bode_plot_max_freq,bode_plot_min_imp,bode_plot_max_imp

keys_measure = sticky_logfile_entries,measure_temp

keys_temperature = tty,address,controler_mode,controler_type,type

keys_datalog = channels_temp,channels_simpletemp,channels_voltage,cj_channel,lead_resistance

ENDSECTION

The misc section contains information used by the use interface to determine which
sections it is possible for a user to access on the ’miscellaneous setup’ page.

Elchemea 18 of 56 Implemented by Søren Koch

Chapter 6

user configuration

Each user has his/her own configuration file. The file is divided into sections which allows
individual configuration values to have identical identifiers as long as they are in different
sections.

SECTION impedance_potentiostat

mode = Volt

polarisation = 0

ENDSECTION

The impedance potentiostat section contains user specific configuration values. All the
settings in this section are configurable from the user interface, and the specific values
and keys depend on the type of potentiostat connected to the system according to the
equipment section in the global configuration (refer chapter 5). Note that this section
only contains the setup parameters for running impedance, NOT for running potential
sweeps or chrono potentiometry.

SECTION impedance_FRA

mode = Volt

amplitude = 0.01

polarisation = 0

sweep_segments = 1

number_of_points_pr_decade = 6

integration_type = cycles

frequency_order = normal

integration_time_1 = 10

minimum_frequency_1 = 1

maximum_frequency_1 = 82540

integration_time_2 = 30

minimum_frequency_2 = 0.08

maximum_frequency_2 = 0.8254

integration_time_3 = 50

minimum_frequency_3 = 0.1

maximum_frequency_3 = 0.911

19

DTU Energy 6.1.0

integration_time_4 = 200

minimum_frequency_4 = 0.01

maximum_frequency_4 = 0.091

integration_time_5 = 50

minimum_frequency_5 = 0.1

maximum_frequency_5 = 0.911

integration_time_6 = 200

minimum_frequency_6 = 0.01

maximum_frequency_6 = 0.1

ENDSECTION

Similar to the impedance potentiostat section. This section contains setup parameters
for running impedance. Apart from device setup values, the section also contains the
frequency segment setup values. Each frequency segment contains a number of keys and
the exact number of keys depends on the FRA device chosen in the global configuration
file (refer chapter 5).

SECTION gnuplot

bode_plot_min_freq = 0.01

bode_plot_max_freq = 1000000

bode_plot_min_imp = 100

bode_plot_max_imp = 1000000

ENDSECTION

The gnuplot section contains setup values for displaying impedance data while they are
being acquired. The reason for specifying max and min impedance as well as min and
max frequency is to avoid excessive rescaling while the measurements are being run.

SECTION measure

sticky_logfile_entries = NO

measure_temp = None

ENDSECTION

The measure section specifies if sticky logifle is to be used. If this is set to true (yes)
then the last user specified string added to the log file is inserted in each newly acquired
data file. If not, only the first new file after a manual log entry will include the line. the
measure temp key specifies if data logging (simple voltages etc) are to be performed at
the start of a measurement and/or at the end or not at all.

SECTION temperature

controler_type = E2216

tty = ttyS0

address = 1

controler_mode = modbus

type = decimal

ENDSECTION

Elchemea 20 of 56 Implemented by Søren Koch

DTU Energy 6.1.0

The temperature section determines which type of temperature controller is attached to
the system. All the values can be specified through the user interface (miscellaneous
setup).

SECTION chrono

polarisation = 0.00

mode = Volt

totaltime = 30

sleeptime = 0

ENDSECTION

The chrono section contains setup values relevant for chrono amperometry/potentiometry.
All the values can be specified through the user interface (chrono setup).

SECTION potsweep

mode = Volt

sweep_rate = 0.001

sweeps = 2

bias_point_1 = 0

bias_point_2 = 0.02

bias_point_3 = -0.02

bias_point_4 = 0

sleeptime = 0.1

ENDSECTION

The potsweep section contains setup values relevant for potential sweeps. All the values
can be specified through the user interface (potential sweep setup).

Elchemea 21 of 56 Implemented by Søren Koch

Chapter 7

Server structure

The programs mentioned in italics below all reside in the /usr/local/bin/celltest directory
but some of them have symbolic links to /usr/local/bin. Most of the programs are written
in Perl, but the GPIB-server is written in C.

7.1 CGI-server

The CGI-server is the main API for controlling the Elchemea system from the web based
user interface as normally the Apache user (which runs the web server under Red-Hat
based Linux systems) does not have access to the file system as well as the hardware
communication. This is for a extremely significant reason, as allowing the Apache user
such privileges is a potentially huge security risk. The CGI-server is so designed, that it
only accepts known commands (default deny) mitigating the security problem somewhat.

The CGI-server accepts the following commands:

• debug: Turns debug information on and off

• exit: Shuts down the CGI-server

• stop measure: Stops any running measurement.

• impedance: Starts an impedance measurement for the specified user: Arguments:
user-name, session nr.

• single freq: Starts an impedance measurement on a single frequency (measures
the same frequency again and again). Arguments: user-name, session [optional
frequency, optional number of times to measure]. Default frequency is 1kHz and
measure 10 times.

• chrono: Starts a chrono amperometry/potentiometry measurements for the speci-
fied user. Arguments: user-name, session nr.

• square: Starts a square wave output from a potentiostat. This is useful for filter
selection (Refer device manual). Arguments: user-name, session nr.

22

DTU Energy 6.1.0

• potsweep: Starts a potential sweep measurement. Arguments: user-name, ses-
sion nr.

• create user: Creates a new user on the local system. Arguments: user-name

• increase test nr. Starts a new session for the specified user. Arguments user-name,
session name

• stop program: Stops any running program.

• start network: Attempts to connect the host system to the network.

• stop network: Disconnects the host system from the network.

• start remote: Starts the CGI-remote-server.pl to accept remote commands if the
remote exec key is set to yes, refer chapter 5.

• stop remote: Stops the CGI-remote-server.

• init: Initializes all attached devices by calling the init() member function on each
instance.

• mount: Mounts the USB storage device.

• umount: Unmounts the USB storage device.

• copy: Copies the specified file to the specified location. Arguments: old file,
new file.

• unix2dos: Converts the specified file from unix to dos end of line format.

• dos2unix: Converts the specified file from dos to unix end of line format.

• zip: Zips the specified directory.

• u2dusb: Copies a file to the USB storage device and converts it to dos end of line
format.

• zipusb Creates a zip file of the specified directory and copies it to the USB storage
device.

• rmpng: Removes the specified image file. The removal is postponed some 20 seconds
to facilitate the requesting client system to retrieve the file before it is deleted.

• unlink: Removes the specified file.

Elchemea 23 of 56 Implemented by Søren Koch

DTU Energy 6.1.0

7.2 CGI-remote-server

The remote server program handles all requests from remote systems for impedance or
other measurements. It is the main API for remotely controlling an Elchemea system
from other software packages such as the RFCcontrol test facility software or by using the
remote-client program.. The server is only available whenever the system is connected to
the network by pressing the ’connect to net’ button on the user interface (assuming that
the allow remote key in the global configuration file is set to ’yes’ (refer chapter 5).

The remote server accepts the following commands:

• debug: Turns debug on and off.

• exit: Shuts down the remote server.

• impedance: Starts an impedance based on supplied information. Arguments: user-
name, mode, session nr. Returns a string containing the user-name, the session
number, the file number for the new data file as well as the expected time for running
the impedance scan. Although the mode parameter is not used, it is required to
maintain backwards compatibility.

• chrono: Starts an chrono amperometry/potentiometry based on supplied informa-
tion. Arguments: user-name, mode, session nr. Returns a string containing the
user-name, the session number, the file number for the new data file as well as the
expected time for running the measurement. Although the mode parameter is not
used, it is required to maintain backwards compatibility.

• potsweep: Starts a potential sweep scan based on supplied information. Arguments:
user-name, mode, session nr. Returns a string containing the user-name, the session
number, the file number for the new data file as well as the expected time for running
the potential sweep. Although the mode parameter is not used, it is required to
maintain backwards compatibility.

• get file: Returns the content of the specified data file: Arguments: user-name,
mode, session nr, file nr. Although the mode parameter is not used, it is required
to maintain backwards compatibility.

• get file new: Similar to get file, however does not return ’MEASURING’ if a mea-
surement is running.

• ping: Returns a string identifying the Elchemea system (useful for debugging con-
nectivity problems).

• mode: Returns a text string describing which equipment is attached to the system.
If the compatibility key is set in the global configuration (refer chapter 5) then
this command always returns the string ’1260’ (to maintain compatibility with the
remote server for Elchemea version 5.x).

• session: Returns the current session number for the specified user.

Elchemea 24 of 56 Implemented by Søren Koch

DTU Energy 6.1.0

• reset potentiostat: Resets the potentiostat.

• change channel: Changes the multiplexer channel (refer chapter 5). Arguments:
mode, channel

Below is examples of how to use the remote interface from a remote computer (the remote-
client program must be installed on the remote computer). The IP and port arguments
is the IP address of the Elchemea system and port is the port on which the remote server
is listening (usually 4040).

remote-client IP:port ping

remote-client IP:port debug

remote-client IP:port exit

remote-client IP:port mode

remote-client IP:port reset_potentiostat

remote-client IP:port session $user

remote-client IP:port impedance $user $mode $session_nr

remote-client IP:port potsweep $user $mode $session_nr

remote-client IP:port chrono $user $mode $session_nr

remote-client IP:port get_file $user $mode $session_nr $file_nr

remote-client IP:port get_file_now $user $mode $session_nr $file_nr

remote-client IP:port change_channel $mode $channelid

7.3 Serial server

The serial server handles all communication to the serial devices (one server must be
running for each serial device used). The server must be run as root, as only root has
access to the hardware devices (/dev/ttyS0 etc.). The server assumes that all modules
communicate with baud rate 9600 except in the case of the power supplies which operates
at 4800 baud. The serial server accepts the following commands only:

• ’quit’: Shuts down the serial server, do not use unless you intend to shut down the
serial devices.

• ’debug’: Toggles the debug information on/off: If any arguments are passed, the
argument specifies if debugging is to be on or off (accepts enable/disable).

• ’relay’: Sets the status of an ICP-con R© relay box (model 7064 or 87064 or com-
patible). Arguments are: address, relay number, status where status is 1 for closed
and 0 for open.

• ’icptest’: Performs a test of the ICP-module (all models that accepts the ’$AA2’
command) on the address specified, the return value is the string returned by the
module.

• ’icp raw’: passes the argument directly to the RS232/RS485 bus, used for setting
the configuration if ICP modules. Please read the documentation for the ICP-con R©
modules for further info.

Elchemea 25 of 56 Implemented by Søren Koch

DTU Energy 6.1.0

• ’icpmultiread’ Reads the status of a ICP-con R© analogue to digital data acquisition
module returning a string containing all the measured values separated by newlines.

• ’multiplex’: This command has a umber of sub commands as following. All com-
mands regards ICP-con R© relay modules model 7064 or 87064 or compatible.

– ’SET SINGLE’: This command sets all the relays except one in the off po-
sition (Note relay numbers starts with 0). Arguments: module address, re-
lay number.

– ’SET MULTI’: This command sets all relays to the specified state. Arguments:
module address, relay-status. The relay status string is in binary representa-
tion (ex. ’10010110’).

– ’READ’: This command returns the status of the relay module in the form of a
binary representation string (ex ’10010110’). Arguments are module address.

– ’READ RAW’: Returns the raw status string from a relay module. Arguments:
module address.

• ’volt set’ or ’flow’: These commands sets the output voltage of a ICP-con R© multi-
channel analogue output module (model 7024 or 87924 or compatible). Arguments:
module address, channel number, output voltage. Range of output voltage depends
on module configuration, refer ICP-con R© module manual.

• ’strgr’: This command read the voltage of the input of a ICP-con R© strain gauge
module (model 7016 or compatible). Arguments: module address.

• ’strgs’: This command sets the output voltage of a ICP-con R© strain gauge module
(model 7016 or compatible). Arguments are: module address, output voltage (Note
only positive voltages can be set!, range depends on module configuration).

• ’da’: Sets the output voltage of a ICP-con R© module. Arguments: module address,
output voltage, This command may be incomplete, use at own risk!.

• ’icp7017read’: This command reads the analog values of a ICP-con R©-7017 mod-
ule and returns the values as a carriage return delimited list. Arguments: mod-
ule address

• ’temp’: This command communicates with an Eurotherm R© controller using the
bisynch protocol: Arguments: mode, address, tag, [opt. new value]. Where mode
is either ’R’ or ’W’ for read or write respectively.

• ’modbus’: This command communicates with an Eurotherm R© controller using the
modbus protocol. Arguments: mode, address, tag number, [opt. new value] where
mode is one of the following: ’R’ for raw read, ’RI’ for integer read, ’G’ for floating-
point read, ’W’ for integer write and ’P’ for floating-point write.

• ’brooks’: This command is used for communication with a Brooks R© S-type mass
flow controller The command assumes that the controller is working with a baud
rate of 19200 and a parity of ’odd’. Arguments: tag number, action, [opt value]
where action is one of the following: INIT, READFLOW, SETFLOW, OVERRIDE.

Elchemea 26 of 56 Implemented by Søren Koch

DTU Energy 6.1.0

• ’bronkhorst’: This command is for communication with a Bronkhorst R© mass flow
controller. Arguments: command, [opt value] where command is one of the follow-
ing: string, readflow, setflow, readset. Note that no address argument is necessary
as the server assumes only one device on the serial port (Direct RS232 communi-
cation)!

• ’init’: This command initializes a DC power supply (of type Delta Elektronika R©
daisy chained through RS232). Arguments: 31 RS232 box address, max voltage.
Note that it is necessary to remember the initial argument ’31’ (for historical reasons
this argument is maintained although it is not used)!. Note that this command is
deprecated.

• ’current’: This command sets the DC current for the power supply. Arguments: 31
RS323 box address, current where current is either ’OCV’ for open circuit operation
or the current to be set. Note that it is necessary to remember the initial argument
’31’ (for historical reasons this argument is maintained although it is not used)!.

• ’delta’: This command supersedes the current command described above. It is used
for Delta Elektronica R© PSU’s. Arguments: mode, address, [optional arguments
depending on mode], where mode is one of the list: (raw, idn, init, current, volt,
measure volt, measure current, ocv, on).

• ’elektro’: This command is used for controling Electronic loads (EL 9160 300 HP
and similar). Arguments: mode, address, [optional arguments], where mode is
one of the following list: (idn, ocv, on, remote, read, write, read values, raw, hex,
raw byte read, raw byte write).

The server is started with the two arguments: the serial device to bind to (ex. ttyS0)
and the baud rate. In case of a baud rate of 4800, the server assumes that it is directly
connected to a RS323 daisy chain of power supplies (refer figure 6). If an optional
third argument is used, then the server emulates the tty given as this argument. Thus
serial-socket-server-9.0.pl ttyM0 9600 ttyS20 will bind to /dev/ttyM0 but pretend to be
/dev/ttyS20. The serial server is usually accessed only by the command system through
the web pages (refer section 9), but the serial-socket-client-1.2.pl program can access the
serial server directly. The serial client has the following usages (based on the list above):

serial-socket-client-1.2.pl $tty quit

serial-socket-client-1.2.pl $tty debug [opt. $mode]

serial-socket-client-1.2.pl $tty relay $address $relay $status

serial-socket-client-1.2.pl $tty icptest $address

serial-socket-client-1.2.pl $tty icp_raw @args

serial-socket-client-1.2.pl $tty icpmultiread $address

serial-socket-client-1.2.pl $tty multiplex SET_SINGLE $address $relay

serial-socket-client-1.2.pl $tty multiplex SET_MULTI $address $statusstring

serial-socket-client-1.2.pl $tty multiplex READ $address

serial-socket-client-1.2.pl $tty multiplex READ_RAW $address

serial-socket-client-1.2.pl $tty flow $address $channel $value

serial-socket-client-1.2.pl $tty volt_set $address $channel $value

Elchemea 27 of 56 Implemented by Søren Koch

DTU Energy 6.1.0

serial-socket-client-1.2.pl $tty strgr $address

serial-socket-client-1.2.pl $tty strgs $address $value

serial-socekt-client-1.2.pl $tty icp7017read $address

serial-socket-client-1.2.pl $tty da $address $value

serial-socket-client-1.2.pl $tty temp r $address $tag

serial-socket-client-1.2.pl $tty temp w $address $tag $value

serial-socket-client-1.2.pl $tty modbus r $address $tagnr

serial-socket-client-1.2.pl $tty modbus ri $address $tagnr

serial-socket-client-1.2.pl $tty modbus g $address $tagnr

serial-socket-client-1.2.pl $tty modbus w $address $tagnr $value

serial-socket-client-1.2.pl $tty modbus p $address $tagnr $value

serial-socket-client-1.2.pl $tty brooks $tagnr init

serial-socket-client-1.2.pl $tty brooks $tagnr readflow

serial-socket-client-1.2.pl $tty brooks $tagnr setflow $value

serial-socket-client-1.2.pl $tty brooks $tagnr override $value

serial-socket-client-1.2.pl $tty bronkhorst string $cmdstr

serial-socket-client-1.2.pl $tty bronkhorst readflow

serial-socket-client-1.2.pl $tty bronkhorst setflow $value

serial-socket-client-1.2.pl $tty bronkhorst readset

serial-socket-client-1.2.pl $tty init 31 $address $max_volt

serial-socket-client-1.2.pl $tty current 31 $address $value

serial-socket-client-1.2.pl $tty delta idn $address

serial-socket-client-1.2.pl $tty delta raw $address [@args]

serial-socket-client-1.2.pl $tty delta ocv $address

serial-socket-client-1.2.pl $tty delta on $address

serial-socket-client-1.2.pl $tty delta volt $address $voltage

serial-socket-client-1.2.pl $tty delta current $address $current

serial-socket-client-1.2.pl $tty delta measure_volt $address

serial-socket-client-1.2.pl $tty delta measure_current $address

serial-socket-client-1.2.pl $tty delta init $address

serial-socket-client-1.2.pl $tty elektro idn $address

serial-socket-client-1.2.pl $tty elektro remote $address [on/off]

serial-socket-client-1.2.pl $tty elektro ocv $address

serial-socket-client-1.2.pl $tty elektro on $address

serial-socket-client-1.2.pl $tty elektro read_values $address

serial-socket-client-1.2.pl $tty elektro read $address $tag

serial-socket-client-1.2.pl $tty elektro write $address $tag $value

serial-socket-client-1.2.pl $tty elektro raw_byte_read $address $tag

serial-socket-client-1.2.pl $tty elektro raw_byte_write $address $tag [@args]

serial-socket-client-1.2.pl $tty elektro raw $address $mode $length [@args]

serial-socket-client-1.2.pl $tty elektro hex $address [@args]

As for the CGI client.pl program in the above list all stings beginning with a ’$’ is
variables and any string beginning with a ’@’ is an array of variables (described in more
details previously).

Elchemea 28 of 56 Implemented by Søren Koch

DTU Energy 6.1.0

7.4 GPIB-server

Although the GPIB server is not distributed with Elchemea it is described briefly here.
The GPIB-server handles all communication with devices attached to the GPIB con-
troller. The server version 2.9+ accepts the following commands:

• ’I’: This command initializes the channel definitions (is automatically run at server
start-up and is only intended if changes have been made to the channel definitions).

• ’D’: Turns debug information on and off (printed on standard out, so redirect this
somewhere sensible).

• ’R’: This command reads from the specified device address. Arguments:
device address.

• ’W’: This command writes a command string to the specified device. Arguments:
device address, command string (remember quotes!).

• ’T’: This command sets the GPIB communication delay to the specified number of
milliseconds (default is 1 ms).

• ’C’: Combined write and read command.

• ’K’: This command reads a channel on the Keithley 2700 multimeter. Arguments:
address:board number channel number (the set-up is found in the channel defini-
tions). Note that no space between the gpib address, the colon ’:’, the board number
or channel number. Example: measure channel 4 on board 1 on gpib 16: gpibclient
K 16:104

• ’B’: Same as K, but in a burst mode instead with an additional argument specifying
how many consecutive measurements to perform. Note that this blocks the keithley
and gpib bus until the measurements has been performed and the result returned!

• ’V’: Same as ’K’ except that the channel set-up must be specified as an additional
argument.

• ’Q’: This command forces the server to quit gracefully (no core dump).

The channel definitions are located in the directory /etc/gpib/ The gpibclient program
can be used to directly access the GPIB-server: usage:

gpibclient I

gpibclient D

gpibclient C $address $command_str

gpibclient R $address

gpibclient W $address $command_str

gpibclient K $address:$channel

gpibclient T $delay

gpibclient B $address:$channel number_of_measurements_in_a_row

gpibclient V $address:$channel $set-up

gpibclient Q

Elchemea 29 of 56 Implemented by Søren Koch

DTU Energy 6.1.0

Although the true GPIB server is not distributed with Elchemea, an small dummy server
is, it can be found in the dummy gpib server directory in the distribution directory, and
can be compiled and installed by running the make and make install commands in that
directory. This small dummy server emulates a true GPIB server, and has some of the
functionality described above however it does not actually do any communication to a
physical device!. Specifically it honors the D,T,I and K commands (although the K
command only returns a fixed value, -32768). This dummy server is included in order to
test the system and to provide a harness for developers in case the normal GPIB server
is not available.

Additionally, if no GPIB device is to be used, the gpib to serial server.pl program in-
stalled in /usr/local/bin/elchemea can act as a GPIB-server by redirecting all commands
to a serial device. However this relay server only accepts the r,w,d and q commands
described above. The gpib to serial server.pl will bind to localhost port 12345 and will
thus NOT work alongside a normal GPIB-server!

Elchemea 30 of 56 Implemented by Søren Koch

Chapter 8

System command interface
(command line)

Although the Elchemea is designed to be used primarily through the web interface, a lot of
command line tools are included in order to facilitate greater freedom in running complex
test sequences as well as system debugging in the case of malfunctioning hardware etc.
Below is a list of the most used command line tools for the cell test control system:

• CGI client.pl (discussed in section 7.1)

• gpibclient (discussed in section 7.4)

• serial-socekt-client-1.2.pl (discussed in section 7.3)

• remote-client This program is used to access the remote server (discussed in section
7.2 and 9), In order to use it, simpley copy it to the remote system which needs to
access Elchemea and call it according to the description in section 7.2.

• printport-client.pl This program is used to directly access the printport server used
for multiplexing control.

• set relay.pl Wrapper for printport-client.pl. The program first releases the enable
relay (pin 4). then releases the selected channel and sets the new channel, and
finally sets the enable pin again. The program expects a single argument (0 to 3)
which sets the corresponding select pin (pin 0 to 3 on the parallel port device).

• chamgepwd.pl This program is used to change a users password (used if pasword
control of individual Elchemea users is enabled and a user has forgotten his/her
password).

• gpib to serial server.pl This program is used to emulate a gpib-server over a se-
rial interface (if communication to the elecrochemical interface and/or frequency
response analyser is done by serial interface). The server binds to the same port as
the normal GPIB-server but sends the commands through the serial interface. Run
the program without arguments to get a description of usage.

All the commands are located in /usr/local/bin/elchemea/

31

Chapter 9

Remote control

It is possible to remote control the Elchemea system by using the CGI-remote-server.pl
program as described in section 7.2. This is in order to facilitate system integration
with data logging software where impedance, potential sweep and/or chrono amperom-
etry/potentiometry needs to be synchronized. To facilitate remote command execution,
connect the Elechemea system to the network, and press the ’Connect to network’ /
’Disconnect from network’ button on the main page (refer figure 3.2).

If remote commands are allowed (refer section 5) remote command can then be executed
by running the appropriate commands as specified in section 7.2. The software package
RFCcontrol c© has build in support for the commands described in section 7.2 making
integration easy, bur other systems may need to have remote-client installed (refer section
8).

32

Chapter 10

Module specifications

This chapter contains the module specification for the Perl modules supplied as part of
the Elchemea software suite. It includes function descriptions including number and type
of any function arguments. Some of the modules are object oriented (with only a publicly
accessible constructor) and in other cases the modules are function orientated.

In the case of function orientated modules, any functions exported by the module are
described, both for what it does, as well as number and types of arguments.

In the case of the object oriented modules, any inheritance is also described (usually
in the beginning of the module description). For the object instances, usually only the
member functions intended to be public is described (as Perl does not have a true private
function declaration). Note that some of the object orientated modules define more than
one class type, but as all the class types in this case behave similarly (polymorphic), only
the main class is described as the subsequent class definitions implements the main class
type behavior.

Each module is described in it’s own section.

33

DTU Energy 6.1.0

10.1 Debug

Use: my $id = Debug→new();

This class is intended to be a base class for other classes to derive from so that easy debug
functionality can be included.

Utility class for debugging. It contains the following member functions:

$id→debug() Sets or gets the debug level: level 0 is no debug, level
5 is complete debug including stack backtrace. This
class only uses level 0 (no debug), level 1-4 (debug
iformation displayed) and 5 , debug info displayed
with complete stack backtrace. The levels 1-4 lets
other modules define debug levels inbetween the ones
used here.

$id→writedebug($,[$]) Writes the string to standard error if debuglevel is
1 or higher. If overide is specified (second argument
which is optional), debug level 5 is assumed for this
debug.

$id→die($) Appends stack backtrace to argument string and calls
CORE::die

$id→print setup() Prints out the complete current setup includ-
ing all member functions and data fields (uses
Class::Inspector).

10.2 SemaforeFile

Inherits from Debug (refer section 10.1).

This package makes file inout/output on multiprocess systems more easy by encapsulating
file locking. To define a new semaforefile use the new method:

my $id = SemaforeFile→new($filename,$lockfile);

my $id = SemaforeFile→new($filename);

If the lockfile is not specified, the default (/var/lock/SemaforeFile/SemaforeFile.lock or
/tmp/SemaforeFile.lock) is used instead. This form should generally notbe used however,
as in some cases /var/lock/SemaforeFile/SemaforeFile.lock can not be used and files in
/tmp/ will from time to time be deleted...

The package includes the following simple public methods on semafore files:

$id→readonly() Returns true if the file is readonly for the current user
$id→exist() Returns false if the file does not exists;
$id→chmod($) Sets the file permissions according to CORE::chmod
$id→filename() Returns the filename of the semafore file

Elchemea 34 of 56 Implemented by Søren Koch

DTU Energy 6.1.0

$id→readlines() Returns the content of the file as an array with one
line in each element Note thet it removes any trailing
newline from the read lines!

$id→writeline(@) Writes the arguments to the file (NB: Overwrites file
and add a newline to each argument if they do not
already have it).

$id→append(@) Appends the arguments to the file (Also adds new-
lines if nescesarry).

It is not nescesarry to check for file esistence in readlines as an empty array is returned if
the file does note exist Note that the readlines function should only be used on small files
as it globs the entire content to memory! For large files, use the more advanced member
functions (see below). Also note that trailing newlines are removed from the individual
lines. If this are not desired, use the readline() method described below.

The module also includes the following methods for advanced use: Note none of these
functions check if the file exist before trying to open! The unsafe versions of open and
close does not lock or unlock (assumes the user does this explicitly!)

$id→lock ex() Locks file for exclusive use (Read, Write or Anppend)
$id→lock sh() Locks file for shared access (Read only)
$id→lock ex nb() Locks file for exclusive use non blocking (Check re-

turn status!)
$id→lock sh nb() Locks file for shared access non blocking (Check re-

turn status!)
$id→unlock() Unlocks file
$id→open read() Opens the file for reading (locks file shared if not

already locked)
$id→open readback() Opens the file for reading backwards (locks file shared

if not already locked)
$id→open write() Opens the file for writing (locks file exclusive if not

already locked exclusive)
$id→open append() Opens the file for appending (locks file exclusive if

not already locked exclusive)
$id→close() Closes the file and unlocks it
$id→open read unsafe()
$id→open readback unsafe()
$id→open write unsafe()
$id→open append unsafe()
$id→close unsafe()
$id→mtime() Returns the time of modification of the file as re-

ported by File::stat→mtime, returns 0 if the file does
not exist.

$id→readline() Reads and returns the next line from the file, assumes
an open file Raises an excpeption (die) if not.

$id→fh() Returns the underlying file handle for direct IO (Use
with care!)

Elchemea 35 of 56 Implemented by Søren Koch

DTU Energy 6.1.0

Additionally the $id→debug($) member function (inherited from Debug.pm) can turn
debug information on and off $id→debug($level) turns debug on and $id→debug(0) turns
debug off ($level is the debug level, 1 - 5) This may be usefull if deadlock is encountered
(so that the individual file locking operations can be monitored! If $id→debug() is called
without arguments it returns the status (i-e if debug in on 1 is returned else 0.

10.3 ElchemeaConfig

Inherits from Debug (refer section 10.1).

Use:

my $id = ElchemeaConfig→new($filename);

my $id = ElchemeaConfig→new(SemaforeFile instance);

Or

my $id = ElchemeaConfig→new($filename,$lockfilename);

This class is intended to be used for accessing a file where the data is stored in the way of
key = value pairs inside sections delimited by SECTION $name - ENDSECTION pairs
(example below)

SECTION testsection
key1 = value1
key2 = value2
ENDSECTION

In the example above any leading ’#’ should be removed as they indicate comments
and the ElchemeaConfig package honors this convention making it possible to include
comments in the data file (configuration file).

The ElchemeaConfig module incorporates the possibility to use transactions.

All ElchemeaConfig instances honors the following member functions:

$id→debug() Sets or gets the debug level (inherited from De-
bug.pm).

$id→die($) Terminates current process with supplied string (with
stacktrace) as errorcode (Inherited from debug.pm).

$id→filename() Returns the filename of the configuration file.
$id→readlines() Returns the content of the file, only allowed outside

a transaction
$id→writeline(@) Write the supplied strings to the file (note owerwrites

file!), Only works outside a transaction.
$id→modtime() Returns the last time of modification for the file. Note

that when a transaction is initiated the time reported
will be the last time before transaction initiation!

Elchemea 36 of 56 Implemented by Søren Koch

DTU Energy 6.1.0

$id→get config value($$) Returns the value associated with the specified key in
the specified section (arguments: $section, $key). If
called in a list context, returns a list of values based
on the value of the specified key (value split along
commas, ignores spaces around commas)

$id→get sections() Returns a list of the section names in the file.
$id→get keys($) Returns a list of key names for the specified section

name.
$id→is readonly() Returns true if the file is read only, false if the file is

writable.
$id→section exists($) Returns true if the specified section exists in the file.
$id→exists($$) Returns true if the specified key exists in the specified

section. Arguments: section, key
$id→change config value($$$[opt @values]) Changes the value associated with the spec-

ified section - key pair to the specified value. If inside
a transaction, the change is stored in an internal data
structure and the file itself is not changed. subse-
quent calls to get config value() with this pair as ar-
gument will return the new (not yet commited) value
instead of the value stored in the file. Required argu-
ments: $section,$key,$newvalue. If additional argu-
ments all the additional values as well as the first are
stored as a comma separated list (thus conforming
with get config value called in a list context)

$id→error() Returns the errorstring (returns an empty string if no
error).

$id→begin() Initiates a transaction.
$id→commit() Commits any changes (through calls to

change config value()) to the file. If the file it-
self has changed between the initiation of the
transaction and the commit, a warning is issued and
no changes is written, thus always check the return
status of commit (1 for succes, 0 otherwise). If an
error or warning orccours the error string is set.

$id→rollback() Discards any changes not yet committed.

Note that if a transaction is initiated and no commit is issued, aotumatic rollback occours
uppon instance destruction and/or program termination.

10.4 SocketClient

This module defines a number of communication functions used for accessing tcp:IP
sockets on local and/or remote systems. The functions defined are listed below:

Elchemea 37 of 56 Implemented by Søren Koch

DTU Energy 6.1.0

socket client raw($$@) Base function used by all subsequent functions, han-
dles the raw tcp:IP cummunication. Arguemnts: server,
port, [additional args to server]. The server can either be
a ip-address or a hostname. Any additional arguments
gets serialised with tab characters and 2 newlines are
appended to the resulting string before transmission.

socket client($$@) Same as above, but catches any communication errors
in an eval guard.

socket client nocr($$@) Same as above, but do not append any newlines to the
transmitted string.

socket client raw nocr($$@) same as socket client raw() but do not append newlines.
serial client($@) communicates with a local serial server (which handles

hardware communication on the serial port. Arguments:
tty, args to server. The server is assumed to be the local
server (either localhost or the public IP address of the
server) and the port number is the tty number added to
202020 (Note wraparound!).

GPIB client() Communicates with the GPIB-server. Arguments are
passed to the GPIB-server serialised with tab characters
using socket client nocr(). The server is assumed to be
the local server (either localhost or the public IP address
of the server) and the port number is 12345.

serial client raw($@) Same as serial client() but without eval guard.
GPIB client raw() Same as GPIB client() but without eval guard.

10.5 RemoteExec

Inherits from Debug (refer section 10.1).

This package is intended to be used to manage execution of remote program from within
Elchemea. To obtain a remoteExec instance call the constructor with the filename and
arguments of the program in question (Remember to use the full path! as the module
internally uses the path of ” intentionally):

$id = RemoteExec→new($command);

The constructor does some simple sanitizing, but not enough to ensure that no malis-
cious programs can not be executed! Thus it is up to the user of RemoteExex to ensure
that programs executed thorugh this interface does not harm the system! The construc-
tor splits the parsed command into a filename and arguments and keeps those stored
separately making implementation of the filename and args functions simple.

Each RemoteExec instance has a number of member functions apart from those derived
from Debug.pm:

$id→filename() Returns the filename.
$id→args() Returns a list of the arguments found as part of the

original command

Elchemea 38 of 56 Implemented by Søren Koch

DTU Energy 6.1.0

$id→exists() Returns true if the filename exists (result of the -e
operator)

$id→exec(@) Ececutes the program with the original arguments fol-
lowed with the specified arguments (if any).

$id→exec id($) Same as exec, but without any extra program argu-
ments, however the single argument to this function
must be a instance of the FDEV class (or one of
the derived classes). This member function is the
only one directly linking the RemoteExec class to the
Elchemea framework, so this class can be used with-
out Elchemea as long as this member function is not
used (as the RemoteExec class does not import any
Elchemea classes apart from the Debug class (which is
a class which only derives from Perl internal classes)

10.6 Elchemea

The Elchemea.pm module contains a number of utility functions for the elchemea system.
the functions are described below:

debug(opt $level) Turns debug on and off. Returns the debug
level if called without an argument.

set multiplex info(@) Writes the arguments to the multiplex file.
One argument at each line .

get multiplex array() Returns an array with the content of the mul-
tiplex file used to store the multiplexer set-
ting.

get multiplex info() Returns the first line of the multiplexfile used
to store the multiplexer setting.

get external polarisation function($) Returns a function pointer to the
run ext cmd function. Based on the in-
put string it sets the program to be executed
on function call (sets the $ext pol cmd
variable).

get last message() Returns the content of the last message vari-
able.

set last message($) Sets the last message variable to the specified
argument.

append last message($) Appends the specified string to the
last message variable.

unset message() Deletes the content of the last message vari-
able .

is locked() Returns true if a measurement is running.

Elchemea 39 of 56 Implemented by Søren Koch

DTU Energy 6.1.0

is locked device() Returns true if a device is processing com-
mands (this will be the case for some sec-
onds after a measurement is stopped before
cleanup is complete).

lock measure() Marks a measurment as running and locks
the device.

unlock measure() Removes the seamafore marking that a mea-
suremnt is running.

unlock device() Removes the seamafore marking the device
as in use.

stop measure() Stops the current measurement.
get config value($$) Returns the configuration value for the spec-

ified section and key (See the get cv function
in ElchemeaConfig.pm for details).

stop program() Stops any running program. Note does NOT
stop any chronoamperometry with no finite
runtime. Stops normal chronoamperometry
though.

stop chronoforever() Stops any chronoamperometry with no finite
runtime.

get dir list() Returns a list of files in the specified direc-
tory which matches the specified regular ex-
pression.

mail($$$) Sends an email to the specified address. Ar-
guments: address, message, subject.

EFAlog($) Appends the specified string to the error file
(includes stack backtrace).

get time($) Returns the time in format YYYY MM DD
HH MM SS. Output is in the form of an ar-
ray. Input is either ’now’ or the offset (check
’man date’ for details).

CGI client(@) returns the result of the specified command
and optional arguments to the CGI-server.

User administration functions. Note that some of these functions are only used if the
user authentification is based on a local user list.

add user($) Function which adds a user by adding a line to the
userlist (passwd) file. The function also creates the user
directry and copies the configuration files to the relevant
positions.

user exists($) Checks if the user exists. Returns 1 if true 0 otherwise .
get pwd($) Returns the password hash for the specified user.
set pwd($$) Sets the password hash for the specified user to the spec-

ified value. Arguments: username, passwdhash.
set proglog($) Writes the specified string to the ’current command file.

Elchemea 40 of 56 Implemented by Søren Koch

DTU Energy 6.1.0

get priglog() Returns the content of the ’current command’ file.
get remaining time() Returns the remaining time in seconds. Looks in the

proglog file for index 2.
format time($) returns a text string describing the time supplied (Ex-

pects time in seconds). Note that the returned string
will only be an approximate value (returns ’1 hour 5
minutes’ for 1 hour, 5 minutes and 16 seconds for in-
stance).

10.7 ElchemeaUser

Inherits from Debug (refer section 10.1).

This module defines the ElchemeaUser class. To obtain an ElchemeaUser instance, call
the constructor:

my $u = ElchemeaUser→new($username);

All ElchemeaUser instances has the following public member functions:

$id→modtime([$]) Returns the last modification time for the configura-
tion file for the specified session number (default is
current session).

$id→debug([$]) Sets or gets the debug level.
$id→init() Initialises the ElchemaUser instance (is automatically

called by the constructor, but can be called explic-
itly).

$id→get channels() Returns a string with the data from the datalogging
devices/channels specified for the user. The string
consists of a number of ’name: value’ pairs separated
by ’, ’.

$id→log string() Returns the last user log entry from the current ses-
sion.

$id→sample name() Returns the sample name for the current session.
$id→get measure file() Returns the name of the current measure file. Argu-

ment: the file name extension.
$id→fisher yates shuffle() Shuffles the supplied array. Argument a refernece to

the array to be shuffled..
$id→get potsweep points($) Returns a list of potential sweep apex points based

on specified session configuration (default is current
session).

$id→get offset program time() Returns the estimated time for a real run of the ex-
ternal polarisation offset program. This is obtained
by calling the program with the ’test’ argument. No-
tice that if the program is not designed to honor this
argument, undefined behaviour is to be expected!

Elchemea 41 of 56 Implemented by Søren Koch

DTU Energy 6.1.0

$id→get impedance frequencies($) Function calculating the impedance frequencies and
integration time for an impedance run the configu-
ration file for the specified session number If no ses-
sion number is specified, the current session is used
by default the return is an aray of hashes contain-
ing frequency, integration time and resistor value If
a second and third argument is specified, it is as-
sumed to be a potentiostat object and a FRA ob-
ject. In this case the frequency list will also include
those tags which is defined in the frequency seg tags()
lists. If the tag is not defined in the segment, the de-
fault value is used (from the impedance potantiostat
or impedance FRA segments respectively

$id→get measure nr() Returns the current measure number.
$id→increase measure nr() Increases the current measure number.
$id→increase session nr($) Increases the session number (creates a new session).

The sesion name of the new session is the specified
string.

$id→get program nr() Returns the current program number.
$id→increase program number() Increases the current program number.
$id→get session name($) Returns the session name for the specified session,

default is current session.
$id→get session log($) Returns the content of the sesion log file for the spec-

ified sesion, default is current session.
$id→get config value($$) Returns the value of the specified sesion and key (re-

fer ElchemeaConfig.pm for details). Arguments: sec-
tion, key. Returns an array of values if called in a list
context (raw value split along commas).

$id→config section exists($) Checks if the specified section exists.
$id→config key exists($$) Checks if the specified key exists in the specified sec-

tion. Arguments: section, key
$id→change config value($$$) Sets the value fo the specified section and key to the

specified argument. Arguments: section, key, newval.
$id→name() Returns the user name.
$id→session() Returns the current session number.
$id→proglog($) Appends the specified string to the proglog file.
$id→load session nr() Loads the current session number from the test.nr

file.
$id→config() Returns an ElchemeaConfig instance tied to the cur-

rent configuration file (for the current session).

10.8 ElchemeaProgram

Inherits from Debug (refer section 10.1).

Elchemea 42 of 56 Implemented by Søren Koch

DTU Energy 6.1.0

This module is intended for programmed sequences of impedance, potential sweeps or
chrono potentiometry/amperometry. It is used by the grahical interface to Elchemea and
can be used independendtly as well.

The constructor can be called in two ways:

$id = ElchemeaProgram→new($username);

$id = ElchemeaProgram→new($username,’test’);

If the test argument is specified (any second argument will work similarily) all the stan-
dard member function returns immediately and the destructor outputs the expected total
runtime for the whole program if it were to be called without the test argument. Thus if
the module is used independently of the standard user interface (or programs are man-
ually edited), the programmer must make sure that all non-member function calls are
protected by a test guard like the one shown below:

Member function work here

if (!$id->test)

{

Do non member function work here

}

More member function work here

This is especially improtant if tha manual edit option is used in the graphical Elchemea
interface, as the interface calls the program with the test argument to obtain the expected
runtime in order to display this to the user! All member functions include a test guard
where it is nescesarry.

A ElchemeaProgram instance includes two counters, one which is incremented for each
member function entry, and one for each member function success. The destructor ap-
pends a line the the users programlog file indication how many commands were attempted
and how may were successfull. Note that in case the program is prematurely ended (by
removing the program lockfile) the two numbers will differ!

The member functions of an ElchemeaProgram instance are:

$id→test() Returns true if the test argument was supplied to the
constructor

$id→fra() Returns the frequency response analyser object (refer
FDEV.pm for details).

$id→pot() Returns the potentiostat object (refer FDEV.pm for
details).

$id→debug() Sets or gets the debug level
$id→user() Returns the user object (created from the username

argument to the constructor, refer ElchemeaUser.pm
for details

$id→set lock() Sets the lockfile preventing other ElchemeaPrograms
from running. Automatically called by the construc-
tor if not in test mode.

Elchemea 43 of 56 Implemented by Søren Koch

DTU Energy 6.1.0

$id→is locked() Returns true if an non-test ElchemeaProgram is run-
ning. This function is used to check if a program
should terminate prematurely, if so, the member func-
tions returns imediately (as had the test parameter
been specified) and the success counter is not incre-
mented.

$id→unlock() Removes the lockfile, automatically called by the de-
structor for non-test programs.

$id→end all() Stops all measurements started by the program.
$id→end chrono() Stops any running chrono amperome-

try/potentiometry, including forked programs
$id→CGI client(@) TCP-IP client for calling the CGI-server.
$id→socket client($$@) Generic TCP-IP client. usage:

socket client($host,$port,@args)
$id→mail($$) Email client for sending mail, usage:

mail($email,$message,[opt $subj])
$id→init fra() Initialises the frequency response analyser
$id→init potentiostat() Initialises the potentiostat
$id→reset potentiostat Resets the potentiostat.
$id→chrono($) Runs a chrono amperometry/potentiometry. usage:

chrono($session,[opt $time],[opt $polarisation]). If
the polarisation is not specified, the polarisation in
the user configuration is used and if the time is 0
the process forks and the started chrono runs untill
program exit (allows for background chrono measure-
ments). If no time or polarisation is specified, the
settings from the session configuration are used.

$id→potsweep($) Runs a potential sweep based on specified session con-
figuration.

$id→multi imp($$$ Runs a series of impedance measuremtns based
on specified session configuration. Usage:
multi imp($session,$number,$minutes inbetween).

$id→impedance() Runs a single impedance measurement based on spec-
ified session configuration.

$id→proglog($) Writes the specified string to the users programlog.
$id→change channel($) Changes the multiplexer channel to the specified

channel number (Only valid if a multiplexer is con-
nected to the Elchemea system)

$id→get multiplex channel() Returns the channel selected by the multiplexer (see
above)

$id→wait($) Waits for the specified number of minutes.
$id→temp and ramp($$) Sets the temperature controler setpoint and ram-

prate, only valid If a temprature controler is con-
nected to the Elchemea system.

Elchemea 44 of 56 Implemented by Søren Koch

DTU Energy 6.1.0

10.9 ElchemeaCGI

This module contains a number of utility functions for outputting properly formatted
html code for user interface generation. Thus it mainly extends the CGI.pm module by
Lincoln D. Stein. The module exports these functions in two groups.

The :html group exports these functions:

print header($[%]) Prints the header information. Arguments: title. Any
additional optional arguments (in the form of a hash)
will be parsed along to the header() function supplied
by CGI.pm. The functionautomatically appends a call
to a javascript function logging users out after some time
of no actions.

print end() Prints the help button and ends the html output with
the proper tag.

not auth() Prints the information supplied to the user if the user is
nor authorised. Also prints a link to the log in page.

print hidden() Prints a number of hidden fields used to maintain state.
This includes user name and a cryptographic hash of the
users password.

print hidden rig() Same as print hidden(), but with the additional infor-
mation abut the active rig.

logout() Prints a logout button.
action($) Prints a hidden field with an action parameter with the

specified value which can be used for program control
flow.

EFA start html() A wrapper for CGI::start html. Any arguments (in the
form of a hash) are passed to CGI::start html. Auto-
matically appends a reference to the javascript source
file on the server.

js back() Prints the javascript for gping backwards (uses the
browser.back() fjavascrpt call).

get CGI value($) Retrieves the value of the specified CGI parameter (sup-
plied by the web browser.

get CGI value clean($) Same as get CGI value, but does pattern match on the
retrieved value and only returns the part that matches.
The pattern match is [\w\s\.\,]*. This has the benefit
of untainting the returned parameter value (For taint
checks in perl and web access, refer Lincoln D. Steins
book Official Guide to Programming with CGI.pm)

The :cgi group of functions include the following:

get CGI value($) See above.
get CGI value clean($) See above.
action($) See above

Elchemea 45 of 56 Implemented by Søren Koch

DTU Energy 6.1.0

not auth() See above
login ok() Checks if the user supplied login credentials are ok. This

can be either against a small local database, or against
a full RDBMS.

login msg() returns the errormessage if the user was not authenti-
cated.

menu button(@) Prints a menu button. Arguments: name, value, style.
The name will be the CGI parameter name, the value
vill be the text on the button and the style is a style
class name to use for displaying.

create menu field Prints the html tags to create a menu field.
top nav bar start() Prints the html tags to start the top navigation bar (ta-

ble specifications etc.)
top no button() Prints a no action button (goes nowhere) in the top

navigation bar.
top nav bar button() prints a top navigation button. Arguments: File, name,

value, style, [optional additional name, value and force
triplets]. The file is the cgi-script to be called upon
button press, the name,value and style arguments are
passed to menu button() and the additional optional
arguments are used to initialise and print hidden html
fields in the form of name-value pairs and a force argu-
ment (1 for force value, 0 for allow reuse of value).

tab newrow() Prints a new row in the top navigation bar.
top js return() Prints a top navigation return button (uses the

javascript printed by js back(), see above)
end top bar() Prints the end of the top navigation bar.

10.10 FDEV

The FDEV module contains the base class information and member functions for all
frequency devices (both potentiostats and frequency response analysers) as well as the
FRA and PSTAT classes. The FRA and PSTST class both inherit from FDEV and
extends this for frequency response analysers and potentiostats respectively. (they are
described separately below).

10.10.1 FDEV

To obtain a default frequency device instance, call the new function: $id = FDEV→new();
All frequency device instances (both default and real) has the following member func-
tions. All functions are described in details where the functions are defined in the file
’FDEV.pm’.

$id→init() Initialises the device. Must always return a true value
(usually a string identifying the device)

Elchemea 46 of 56 Implemented by Søren Koch

DTU Energy 6.1.0

$id→reset() Resets the device.
$id→set resistor($) Sets the measure resistor value. Some devices may

not allow changing the resistor.
$id→get resistor() Returns the measure resistor value.
$id→set polarisation($$) Sets the DC polarisation of the device to the specified

value (2’nd agument is a setup hash reference).
$id→setup impedance($) Setup the device for impedance measurements.
$id→save() Reads device configuration and returns list with

setup values. The list can be used directly with
bulk load check() and bulk load().

$id→checkcmd($) Sends a cmmand to device and checks for errors
$id→get error() Returns any error from device.
$id→last error() Returns last saved error.
$id→lase warning() Returns last saved warning.
$id→errorcode($) Returns the error string correspoding to specified

code.
$id→warningcode($) Returns the warning string correspoding to specified

code.
$id→reset data() Empties the data array,
$id→get data() Returns the data in the data array.
$id→virtual() Returns 1 if a device is a virtual (default) device.
$id→bulk load check(@) Loads a list of commands using checkcmd().
$id→bulk load(@) Loads a list of commands using writecmd().
$id→last pol offset() Returns the last reported polarisation offset.
$id→setuptime() Returns the expected setuptime for the device.
$id→AC gain() Returns the AC gain of the device. Default is 1 but

some potentiostat devices allow for other values.
$id→get reference potentials() Returns a list of possible reference potentials Default

is ’Fixed’ (corresponds to device ground).
$id→get default($) Returns the default setting for the specified configu-

ration tag.
$id→setup tags() Returns a list of setup tags which the device under-

stands.
$id→setup tags chrono() Returns a list of setup tags used for chrono mea-

suremnts.
$id→frequency segment tags() Returns a list of tags whose value may depend on

frewuency settings and thus change between fre-
quency sebments

$id→tag value($$) Sets or gets a value for a specific tag. Only valid for
tags listed in frequency segment tags()

$id→tag description($) Returns a string describing the tag in question.
$id→sub setup tags potsweep() Returns a list of setup tags

used for cyclic voltammetry.

Elchemea 47 of 56 Implemented by Søren Koch

DTU Energy 6.1.0

$id→get tag values($) Returns a list of possible values for a specific setup
key. Is only valid for tags with discrete values. (enu-
merators), returns undef for tags with nummeric val-
ues

$id→get setup value($$$) Returns the setup value for the specified setup key
See detailed description below!

$id→socket client() TCP-IP socket client for communicating with device.
$id→set debugstream($) Sets the debug stream. If argument is a string, a file

name is assumed, otherwise a file handle is assumed!
$id→set errorstream($) Same as above, but for errors.
$id→writedebug($) Writes the argument to the debug stream.
$id→errorlog($) Writes the argument to the error srream.
$id→push cmd($) Pushes the argument to the circular command buffer.
$id→writecmd($) Writes the argument to the device (using se-

rial client())
$id→readcmd() Returns the result of last command send to the de-

vice.
$id→debugon() Turns debug on.
$id→debugoff() Turns debug off.
$id→port Sets or gets the port number for communication.
$id→host Sets or gets the host name for cummunication.
$id→delay Sets or gets the device delay (software only).
$id→set mode($) Sets the device mode (software only, the actual device

mode is usually set as part of set polarisation()).
$id→get modes() Returns a list of possible modes for the device.
$id→mode() Returns the current device mode.
$id→type() Returns the device type (name).
$id→get minfrequency() Returns the minimum frequency for the device.
$id→get maxfrequency() Returns the maximum frequency for the device.
$id→get minpolarisation()
$id→get maxpolarisation() Returns the minimum and maximum polarisation

possible.
$id→print setup() Prints the contents of the current device data (soft-

ware only)
$id→isalive() Returns 1 if the device is allive and able to commu-

nicate 0 otherwise

10.10.2 FRA

The FRA class inherits from FDEV and in addition to the member functions defined
above adds the following functions: In some cases it also overloads functions defined in
the FDEV class.

$id→run frequency($$) Runs a single frequency measurement (see belov for
details)

Elchemea 48 of 56 Implemented by Søren Koch

DTU Energy 6.1.0

$id→run frequency all($$) Same as above, but reports all possible values (which
may include values which makes no sense in the cur-
rent context).

$id→get data long() Returns the values in the logndata array.
$id→get max segments() Returns the maximum number of frequency segn-

ments for the device.
$id→get max amplitude() Returns maximum amplitude allowed for device.
$id→get min amplitude() Returns minimum amplitude allowed for device.
$id→amplitude sets or gets the device AC amplitude (RMS value!).
$id→get impedance time($) Returns the expected time for impedance for the

specified frequency list (se below for details!).
$id→get source modes() Returns a list of possible source modes.
$id→get imtegration time($) Returns the expected time for impedance for the

specified frequency (se below for details!).
$id→get min integration time($) Returns the minimum possible integration time for

the specified frequency (default minimum is 1/f).

10.10.3 PSTAT

The PSTAT class also inherits from FDEV and adds the following member functions: In
some cases it also overloads functions defined in the FDEV class.

$id→ignore() Returns the status of the ignore file (used to check if
another program is using the deivce).

$id→set ignore() Sets the ignore file (creates the file).
$id→unset ignore() Unsets (deletes) the ignore file.
$id→get last OCV() Returns the value of the last OCV measurement.
$id→get minsweeprate()
$id→get maxsweeprate() Returns the minimum and maximum sweep rates pos-

sible.
$id→start sweep() Starts a cyclic voltammetry sweep, returns once the

sweep is started (after delay)
$id→sweep time($) Returns the expected vlotammetry sweep time based

on specified. setup (a hash ref).
$id→setup sweep($) Setup the device for cyclic voltammetry sweep.
$id→start chrono() Starts a chrono measuremet.
$id→setup chrono($) Setup the device for chrono measurements based on

specified setup (a hash ref).
$id→run dvm() make a single measuremnt of current and vultage and

return result.
$id→max sweep points() Returns the maximum independent potential poitns

possible for the device.
$id→setup square($) Setup square wawe output (usefull for fil-

ter/bandwidth selection)
$id→start square() Starts a square wawe function.
$id→square time() returns the time for a square function run

Elchemea 49 of 56 Implemented by Søren Koch

DTU Energy 6.1.0

10.11 Solartron1250

Inherits from FRA (refer section 10.10.2).

This module implements the FRA class for a Solartron R© 1250 frequency response anal-
yser.

It also implements the Solartron1250SL class in order to properly handle the different
versions of the 1250 (the SL class being used for the version of the 1250 supplied with
the Slumberger logo

To get a device instance of one of the classes call the constructors:

$fra = Solartron1250→new($gpib address);

$fra = Solartron1250SL→new($gpib address);

10.12 Solartron1255

Inherits from FRA (refer section 10.10.2).

This module implements the FRA class for a Solartron R© 1252 and 1255/1255B frequency
response analysers.

The class Solartron1255 handles both versions of the 1255 and the Solartron1252 class
handles the 1252.

To get a device instance of one of the classes call the constructors:

$fra = Solartron1255→new($gpib address);

$fra = Solartron1252→new($gpib address);

10.13 Solartron1260

Inherits from FRA (refer section 10.10.2).

This module implements the FRA class for a Solartron R© 1260 frequency response anal-
yser.

To get a device instance call the constructor:

$fra = Solartron1260→new($gpib address);

10.14 Solartron1287

Inherits from PSTAT (refer section 10.10.3).

This module implements the PSTAT class for Solartron R© 1286 and 1287 electrochemical
interfaces.

To get a device instance of one of the classes call the constructors:

Elchemea 50 of 56 Implemented by Søren Koch

DTU Energy 6.1.0

$pstat = Solartron1286→new($gpib address);

$pstat = Solartron1287→new($gpib address);

10.15 Solartron1280

Inherits from Solartron1287 (refer section 10.14).

This module defines a number of classes for using a Solartron R© frequency response
analyser/potentiostat. As the 1280 acts as a conbination of a 1250 and a 1287 the
following classes are defined: Solartro1280/Solartron1280A for the potentiostatic part of
the device and Solartron1280 FRA for the frequency response analyser part of the device.
In order to get a device instance of either of the classes, call one of the constructors:

$fra = Solartron1280 FRA→new($gpib address);

$pstat = Solartron1280→new($gpib address);

$pstat = Solartron1280A→new($gpib address);

10.16 Hioki

Inherits from FRA (refer section 10.10.2).

This module implements the FRA class for Hioki R© 3533 and 3532 Component Measuring
Instruments.

To get a device instance call one of the constructors:

$fra = Hioki3522→new($gpib address);

$fra = Hioki3532→new($gpib address);

10.17 Stanford

Inherits from FRA (refer section 10.10.2).

This module implements the FRA class for Stanford Research Systems R© SR830 Lock-In
amplifiers.

To get a device instance call one of the constructors:

$fra = Stanford→new($gpib address);

10.18 Elchemeadevice

This class is only a wrapper for the individual frequency device classes and as such does
not provide any special functionality apart from the three functions to return a frequency
device instance.

Elchemea 51 of 56 Implemented by Søren Koch

DTU Energy 6.1.0

$id = new device($devicename) returns a new device based on the specified name

$id = new FRA($devicename) returns a new frequency response analyser device based
on specified name. A special name is ’NONE’ in which case a dummy device is returned.
This dummydevice honors the excact same methods as a real device except that it returns
dummydata.

$id = new PSTAT($devicename) returns a new potentiostat device based on the specified
name. As with new FRA() the special ’NONE’ name is recognised and in this case a
dummy potentiostat device is returned.

Common for both types of dummydevices is that the member function virtual() returns
true (1) (it returns false (0) for all real devices).

All member functions on frequency devices are specified in the FDEV.pm class file (which
all frequency device classes derive from). The FDEV class contains a number of virtual
functions which gets overridden by the individual device classes as well as a number of
common member functions.

Two utility functions exist: get FRA list() and get PSTAT list() Both functions merely
returns a list of valid device names for FRA’s and. potentiostats respectively.

10.19 VirtualFRA

Inherits from FRA (refer section 10.10.2).

This module implementes a virtual frequency response analyser.

To get a device instance call the constructor:

$fra = VirtualFRA→new($gpib address);

Note that the gpib-address is only included for portability, it is not used in any way by
the virtual device.

The actual impednace values returnded is determined by the ’command’ setting which
should be a valid executable which MUST be placed in the directory
/usr/local/bin/elchemea/user exec/

The program will be called with the following arguments:

frequency, integration time

And must return the impedance in the form of a string:

Freq Real Imag

Elchemea 52 of 56 Implemented by Søren Koch

Chapter 11

Troubleshooting

11.1 Automatic software updates are blocked by a

web proxy

In order for the automatic software updater (elchemea updater.pl) to work through a web
proxy, add the following line to the configuration file:

In the ’global’ section add

proxy=http://proxy.foo.bar:1234

Remember to change the server name and port number to the settings for your proxy
server.

11.2 The web server only returns ’Internal server er-

ror’ when trying to display the prelogin.cgi page

• Is SE-Linux running in enforcing mode?. If so, disable enforcing mode temporarily
(Refer the Linux manual as to how to do this) and see if this is the cause.

• Check the errorlog of the web server (Often located in /var/log/httpd/error log) to
identify if file permission errors or other misconfiguration are the cause.

• Check the audit log (Often located in /var/log/audit/audit.log to identify if SE-
Linux blocks access to a file. To properly set the SELinux context, run make
fix SElinux in the elchemea installation directory.

11.3 Users can not start new sessions or measure-

ments

Check that the CGI-server is running. In a terminal write ’ps -efl | grep CGI’. The
response should look like this:

53

DTU Energy 6.1.0

0 S sofc 8725 1 0 78 0 - 3367 ? Feb21 ? 00:00:03 /usr/bin/perl /usr/local/bin/elchemea/CGI-server

0 R sqko 13023 12156 0 78 0 - 1000 - 13:13 pts/2 00:00:00 grep CGI

If not, as root start the server by excuting /usr/local/bin/elchemea/start servers. This
program should be set up to be started on system reboot, but in some cases it may be
nescesarry to add apache to the ’lock’ group for this to work reliably.

11.4 Program execution not possible although no pro-

grams are running

Check that no program lockfile exist in the /tmp directory (filename: /tmp/userprogram.lock).
If it exist, remove it (usually you have to be root to do this).

11.5 Impedance aquisition not starting

Check that no measure or device lockfile exist in the /tmp directory (filenames: /tmp/measurelock.lock
and /tmp/devicelock.lock). If one of them exist, remove it (usually you have to be root
to do this, but remember to make sure that someone else is not measuring).

11.6 Temperature control does not work correctly

or errors are reported when trying to change

temperature control setup

• Check that the controller is properly connected to the serial interface on the com-
puter and check that the specified address etc. are correct.

• Check that only one version of the Eurotherm.pm module are installed. Older
versions of RFCcontrol installed modules in an other location, and depending on
search path, this may not have been detected by the Elchemea installer.
To resolve this, in a terminal type:
locate Eurotherm.pm
If more than one line is found beginning with /usr/lib, find which one is the newest,
and delete the rest.

• Check that the serial server is running: to do so in a terminal type
’/usr/local/bin/elchemea/serial-socket-client-1.2.pl ttyS0 debug’ (substituting
’ttyS0’ for the appropriate tty). The response should look like:
’ Debug on’ or ’Debug off’.
If not, type ’ps -efl | grep serial’ and check that the server is listed as a running pro-
cess. If it is not, start it as root by executing /usr/local/bin/elchemea/start servers
which should contain a line starting the serial server.

Elchemea 54 of 56 Implemented by Søren Koch

DTU Energy 6.1.0

• Check that it is possible to communicate with the serial device by using the raw
serial device interface as described in section 7.3.

11.7 Program execution stops and/or command in-

terface behaves strangely (some commands work

but others does not)

Check that the default lock file (called SemaforeFile.lock) for the SemafoeFile.pm module
has the right permissions. It is located in /tmp or in /var/lock/SemaforeFile and should
have permissions 666 (Yes, I know the number of evil...). During normal operation, it
will be created with this permission, but sometimes the system may clean up the temp
directory, and in this case sometimes it may be created with the wrong permissions. To
resolve this, simply remove the file or manually set the right permissions (both operations
may be necessary to do as root).

11.8 Remote command execution does not work

• Check that the CGI-remote-server.pl is running. In a terminal write ’ps -efl | grep
CGI’. The response should look like this:

0 S sofc 8725 1 0 78 0 - 3367 ? Feb21 ? 00:00:03 /usr/bin/perl /usr/local/bin/elchemea/CGI-server

0 S sqko 13020 12156 13 77 0 - 3305 354581 13:13 pts/2 00:00:00 /usr/bin/perl /usr/local/bin/elchemea/CGI-remote-server.pl

0 R sqko 13023 12156 0 78 0 - 1000 - 13:13 pts/2 00:00:00 grep CGI

If not, check that remote execution is allowed (refer section 5) and disconnect from
the network and then reconnect (this should start the server).

• Check that no firewall is blocking the remote requests on port 4040 using the TCP
protocol. Check the host operating system manual as to how to check/configure
the firewall settings.

• Test if the remote system can ping the Elchemea system. Do this by typing (in a
terminal):
ping IP
where IP is the IP-address of the Elchemea system. Refer the (operating system)
manual for the ping command as to what the output may look like if response or
no response is detected.

• Test that the remote server accepts requests by typing (again in a terminal):
remote-client IP:port ping
The response should look something like:

Elchemea system on localhost.localdomain on addr:10.0.19.11 listening on port 4040

Elchemea 55 of 56 Implemented by Søren Koch

DTU Energy 6.1.0

11.9 CentOS 7 related issues

The introduction of CentOS 7 has changed a number of ways how the apache webserver
as well as CPAN works. Some of these changes is not ccompatible with the way Elchemea
works and the steps nescesarry to correct this is described in this setion.

11.9.1 Aapche can not see the modules installed by CPAN.

This is a know problem for CentOS 7 servers as discussed here: http://stackoverflow.com/
questions/33636231/installed-cpan-modules-in-problematic-location

The script ’centos7 CPAN configuration.bash’ script fixes this.

Unforthuately it may be nescesarry to reinstall the CPAN modules required by elchemea,
but this can usualy be fixed by running ’make CPAN’ in the elchemea installation direc-
toyr (as root).

Notice however that the script needs to be run in a separate su sesion (that is you need
to log out from root and log in again) before this wroks!

11.9.2 Programs can be started but not stopped again

CentOS 7 has changed the way /tmp works and has introduced the concept of Pri-
vateTmp.

This is not compatible with elchemea and needs to be disabled.

To do this, do the following:

• cd into the /etc/systemd/system/ directory

• copy the httpd.service file to this directory: (use locate to find it)

cp /usr/lib/systemd/system/httpd.system .

• edit this file ad change ’PrivateTmp=true’ to ’PrivateTmp=false’

• restart systemd:

systemctl daemon-rload

• restart apache:

service httpd restart

Elchemea 56 of 56 Implemented by Søren Koch

