
Manual for Elchemea Analytical

Søren Koch

March 28, 2025

Contents

1 Introduction to Elchemea Analytical 4

2 License 5

3 User interface 6

3.1 Simulation . 6

3.2 Data analysis . 9

3.3 Saving and reloading models . 12

3.4 Hints on fitting . 13

3.5 Batchfitting . 13

4 Plotting multiple files 14

5 File formats 17

6 Installation and system maintenance 19

6.1 Requirements . 19

6.2 Installation . 20

6.3 maintenance . 21

7 Server structure 22

7.1 LATEX-server . 22

8 System command interface (command line) 23

9 Impedance elements 24

9.1 Ohmic resistor (R) . 24

9.2 Inductor (L) . 24

9.3 Capacitor (C) . 24

1

DTU Energy Elchemea Analytical 1.7.0

9.4 Constant phase element (Q) . 25

9.5 Warburg impedance (W) . 25

9.6 Havriliak-Negami relaxation (H) . 25

9.7 Finite length warburg impedance (O) and depressed / flattend finite length
warburg
impedance (Od) . 25

9.8 Finite capacity warburg impedance (T) and depressed / flattned finite
capacity warburg
impedance (Td) . 26

9.9 Gerisher impedance (G) and depressed / flattend gerisher impedance (Gd) 27

9.10 De Levie impedance (dL) . 27

9.11 Parallel R-C circuit (RC) . 28

9.12 Parallel R-Q circuit (RQ) . 28

9.13 Parallel R-L circuit (RL) . 28

9.14 Serial connection of elements (Ser) . 29

9.15 Parallel connection of elements (Par) . 29

9.16 Transmission line terminated by a short circuit (TLShort) 29

9.17 Transmission line terminated by a blocking circuit (TLBlock) 30

10 Module specifications 32

10.1 Debug . 33

10.2 SemaforeFile . 33

10.3 SocketClient . 35

10.4 Impedance::Header . 36

10.5 Impedance::IMPCGI . 36

10.6 Impedance::Base . 38

10.7 Impedance::RQ . 40

10.8 Impedance::W . 40

10.9 Impedance::H . 41

10.10Impedance::Complex . 41

10.11Impedance::Device . 43

10.12Impedance::Model . 43

11 Web service interface 48

12 Troubleshooting 51

2 of 56 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.7.0

12.1 Proxy server preventing automatic updating 51

12.2 Server error is reportet when starting Elchemea Analytical 51

12.3 Model section of view is mangled . 51

12.4 After fitting, pressing the report button only says ’no report ready’ . . . 52

12.5 Fitting does not finish (page displays ’working...’ and stops) 53

12.6 Fitting takes too short time and no response is recieved 53

12.7 Multiplot not avaliable . 53

12.8 Graphs not shown correctly and/or pages does not finish loading 53

12.9 My screen is not wide enough to show all information 54

12.10Multiplot graphs are sideways . 54

12.11Multiplotting suddenly fails with an error message including the string ’all
points y value undefined’ . 54

12.12Some of the last tics on the graps is missing (graph goes to 100 but tics
only shown to 70 for instance). 54

12.13Users can not upload files through the ’Load impedance file’ resulting in
an error like ’No filename specified!...’ . 55

12.14CentOS 7 related issues . 55

3 of 56 Implemented by Søren Koch

Chapter 1

Introduction to Elchemea Analytical

Elchemea Analytical is a generalized visualization / fitting software package for visualizing
impedance data. The Elchemea Analytical system is based on Perl and Apache and all
graphics/fitting is done using Gnuplot®.

The main features of Elchemea Analytical are listed below:

• Simulation of impedance spectra using a wide variety of discrete impedance ele-
ments (R,C,L,Q,W,H,RQ,RC,O,Od,G,Gd,T,Td) as well as parallel and/or series
connections of those.

• Fitting of impedance models to measured impedance data in a wide frequency range
(from 10−100 to 10100 Hz).

• Easy determination of start parameters for a wide range of the predefined impedance
elements (RC,RQ,O,Od,G,Gd,T,Td) using the ’find-values’ build in algorithms.

• Easy integration to Elchemea© and RFCcontrol © impedance acquisition and test
system control software packages.

• Uses only open source software (OKS).

The first part of this documentation is an overview of the user interface (section 3) mainly
intended for new users of the system. The second part (chapter 6) is mainly intended
for more advanced users and system administrators as it contains information regarding
configuration. It is assumed that any administrators has a fairly advanced knowledge of
Unix system administration and Perl programming.

Chapter 10 contains the documentation for the different Perl module supplied by the
DTU Energy at Technical University of Denmark Impedance visualisation and analysis
control software software.

4

Chapter 2

License

Copyright (C) 2012 SøJen Koch, Karin Val’s Hansen, Christopher Graves, DTU Energy
at Technical University of Denmark.

This program is free software: you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program. If not, see http://www.gnu.org/licenses/.

5

Chapter 3

User interface

The DTU Energy at Technical University of Denmark Impedance visualisation and anal-
ysis control software system is based on the Apache web server software (Open Source
Software, OSS). In figure 3.1 the main page is shown as an example of the web pages.

Figure 3.1: The main page.

3.1 Simulation

In order to simulate spectra, press the ’New simulation’ button, and then build your
impedance model element by element by using the ’Add element’ button. In general, all
elements will be placed in series, except if they are part of an explicit parallel or serial
connection (by using the ’Par’ or ’Ser’ elements at the bottom of the element list). For
a description of the different possible impedance elements, refer chapter 9.

It is possible to view impedance models and data in the impedance plane (which is the

6

DTU Energy Elchemea Analytical 1.7.0

default), the admittance plane, the complex modulus plane and the complex capacitance
plane. To change between plotting planes, pres the ’Advanced plot options’ button and
select the desired plotting plane.

Figure 3.2 shows an example of a simple series connection of three impedance elements
plotted in the impedance plane. A Gerisher element (G) a RC element (parallel connec-
tion of a resistor and a capacitor) and an inductor (L) viewed i the impedance plane.

Figure 3.2: An example impedance simulation using simple series connection of three
impedance elements.

It is also possible to view impedance models and data in the admittance plane (Y = Z−1),
complex modulus plane (M = jωZ) and in the complex capacitance plane (C∗ = Y

jω
),

this can be changed in in the advanced setup. Default is to view in the impedance plane.

If custom series and / or parallel connection elements are used, the model description on
the left of the page looks slightly different than the one shown in figure 3.2. Figure 3.3
shows an example of how this may look. The way to read the complex models presented
in this way is as follows:

The first two red buttons (labeled ’L 1’ and ’R 2’) are simple impedance elements con-
nected in series (as normal) and in series with the third element represented by the
leftmost blue button (labeled ’Parallel ([L 5 R 6] C 8’). This button (labeled ’Parallel
([L 5 R 6] C 8’) indicates a parallel connection of all elements between the lines above
and below this button. In this case it is a parallel connection of two elements; an ca-
pacitor (’C 8’) and a series connection (labeled ’Serial [L 5 R 6]’). The series connection
(represented by the second blue button) contains all elements to the right of it which is
between the white lines above and below the blue button (in this case ’L 5’ and ’R 6’).

Thus the complete model is Z = L 1 + R 2 + Par(Ser(L 5 + R 6), C 8).

In this way it is possible to build arbitrary complex impedance models, either for simu-
lation purposes or for fitting to actual measured spectra.

7 of 56 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.7.0

Figure 3.3: An example impedance simulation using parallel and serial connections of
discrete elements.

If a model like the one in figure 3.3 is to be created, start a new simulation and follow
the steps below:

1. Press ’Add element’ and select ’L’.

2. Press ’Add element (in the pop-up window)’.

3. Press ’Add element’ and select ’R’.

4. Press ’Add element (in the pop-up window)’.

5. Press ’Add element’ and select ’Par’ (a new window will open).

6. Press red ’Add element’ button and select ’Ser’ (a new window will open).

7. Press red ’Add element’ button and select ’L’ (in the pop-up window).

8. Change value to 1e-8 and press blue ’Add element’ button

9. Press ’Add element’ and select ’R’ (in the pop-up window).

10. Press ’Add element’ (in the pop-up window).

11. Press ’Close serial’ (serial container window will close).

12. Press ’Add element’ and select ’C’.

13. Change value to 0.01 and press ’Add element’.

14. Press ’Close parallel’ (parallel container window will close).

8 of 56 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.7.0

15. The resulting model should now be identical to the one in figure 3.3.

From the above it can be seen that pressing the ’close’ buttons effectively acts as an end
parenthesis for the container element in question.

If an element is to be deleted, simple press the red button designating the element in
question. If deleting elements results in an empty container (parallel or serial), then the
container itself is also deleted.

It is also possible to manually edit the impedance model. To do this press the ’Manual
edit model’ button, this brings up a small editor where the model is displayed. The
model consists of a number of lines, each designating a single element (an exception to
this is the container elements, which takes up 2 lines). The container elements start
with a line with a single bracket. Angled brackets ’[’ for series connections and normal
brackets ’(’ for parallel connections. This is similar to the nomenclature used in the old
DOS program ’equivcrt’ by Dr. Bernard A. Boukamp. The corresponding line with the
end bracket denotes the end of the container element. Note that containers may contain
containers! Also note that if you are manually editing models, keep track of the brackets,
as misaligned brackets may invalidate the model and / or result in an unwanted model!

3.2 Data analysis

In order to analyze measured impedance spectra, use one of the load options on the main
page (figure 3.1). Figure 3.4 shows how an freshly loaded data file may look. If no prior
model has been defined and the data is viewed in the impedance plane, the Elchemea An-
alytical generates a simple impedance model to start on if the ’Add serial R and L’ option
is set to ’Yes’ on loading the data file. This consists of an inductor in series with a resis-
tor and the values are determined from the data points in the highest frequency decade.
The real value of the data point corresponding to the highest frequency determines the
resistance and the inductance is determined by doing a Kramers Kröning transformation
on the data points in the highest frequency decade (Algorithm and program supplied by
Christopher Graves). Notice however that in case the Kramers Kröning method fails the
imaginary value of the first data point (highest frequency) is used instead. This is to en-
sure that a value is always obtained, and this is known to happen for some combinations
of Python and SE-Linux.

By using the radio button and drop-down menus on the right it is possible to switch
between Nyquist view and Bode view, set the fitting weight method, background color
and if the plot is to show sub-arcs or not (Notice that the last option only has effect if
plotting in the impedance plane).

If some data points are to be excluded from the analysis, click on the data graph and
then maneuver the pointer to the data point which is to be deleted and press the ’Delete’
button. Repeat this procedure until the data set has been sanitized from any erroneous
data.

Caution: Do not delete data points merely because they do not fit the chosen
model!

9 of 56 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.7.0

Figure 3.4: Example of an freshly loaded impedance spectrum.

Only delete data points if they are known to be problematic (a single point lying far away
from the rest is a good candidate, but not a sure sign)!

A special feature of the Elchemea Analytical is the ability to determine acceptable start
values for parameters for some of the predefined complex impedance elements (RC, RQ,
O, G and T). To use this, select the appropriate element to add, and then press the ’Find
values’ button, which will bring up an additional window like the one shown in figure 3.5.

Figure 3.5: Adding an impedance element to a model using the ’find-values’ system.

Use the arrow buttons to move the frequency marker to the desired data points and select

10 of 56 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.7.0

the right data points using the three blue buttons below (’Set maximum frequency’, ’Set
summit/bend frequency’ and ’Set minimum frequency’). Once these three frequencies
has been selected (which can be seen on the display as changes in the color and symbol
of the data points), press the red ’Find values’ button. This will cause the Elchemea
Analytical system to try and find sensible start parameters for the selected data range
for the element in question, and in case a fit converges the resulting impedance model will
be shown as seen in figure 3.6. If you are satisfied, simply press the ’OK’ button (which
causes the find values window to close) and then the ’Add element’ button, which will
add the chosen element with the determined start parameters to the current model. It is
possible to zoom using the X-range fields at the bottom (for instance if a small arc sits
next to a large one, the small one may be extremely hard to determine). Simply change
the minimum or maximum impedance to be displayed and the plot/select area will be
updated accordingly.

Figure 3.6: Finding the values for an RQ element using ’find-values’ on a measured
impedance spectrum.

Once a suitable model has been build, fit the model to the measured data by pressing
the ’Fit model to data’ button. This will cause the Elchemea Analytical to try and fit
the model to the data, and in case the fit converges, the resultant parameter values will
be displayed and the system will ask if the values should be copied to the model. If the
resulting values are sensible, press ’Yes’ and the resulting fit parameters will be displayed
in the model section as well as appended to the fit result table. This table contains a line
for each accepted fit and includes all model parameters as well as the mean and maximum
error for the fit in question. Thus if more than one file is fitted (or a single data set is
fitted to more than one model), it is possible to get a list of all the fitted data afterwords
for later comparison / further data analysis. To access the fit result table, press the ’Show
fit table’ below the graph. This brings up a new window with a tab delimited table which
can be copied / saved to a local file as appropriate. Figure 3.7 shows an example of a fit
result.

11 of 56 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.7.0

Figure 3.7: Example result of a fit of a model to an actually measured impedance spec-
trum.

It is possible to exclude some parameters from the fitting (in effect locking them to the
current value) by unclicking the check box associated with the parameter in question.
This is useful if external information indicates that a specific impedance parameter must
have a specific value. After the fit has been run, press the ’Report’ button to get a
pdf report of the fit in question. This report will include parameter values, statistics
regarding accuracy of the fit, parameter correlation as well as Nyquist, Bode and error
plots of the model and data.

It is known that some versions of AdobeReader® in some cases has problems displaying
the pdf documents created by Elchemea Analytical, however the fast open source pdf
viewer Ghosview® (http://pages.cs.wisc.edu/˜ghost/) is available for free for a wide
range of operating systems.

3.3 Saving and reloading models

Once a model has been created it is possible to save the model (and any associated data).
To do so, press the ’Save model and data’ button, which will open a save dialog asking
where to place the save data.

In order to load a saved data set/model, press the ’Load saved model’ button on the main
page and select the data file to load (The default extension will be .ea).

It is also possible to save just the model, if this is to be desired, simple open the ’manual
edit model’ page and copy the model to the clipboard and then save it in a local text file.
To restore a model thus saved, open a new simulation or data file and press the ’manual
edit model’ button and then paste the saved model instead of the present model. Finish

12 of 56 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.7.0

by pressing ’OK’.

3.4 Hints on fitting

Fitting impedance data is as much an art as it is science. The most important part
of data modeling / fitting is to select the most appropriate model, and in this respect
Occam’s Razor is an extremely important tool! Do not select a more complex model than
necessary based on the available information as it is always possible to get a good fit if
enough impedance elements are added to the model.

Due to the mathematics in some of the impedance elements distributed with Elchemea
Analytical, sometimes the fitting does not terminate or crash (indicated by either an error
message or simply that no response is received from the fitting attempt). Especially the
Gerisher, Finite length Warburg and bounded warburg elements are prone to this as
they include one or more of the hyperbolic trigonometric functions, and in some cases
the fitting algorithm will select values which results in a singularity (division by zero or
infinite) and the fitting algorithm fails. When this happens, try to slightly change the
start parameters and see if it is possible to avoid the singularity.

3.5 Batchfitting

It is possible to do batch process fitting without using the GUI. To do this use the
command line program batchfit.pl (usually located in /usr/local/bin/analytic/). If the
program is called without any arguments a description of how to use it is output. In
the batchtest directory found in the Elchemea Analytic distribution directory there is an
example of how to use it. Simply run the run batchfit test.bash program to test with the
files in that directory.

13 of 56 Implemented by Søren Koch

Chapter 4

Plotting multiple files

It is also possible to plot multiple impedance file in the same plot by using the multiplot
module of Elchemea Analytical.

From ElchemeaAnalytical version 7.0 plotting multiple files are no longer avaliable as it
allows users to potentially access data from other users.

If multiplotting is to be allowed the system adminstrators can enable it by running the
following command:

touch /home/elchemea/allow multiplot

If multiplot is enabled it can be accessed by, navigating to the front page and press the
’Plot multiple files’ button, which brings the multiplot page up as shown in figure 4.1.

Figure 4.1: Multiplot page showing an example of 2 impedance spectra plotted on the
same graph.

The left part is the file control section. It contains a multi select box showing both the
available and selected files. To plot files load the impedance files from your local system

14

DTU Energy Elchemea Analytical 1.7.0

by pressing the ’load local file’ or select user name, session number and files (in case the
Elchemea© or RFCcontrol© software is installed on the server along with Elchemea
Analytic). Note that the user/rig name and test/session select boxes are only available
as indicated above. If files are loaded from a local resource, it is automatically selected
for plot. To deselect/deselect a file press ’Ctrl’ and click on the file to select/deselect. If
the order of the legend keys are to be changed, move the file names up and down in the
file list as appropriate as Elchemea Analytics always uses the files/legends in the order
they are shown in the file list. To move a file, select it and use the ’u’ and ’d’ keys to
move the file up and down in the list (Note that only one file can be moved at a time).

If the legend for a particular file is to be changed, simply double click on the file to specify
a new legend for that file.

The center part of the multiplot page is the plot control area, where placement of legend,
frequency labels, plot ranges etc. can be controlled. If ’User defined’ is selected for
frequency labels, an additional field becomes visible where the frequencies to show on
the plot can be typed in. For each frequency in this list (separated by commas) the first
data point in each file below the frequency is indicated along with a label showing the
frequency. The text field at the bottom is for additional Gnuplot commands if additional
labels, arrows or similar is to be included in the graph (refer the Gnuplot manual for
information on Gnuplot commands).

The resulting graph shown on the right part of the page can simply be copied or saved
(right click on the graph) and if an postscript file is preferred (for use with Latex docu-
ments for instance) press the ’Save postscript image’ button.

It is possible to save the data and plot definitions for the current work by pressing the
’save plot definition’ button. The resulting file can then be reloaded at a later time for
further work. It is important to note, that as Elchemea Analytical is a multi user system,
it includes an automatic clean up facility which removes files (uploaded data files and
generated image files) after one hour of inactivity. Thus if the user expects to take a
break from the Elchemea Analytical system, remember to use the ’save plot definition’
beforehand so as to not loose any work.

If the scaling of the data is not as intended, the scaling of the data can be changed by
changing the ’z(x)’ function definition (default is z(x) = x). To do so, simply write the
new definition in the ’additional Gnuplot commands’ field. For instance if the sample
has a 6 cm2 area and the graph should report the impedance in area specific resistance,
write the following in the text area:

z(x) = x * 6

set ylabel ’-Z_{imag} ({/Symbol W} cm^2)’

set xlabel ’Z_{real} ({/Symbol W} cm^2)’

The first line changes the scaling and the two following lines change the axis descriptions
to include cm2 (leave them out if only the scaling are to be changed). Notice however that
you likely can not simply use copy and paste as the ’ in the above text will be represented
as a utf-8 character (type manually instead)!

The above lines can also be used in the fitting part of Elchemea Analytical, however as

15 of 56 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.7.0

this part uses the png output device (in order to be able to plot on black background),
some of the text may look different from what is expected (specifically ’{/Symbol W}’ is
interpreted entirely as text).

16 of 56 Implemented by Søren Koch

Chapter 5

File formats

DTU Energy at Technical University of Denmark Impedance visualisation and analysis
control software supports a number of different file formats including Gamry(R) and
ZPlot(R) / ZView(tm) files.

The native file format is the i2b file format however. The file format is described below
with an example file:

Idun:/home/EFA/rig14/1255/4/s4_1007.i2b

Desc: 14test78_PS128052

:2009:01:17:23:17:30 1232230650 , Meas.:

37

82451 0.006685137356 0.00141940337

56173 0.0070404900979 0.0002431376363

38270 0.007484563409 -0.000686494133

26073 0.008028417169 -0.001394965951

17764 0.008634536255 -0.001947261525

12102 0.009370725592 -0.002396327231

8245 0.010187221398 -0.002722736196

5617 0.011033464434 -0.002911896725

3827 0.011876708228 -0.003031150569

2607 0.012699248889 -0.002996166924

1776 0.013426438402 -0.002909587586

1210 0.014135420185 -0.00274866887

824.5 0.014798469288 -0.002688357568

561.7 0.015415708783 -0.002545973023

382.7 0.016064610363 -0.002514285078

260.7 0.016722169513 -0.002355489951

177.6 0.017329395388 -0.002180886816

121 0.017877782005 -0.001969379374

82.45 0.018305518738 -0.001746990494

56.17 0.018698563455 -0.00151536534

38.27 0.01889247348 -0.001359174472

17

DTU Energy Elchemea Analytical 1.7.0

26.07 0.019155759436 -0.00132627701

17.76 0.019422716189 -0.001266016758

12.1 0.019661051995 -0.001295590415

8.245 0.019888830093 -0.001464146169

5.617 0.020308127403 -0.001725404958

3.827 0.020971000603 -0.001804639011

2.607 0.021602216143 -0.001638322228

1.776 0.02195975717 -0.00134448105

1.21 0.022350984057 -0.001060789257

0.8245 0.022530834712 -0.000697843738

0.5617 0.022641762282 -0.0004145079483

0.3827 0.0226543601828 -0.0003907922012

0.2607 0.0227450009778 -0.0003855313026

0.1776 0.0228211856604 -0.0001882806252

0.121 0.0229167510741 -0.0001616599266

0.0825 0.0229392097983 -0.0002138122947

The first 6 lines can contain text information (including meta information). Usually the
third line contains a time stamp, but DTU Energy at Technical University of Denmark
Impedance visualisation and analysis control software does not use this.

The 7’th line contains an integer describing the number of data points, and the following
lines (nr 8 and onwards) is the actual data. Each data point is in the format:

Frequency Real part Imaginary part

18 of 56 Implemented by Søren Koch

Chapter 6

Installation and system maintenance

This chapter describes how to install or upgrade a Elchemea Analytical system.

6.1 Requirements

The Elchemea Analytical requires the following software to be installed on the target
system prior to installation:

• A Linux type operating system (Only tested with CentOS® 5, 6 and 7, but will
likely work on other Linux type systems as well).

• Gnuplot® version 4.0 or later.

• The Apache® web server version 2.2.3-43 or later (it is possible that earlier versions
of Apache will also work, however this is not tested).

• The Perl® interpreter version 5.8.8 or later.

• The Perl Time::Hires module (installation of this varies between distributions, thus
needs to be installed manually, refer your distribution manual as to how).

• ImageMagick version 6.2.8 05/07/12 Q16 or later.

• GPL Ghostscript version 8.70 (2009-07-31) or later.

• Gnu ’make’. Other ’make’ packages than the one from Gnu may also work, but has
not been tested.

• A functioning connection to the Internet. The reason for this is that Elchemea
Analytical downloads and installs several Perl modules from CPAN.org during the
installation.

19

DTU Energy Elchemea Analytical 1.7.0

6.2 Installation

In order to install the Elchemea Analytical system, unpack the tar-ball in a suitable
location, cd into the resulting Elchemea Analytical directory and run make.

Inspect the output of the make program and resolve any errors.

Once all errors have been resolved, run make test followed by make install.

In order to ensure that all servers start upon system reboot, add the following line to
/etc/rc.local :

/usr/local/bin/analytic/start servers &

Finally, start up a web browser and point to this address
hostname.domain/cgi-bin/analytic/main.cgi (substitute host name and domain with the
appropriate values for your system) to check if the system is properly configured, the
resulting page should look like figure 3.1;

6.2.1 Steps to do before installation on a CentOS 7 system

As described in section 12.14 a number of things has canged between version 6 and 7
of CentOS, and before installing ElchemeaAnalytical on a centOS 7 system, run the
’centos7 CPAN configuration.bash’ script as root.

Notice that you need to log out of root before you proceed with the instalation as otherwise
the .bashrc file for root does not get rerun!

6.2.2 Steps to do before installation on a Ubuntu system

In order to correctly install and configure Apaache on the Ubuntu system, run the
’ubuntu Apahce configuration.bash’ and ’ubuntu fixprivatetemp.bash’ scripts

6.2.3 Command line only installation

It is possible to install Elchemea Analytical as a command line only tool (for instance on
workstations without a web server). In order to do this follow the above steps except in-
stead of runningmake install, one should run make install cmdonly and omit start servers
part as this is only needed for the server installation.

The command line only mode is useful for workstation use if multiple impedance files are
to be fitted using the same model. In this case it may be too tedious to manually upload
each file to a server and fit and much simpler to use the ’batchfit.pl’ program supplied
with Elchemea Analytical in both server and command line only mode.

20 of 56 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.7.0

6.2.4 SE-Linux

If SE-Linux is installed on the serer and running in enforcing mode, the default configura-
tion of SE-Linux will prevent the Apache web server from accessing the LATEX server lis-
tening on port 4050 as well as the execution of various scripts in /usr/local/bin/analytic.

To allow Apache to connect to port 4050 as well as execute the scripts in
/usr/local/bin/analytic/, (on CentOS) execute the script set SELinux rules.bash found
in the Elchemea Analytical installation directory.

Notice that this does not appear to be nescesarry on Ubuntu systems.

6.3 maintenance

Generally the Elchemea Analytical system requires little maintenance and the
Elchemea Analytical system includes a facility for automatic software updates,
to enable this, simply add the following line to root’s crontab file:

0 8 * * 1 /usr/local/bin/analytic/analytic updateer.pl ≫ /root/update log.txt
&

This will update the system once every Monday. The automatic update sys-
tem then fetches any new version which may have been deployed within the
last week and installs this if it passes the software test (make test).

21 of 56 Implemented by Søren Koch

Chapter 7

Server structure

The programs mentioned in italics below all reside in the /usr/local/bin/analytic
and are written in Perl.

7.1 LATEX-server

The Latex server (LATEX-server) is responsible for compiling Latex reports
of the fit results of individual fits. It honors the following commands:

• debug: Turns debug on and off.

• exit: Shuts down the server cleanly.

• unlink: Unlink the specified file name. Note this is a potential security
risk, so the Latex server should not be accessible from external sources!

• compile: compiles the document with the specified file name. The re-
sulting pdf file is placed in ’/home/http/html/analytic/png/’.

22

Chapter 8

System command interface
(command line)

Although the Elchemea Analytical is designed to be used primarily through
the web interface some programs can be accessed from the command line. Be-
low is a list of the most used command line tools for the Elchemea Analytical
system:

• /usr/local/bin/analytic/z to i2b: This program converts Z-plot files to
the ’i2b’ file format.

• /usr/local/bin/analytic/gamry to i2b: This program converts a Gamry®
file to the ’i2b’ format.

• /usr/lcoal/bin/analytic/batchfit.pl : This program can be used to fit
multiple spectra to the same model. Call the program without any ar-
guments to get a description of how to use it as well as a list of possible
options.

23

Chapter 9

Impedance elements

Elchemea Analytical supports a number of discrete impedance elements. The
following sections describe each element. In all the following sections, ω de-
notes the angular frequency (ω = 2πf), j the entity

√
−1 and Z the complex

impedance.

9.1 Ohmic resistor (R)

The most simple impedance elements is the ohmic resistor. The impedance
of this element is does not have an imaginary component, and is simply the
resistance R:

Z = R (9.1)

It is not possible to use the ’find values’ function on this element.

9.2 Inductor (L)

The inductive element L has no real component in the impedance and the
impedance of the L element can be described as:

Z = jωL (9.2)

It is not possible to use the ’find values’ function on this element.

9.3 Capacitor (C)

The capacitive element C does also not have a real part and is:

Z =
1

jωC
(9.3)

It is not possible to use the ’find values’ function on this element.

24

DTU Energy Elchemea Analytical 1.7.0

9.4 Constant phase element (Q)

The constant phase element Q has both a real and an imaginary part and can
be expressed as:

Z =
1

Y (jω)n
(9.4)

It is not possible to use the ’find values’ function on this element.

9.5 Warburg impedance (W)

The classical warburg diffusion element is infinite and the impedance of this
element is:

Z =
σ√
jω

(9.5)

where σ is the warburg coefficient.

It is not possible to use the ’find values’ function on this element.

9.6 Havriliak-Negami relaxation (H)

Havriliak-Negami relaxation is an empirical modification of the Debye relax-
ation model, accounting for the asymmetry and broadness of the dielectric
dispersion curve.

The impedance of the element is:

Z =
(1 + (jωτ)α)

β

jω∆C
(9.6)

where τ is the characteristic time constant, ∆C is the difference in capacitance,
α is the asymmetry exponent and β is the broadness exponent.

For β = 1 the Havriliak-Negami equation reduces to the Cole–Cole equation,
for α = 1 to the Cole-Davidson equation.

It is not possible to use the ’find values’ function on this element.

9.7 Finite length warburg impedance (O) and de-

pressed / flattend finite length warburg

impedance (Od)

The finite length warburg impedance (also sometimes called finite diffusion
impedance with transmissive boundry conditions) behaves as the Warburg
element at high frequency, but at low frequency behaves more like an RC

25 of 56 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.7.0

circuit (refer section 9.11). The impedance of this element is normally defined
as:

Z =
tanh ((Bjω)n)

(Y jω)n
(9.7)

However in Elchemea Analytical the following transformation is used:

Z =
tanh ((Bjω)n)

(Y jω)n
(9.8)

Z =
Bn tanh ((Bjω)n)

Y n(Bjω)n
(9.9)

Z =
(

B

Y

)n tanh ((Bjω)n)

(Bjω)n
(9.10)

Z = Z0

tanh ((Bjω)n)

(Bjω)n
(9.11)

(9.12)

where

Zo =
(

B

Y

)n

(9.13)

For the normal finite length warburg element (O) n is fixed at 1

2
whereas it is

below this for the depressed version (Od).

The ’find values’ function can be used on O and Od elements.

9.8 Finite capacity warburg impedance (T) and de-

pressed / flattned finite capacity warburg

impedance (Td)

The finite capacity warburg diffusion element (also sometimes called finite
diffusion impedance with blocking boundry conditions) behaves like the clas-
sical Warburg at high frequency (as the O element does) but as the frequency
gets lower the imaginary part of the impedance goes asymptotically towards
infinite. The impedance or the T element is:

Z =
coth ((Bjω)n)

(Y jω)n
(9.14)

where coth is the hyperbolic co-tangent function. However in Elchemea An-
alytical the following transformation is used:

Z =
coth ((Bjω)n)

(Y jω)n
(9.15)

Z =
Bn coth ((Bjω)n)

Y n(Bjω)n
(9.16)

26 of 56 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.7.0

Z =
(

B

Y

)n coth ((Bjω)n)

(Bjω)n
(9.17)

Z = Z0

coth ((Bjω)n)

(Bjω)n
(9.18)

(9.19)

where

Zo =
(

B

Y

)n

(9.20)

For the normal finite capacity warburg element (T) n is fixed at 1

2
whereas it

is below this for the depressed version (Od). Also note that for the depressed
version the asymptote is not vertical when viewed in the complex plane.

The ’find values’ function can be used on T and Td elements.

9.9 Gerisher impedance (G) and depressed / flattend

gerisher impedance (Gd)

The Gerisher and depressed Gerisher element has the same overall features
as the O element in that they behave like the Warburg element at high fre-
quencies and like an RC circuit at low frequencies, however the mathematical
desorption is different than that for the O element as described below:

Z =
1

Y (k + jω)n
(9.21)

For the normal Gerisher (G) element n is fixed at 1

2
whereas it is below this

for the depressed gerisher (Gd).

The ’find values’ function can be used on G and Gd elements.

9.10 De Levie impedance (dL)

The de Levie impedance element is the impedance of a porous electrode in a
solution with active redox species 1. The impedance of this element is defined
as:

Z =
√

RiRr ·
coth

(

d
√Ri

Rr

√

1 + Y (jω)n
)

√

1 + Y (jω)n
(9.22)

where coth is the hyperbolic co-tangent function, d is the electrode thckness,
Ri is the resistance unit length of the ionic conductor (electrolyte), Rr is the

1Chapter 9.1, Electrochemical Impedance Spectroscopy and its Applications by A. Lasia, Springer
New York (2014)

27 of 56 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.7.0

Faradaic reaction resistanc unit length and Y and n are the pseudo capaci-
tance (in FSn−1/cm) and phase angle (in 1/2 pi radians) of the constant phase
element describing the double layer capacitance.

It is not possible to use the ’find values’ function on this element.

9.11 Parallel R-C circuit (RC)

The RC circuit is a parallel connection of a normal resistor and a capacitor.
The complex impedance of this circuit is

Z =
1

R−1 + Cjω
(9.23)

The reason for using the RC element as a separate element and not using the
Par element to ’build’ one is that by utilizing the analytical description of
the RC circuit, it is possible to use the ’find values’ function to obtain good
start guesses for the parameters. which would not be possible for a custom
designed ’Par’ elements with a R and a C element (refer section 9.15).

9.12 Parallel R-Q circuit (RQ)

Similar to the RC element the RQ element is a parallel connection of a resistor
and a capacitive element, but in this case the constant phase element. The
impedance of the RQ elements is:

Z =
1

R−1 + Y (jω)n
(9.24)

Similarly to the RC circuit it is possible to use the ’find values’ function on
the RQ element in order to obtain good start guesses for the parameters as
opposed to a custom Par element with a R and a Q element.

9.13 Parallel R-L circuit (RL)

The RL circuit is a parallel connection of a normal resistor and an inductor.
The complex impedance of this circuit is

Z =
1

R−1 + 1

Ljω

(9.25)

The reason for using the RL element as a separate element and not using the
Par element to ’build’ one is that by utilizing the analytical description of
the RL circuit, it is possible to use the ’find values’ function to obtain good
start guesses for the parameters. which would not be possible for a custom
designed ’Par’ elements with a R and a L element (refer section 9.15).

28 of 56 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.7.0

9.14 Serial connection of elements (Ser)

This element is merely a container element which consists of a number of
serially connected impedance elements and the combined impedance is:

Z = Z1 + Z2 + Z3 + . . .+ Zn (9.26)

Due to the fact that the elements within the container may be any impedance
element (including other container elements!) it is NOT possible to use the
find values function on a ’Ser’ element or on any element inside a ’Ser’ element.

9.15 Parallel connection of elements (Par)

As with the Ser element, this element is a container but instead of serially
connected impedance elements it is a number of parallel connected impedance
elements, thus the impedance of the element is:

Z =
1

1

Z1

+ 1

Z2

+ 1

Z3

+ . . .+ 1

Zn

(9.27)

Due to the fact that the elements within the container may be any impedance
element (including other container elements!) it is NOT possible to use the
find values function on a ’Par’ element or on any element inside a ’Par’ ele-
ment!

9.16 Transmission line terminated by a short circuit

(TLShort)

This element behaves both as a simple element and as a container element.
It describes a transmission line where the line is an ohmic conductor which
is coupled to the sourroundings with an impedance element (typically a ca-
pacitor or constant phase element) as shown in figure 9.1.

Figure 9.1: Idealised schematic of a transmission line. R1 to Rn is the line resistance and
Z1 to Zn is the branch to branch impedances. It is assumed that R1 = R2 = · · · = Rn

and Z1 = Z2 = · · · = Zn−1. Note that the end is short circuited in this case (in case of a
blocking transmission line, the end is NOT short circuited but unterminated).

29 of 56 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.7.0

The Impedance for this element is:

ZTLShort = R
tanh

√

R
Z

√

R
Z

(9.28)

Where R is the line impedance (R =
∑n

x=1
Rx) and Z is the branch to branch

impedance.

The advantage of this element is that the branch to branch impedance is
implemented as a series connection of one or more elements as in a ’Ser’
container element.

If no element is added to the conatiner part of the element, the impedance of
this element is defined as ZTLShort = R.

In the so called ’fractal’ case (which does not corespond to a real transmission
line) the square root is replaced by an exponent n as shown below:

ZTLShort = R
tanh

((

R
Z

)n)

(

R
Z

)n (9.29)

This is the version used by Elchemea Analytical, however the exponent n is
set to 0.5, and as default is not set as a free parameter in which case it is
identical to equation 9.28.

Due to the fact that the elements within the container may be any impedance
element (including other container elements!) it is NOT possible to use the
find values function on a ’TLShort’ element or on any element inside a ’TL-
Short’ element!

Note that in the special case where the branch to branch element is a ca-
pacitor, the TLShort element can be reduced to the Finite length warburg
element (O) or the depressed version (Od) in case of n 6= 0.5.

9.17 Transmission line terminated by a blocking cir-

cuit (TLBlock)

This element behaves both as a simpel element and as a container element
similar to ’TLShort’. It describes a transmission line where the line is an
ohmic conductor which is coupled to the sourroundings with an impedance
element (typically a capacitor or constant phase element).

The Impedance for this element is:

ZTLBlock = R
coth

((

R
Z

)n)

(

R
Z

)n (9.30)

30 of 56 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.7.0

Where R is the line impedance and Z is the branch to branch impedance and
n is the exponent (normally 0.5, and as default not set as a free parameter,
refer section 9.16)

The advantage of this element is that the branch to branch impedance is
implemented as a series connection of one or more elements as in a ’Ser’
container element.

If no element is added to the conatiner part of the element, the impedance of
this element is defined as ZTLBlock = R.

Due to the fact that the elements within the container may be any impedance
element (including other container elements!) it is NOT possible to use the
find values function on a ’TLBlock’ element or on any element inside a ’TL-
Block’ element!

Note that in the special case where branch to branch element is a capacitor,
the TLBlock element can be reduced to the Finite capacity warburg element
(T) or the depressed version (Td) in case of n 6= 0.5.

31 of 56 Implemented by Søren Koch

Chapter 10

Module specifications

This chapter contains the module specification for the Perl modules supplied
as part of the ElchemeaAnalytic software suite. It includes function descrip-
tions including number and type of any function arguments. Some of the
modules are object oriented (with only a publicly accessible constructor) and
in other cases the modules are function orientated.

In the case of function orientated modules, any functions exported by the
module are described, both for what it does, as well as number and types of
arguments.

In the case of the object oriented modules, any inheritance is also described
(usually in the beginning of the module description). For the object instances,
usually only the member functions intended to be public is described (as Perl
does not have a true private function declaration). Note that some of the
object orientated modules define more than one class type, but as all the
class types in this case behave similarly (polymorphic), only the main class is
described as the subsequent class definitions implements the main class type
behavior.

Each module is described in it’s own section.

32

DTU Energy Elchemea Analytical 1.7.0

10.1 Debug

Use: my $id = Debug→new();

This class is intended to be a base class for other classes to derive from so
that easy debug functionality can be included.

Utility class for debugging. It contains the following member functions:

$id→debug() Sets or gets the debug level: level 0 is no de-
bug, level 5 is complete debug including stack
backtrace. This class only uses level 0 (no de-
bug), level 1-4 (debug iformation displayed)
and 5 , debug info displayed with complete
stack backtrace. The levels 1-4 lets other mod-
ules define debug levels inbetween the ones
used here.

$id→writedebug($,[$]) Writes the string to standard error if debu-
glevel is 1 or higher. If overide is specified
(second argument which is optional), debug
level 5 is assumed for this debug.

$id→die($) Appends stack backtrace to argument string
and calls CORE::die

$id→print setup() Prints out the complete current setup includ-
ing all member functions and data fields (uses
Class::Inspector).

10.2 SemaforeFile

Inherits from Debug (refer section 10.1).

This package makes file inout/output on multiprocess systems more easy by
encapsulating file locking. To define a new semaforefile use the new method:

my $id = SemaforeFile→new($filename,$lockfile);

my $id = SemaforeFile→new($filename);

If the lockfile is not specified, the default (/var/lock/SemaforeFile/SemaforeFile.lock
or /tmp/SemaforeFile.lock) is used instead. This form should generally notbe
used however, as in some cases /var/lock/SemaforeFile/SemaforeFile.lock can
not be used and files in /tmp/ will from time to time be deleted...

The package includes the following simple public methods on semafore files:

$id→readonly() Returns true if the file is readonly for the cur-
rent user

$id→exist() Returns false if the file does not exists;

33 of 56 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.7.0

$id→chmod($) Sets the file permissions according to
CORE::chmod

$id→filename() Returns the filename of the semafore file
$id→readlines() Returns the content of the file as an array with

one line in each element Note thet it removes
any trailing newline from the read lines!

$id→writeline(@) Writes the arguments to the file (NB: Over-
writes file and add a newline to each argument
if they do not already have it).

$id→append(@) Appends the arguments to the file (Also adds
newlines if nescesarry).

It is not nescesarry to check for file esistence in readlines as an empty array
is returned if the file does note exist Note that the readlines function should
only be used on small files as it globs the entire content to memory! For
large files, use the more advanced member functions (see below). Also note
that trailing newlines are removed from the individual lines. If this are not
desired, use the readline() method described below.

The module also includes the following methods for advanced use: Note none
of these functions check if the file exist before trying to open! The unsafe
versions of open and close does not lock or unlock (assumes the user does this
explicitly!)

$id→lock ex() Locks file for exclusive use (Read, Write or
Anppend)

$id→lock sh() Locks file for shared access (Read only)
$id→lock ex nb() Locks file for exclusive use non blocking

(Check return status!)
$id→lock sh nb() Locks file for shared access non blocking

(Check return status!)
$id→unlock() Unlocks file
$id→open read() Opens the file for reading (locks file shared if

not already locked)
$id→open readback() Opens the file for reading backwards (locks file

shared if not already locked)
$id→open write() Opens the file for writing (locks file exclusive

if not already locked exclusive)
$id→open append() Opens the file for appending (locks file exclu-

sive if not already locked exclusive)
$id→close() Closes the file and unlocks it
$id→open read unsafe()
$id→open readback unsafe()
$id→open write unsafe()
$id→open append unsafe()
$id→close unsafe()

34 of 56 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.7.0

$id→mtime() Returns the time of modification of the file as
reported by File::stat→mtime, returns 0 if the
file does not exist.

$id→readline() Reads and returns the next line from the file,
assumes an open file Raises an excpeption
(die) if not.

$id→fh() Returns the underlying file handle for direct
IO (Use with care!)

Additionally the $id→debug($) member function (inherited from Debug.pm)
can turn debug information on and off $id→debug($level) turns debug on and
$id→debug(0) turns debug off ($level is the debug level, 1 - 5) This may be
usefull if deadlock is encountered (so that the individual file locking operations
can be monitored! If $id→debug() is called without arguments it returns the
status (i-e if debug in on 1 is returned else 0.

10.3 SocketClient

This module defines a number of communication functions used for accessing
tcp:IP sockets on local and/or remote systems. The functions defined are
listed below:

socket client raw($$@) Base function used by all subsequent functions,
handles the raw tcp:IP cummunication. Ar-
guemnts: server, port, [additional args to server].
The server can either be a ip-address or a host-
name. Any additional arguments gets serialised
with tab characters and 2 newlines are appended
to the resulting string before transmission.

socket client($$@) Same as above, but catches any communication
errors in an eval guard.

socket client nocr($$@) Same as above, but do not append any newlines
to the transmitted string.

socket client raw nocr($$@) same as socket client raw() but do not append
newlines.

serial client($@) communicates with a local serial server (which
handles hardware communication on the serial
port. Arguments: tty, args to server. The server
is assumed to be the local server (either localhost
or the public IP address of the server) and the
port number is the tty number added to 202020
(Note wraparound!).

35 of 56 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.7.0

GPIB client() Communicates with the GPIB-server. Argu-
ments are passed to the GPIB-server serialised
with tab characters using socket client nocr().
The server is assumed to be the local server (ei-
ther localhost or the public IP address of the
server) and the port number is 12345.

serial client raw($@) Same as serial client() but without eval guard.
GPIB client raw() Same as GPIB client() but without eval guard.
timeout([$]) Sets or gets the timeout value (default is 2 sec-

onds).

10.4 Impedance::Header

This module specifies global file locations and other global variables used for
the ElchemeaAnalytical software package.

The module also specifies the colors of the resulting gnuplot figures (this is
specified in the $gpheader variable).

10.5 Impedance::IMPCGI

This module contains a number of utility functions for outputting properly
formatted html code for user interface generation. Thus it mainly extends
the CGI.pm module by Lincoln D. Stein. The module exports these functions
in two groups.

The :html group exports these functions:

print header($[%]) Prints the header information. Arguments: title.
Any additional optional arguments (in the form
of a hash) will be parsed along to the header()
function supplied by CGI.pm. The functionauto-
matically appends a call to a javascript function
logging users out after some time of no actions.

print end() Prints the help button and ends the html output
with the proper tag.

print hidden() Prints a number of hidden fields used to maintain
state.

logout() Printys a logout button.
action($) Prints a hidden field with an action parameter

with the specified value which can be used for
program control flow.

36 of 56 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.7.0

EFA start html() A wrapper for CGI::start html. Any argu-
ments (in the form of a hash) are passed to
CGI::start html. Automatically appends a ref-
erence to the javascript source file on the server.

js back() Prints the javascript for gping backwards (uses
the browser.back() fjavascrpt call).

get CGI value($) Retrieves the value of the specified CGI param-
eter (supplied by the web browser.

get CGI value clean($) Same as get CGI value, but does pattern match
on the retrieved value and only returns the part
that matches. The pattern match is [\w\s\.\,]*.
This has the benefit of untainting the returned
parameter value (For taint checks in perl and
web access, refer Lincoln D. Steins book Official
Guide to Programming with CGI.pm)

The :cgi group of functions include the following:

get CGI value($) See above.
get CGI value clean($) See above.
action($) See above
menu button(@) Prints a menu button. Arguments: name, value,

style. The name will be the CGI parameter
name, the value vill be the text on the button
and the style is a style class name to use for dis-
playing.

create menu field Prints the html tags to create a menu field.
top nav bar start() Prints the html tags to start the top navigation

bar (table specifications etc.)
top no button() Prints a no action button (goes nowhere) in the

top navigation bar.
top nav bar button() prints a top navigation button. Arguments: File,

name, value, style, [optional additional name,
value and force triplets]. The file is the cgi-script
to be called upon button press, the name,value
and style arguments are passed to menu button()
and the additional optional arguments are used
to initialise and print hidden html fields in the
form of name-value pairs and a force argument
(1 for force value, 0 for allow reuse of value).

tab newrow() Prints a new row in the top navigation bar.
top js return() Prints a top navigation return button (uses the

javascript printed by js back(), see above)
end top bar() Prints the end of the top navigation bar.

An additional function which is often used (but which is not exported by de-

37 of 56 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.7.0

fault) is the format model($) function which parses a given impedance model
and removes any empty serial or parallel connections as well as empty lines.
The format model function also removes any ”\r” characters which may have
been added by Microsoft based browsers. The function returns the resulting
model.

10.6 Impedance::Base

Inherits from Debug (refer section 10.1).

This module defines all member functions which an ElchemeaAnalytical Impedance
element must honor. Most of the functions are merely stups intended to be
overloaded by the individual class definitions.

The module also includes class defininitions on the basic discrete elements
(R, C, L and Q, Q beeing the constant phase element).

The module is intended to be used in conjunction with gnuplot but can be
used as is (but no fitting will be possible).

To obtain a element instance call one of the constructors as show below:

$id = Impedance::Base→new($);

$id = Impedance::R→new($);

$id = Impedance::C→new($);

$id = Impedance::L→new($);

$id = Impedance::Q→new($);

All the constructors accepts a single argument which must be the impedance
element number. It is advisable to make sure that element id’s are unique in
order to be able to distinguish.

All Impedance element instances has the following member functions:

$id→type() Returns the type of impedance element.
$id→name() Returns the name of the element (usually the

type and the id)
$id→nr() Returns the element id.
$id→function name() Returns the Gnuplot function name of the el-

ement.
$id→value($[$]) Sets or gets the value of the specified element

parameter (If 2 arguments are specified, the
second is the value to be set).

38 of 56 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.7.0

$id→description($) Returns the description for the specified tag.
valid tags are ’name’ and the tags returned by
the tags() member function. The ’name’ tag
returns a text string describing the whole ele-
ment and the other strings describe the spec-
ified parameter. If called with no arguments,
it returns the string for the ’name’ tag.

$id→fit default($) Returns true if the specified tag is to be fitted
by default. The default value is 1 (true).

$id→tags() Return a list of valid element parameter
names.

$id→functions() Returns a string containing all the functions
and variable decleratins for gnuplot.

$id→F($) Returns the impedance value of the element
at the specified frequency. The returned
impedance is of type Math::Complex.

$id→fit() Returns a list of possible fit variables (all start-
ing with value 1) for use with gnuplot.

$id→save() Returns a string containing functions to save
the final fit variables (base value multiplied
with fit variable). This is also for gnuplot use.

$id→print line() Returns a string defining the impedance ele-
ment. The format is described below.

$id→helperfunctions() Returns a list of paramter names for which
special help functions exist for calculating use-
full estimates for start values for fitting. Note,
that some impedance elements does not have
any way of determining good start values
in which case the helperfunctions() member
function simply returns an empty list.

$id→helpfunction(@) This function has multiple uses. If called with-
out any arguments, it returns the list from
the helperfunctions() member function. If
called with one argument it returns a string
describing how many additional arguments
must be parsed to it (which may wary de-
pending on impedance element) and in which
order. If called with more than one argu-
ment, the first Argument is the parameter
name to calculate start value for, and the ad-
ditional arguments (which must be a string
of the form: ”$frequency $real value $imagi-
nary value”) are used for the calculation.

39 of 56 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.7.0

$id→f imax() Returns the frequency for which the imaginary
value of the impedance is at it’s maximum
(negative) value. If the element type makes
such a calculation invalid, the function returns
undefined. If the frequency is either infinite
or the DC case, the reported frequencies will
be 1e100 Hz and 1e-100 Hz respectively. For
frequency independent elements the function
returns 0.

The print line member function returns a string which can be used to reload
an impedance element. The format is:

Type: parameter1=value1, parameter2=value2,

An exception to this is the container elements (serial and parallel) which is
defined and implemented in the Impedance::Complex class.

10.7 Impedance::RQ

Inherits from Impedance::Base (refer section 10.6).

This module implements Impedance::Base for R-C and R-L parallel connec-
tions as well as the R-Q parallel connection. (The Q beeing a constant phase
element).

To obtain an instance, call one of the constructors:

$id = Impedance::RC→new($id);

$id = Impedance::RL→new($id);

$id = Impedance::RQ→new($id);

The module defines no additional member functions.

10.8 Impedance::W

Inherits from Impedance::Base (refer section 10.6).

This module implements Impedance::Base for diffusion type elements (W, O,
Od, G, Gd and T). W is the Warburg element, O is the Finite length Warburg
element, Od is a depressed / flattened finite length warburg element, G is the
Gerisher element, Gd is a depressed / flattened Gerisher element, T is the
’Bounded Warburg’ element and dL is the ’de Levie’ element.

To obtain an instance call one of the constructors:

$id = Impedance::W→new($nr);

$id = Impedance::O→new($nr);

40 of 56 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.7.0

$id = Impedance::Od→new($nr);

$id = Impedance::G→new($nr);

$id = Impedance::Gd→new($nr);

$id = Impedance::T→new($nr);

$id = Impedance::dL→new($nr);

The module defines no additional member functions.

10.9 Impedance::H

Inherits from Impedance::Base (refer section 10.6).

This module implements Impedance::Base for diffusion type elements (Specif-
ically the Havriliak–Negami element).

To obtain an instance call one of the constructors:

$id = Impedance::H→new($nr);

The module defines no additional member functions.

10.10 Impedance::Complex

Inherits from Impedance::Base (refer section 10.6).

This module defines series and parallel connections of impedance elements.
The resulting element can be treated as any other Impedance::Base derived
element, thus it is possible using the serial and parralel elements to build
arbitrary complex circuit layouts!

In effect the module defines two container types which from the outside be-
haves as a single impedance element. The Impecance::Complex container
elements together with the Impedance::Base derived elements implements
the Composite pattern with the container elements (Impedance::Complex
derived) acting as GoF Composite classes and the Impedance::Base derived
classes acting as Gof Leaf classes

To obtain an element instance, call one of the constructors:

$id = Impedance::Ser→new($id);

$id = Impedance::Par→new($id);

The module defines four new member functions:

$id→elements() Returns a list of Impedance::Base (or derived)
elements.

$id→elements all() Returns the complete element list for all ele-
ments in the container (recursively).

41 of 56 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.7.0

$id→element($) Returns the element instance with the spec-
ified id (usually obtained from the elements
member function).

$id→add element($$) Adds an element or the list of elements con-
tained within the element instance. The
arguments are type and id of the ele-
ment to add. It returns the element in-
stance created. The element is created
using the Impedance::Device::new device($$)
factory function.

The print line() function inherited from Impedance::Base is overloaded with
slightly different behaviour. Instead of a string containing just a single line,
the return value of print line() contains multiple lines. The first line contains
a start identifier (either ’(’ or ’[’ depending on type) and the last line con-
tains the corresponding end identifier (’)’ or ’]’). All intermediate lines are
obtained by calling print line() on the individual element(s) in the container.
Note that this may include additional complex elements resulting in nested
parantheses (Which is completely valid behaviour)!

Additionally the tags() function is also overloaded so that it returns a list
of the elements in the container instead of valid parameter names (as the
complex element is a container it does not by itself have any parameters of
which to set or get the value).

It is also not possible to define any help functions on complex elements, thus
any calls to helperfunctions() merely results in the empty list.

Notice that f imax() can only report summit frequencies between 1e-100 and
1E100 Hz Thus if the true sumit frequency of the complex element used is
outside this range it will be reported wrongly! Additionally, the f imax()
function first tries to determine a summit frequency in the R,-X quadrant
(corresponding to where an arc from a parallewl RC circuit will be found).
If no summit frequency is found it reports the summit frequency in the R,X
plane (Where an parallel R-L circuit will be found).

In addition to the container elements described above the IMpedance::Complex
module also defines the following compound container elements:

$id = Impedance::TLShort→new($id);

$id = Impedance::TLBlock→new($id);

Unlike the Ser and Par elements these container elements have intrinsic pa-
rameters in addition to the parameters from the elements conteined inside
them and thus they behave both as simple elements and as container ele-
ments.

The TLShort and TLBlock elements model transmission lines where the branch
to branch impedance can be customized (as opposed to the normal warburg
type elements where the branch to branch impedance is assumed to be a

42 of 56 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.7.0

capacitor).

10.11 Impedance::Device

This module defines two functions, the first is list device types() which returns
a list of valid impedance element type names.

The second function is a factory function: new device($$). It accepts two
arguments, the first is an element type name (one of the types returned by
list device types()) and the second argument is the element id (integer). The
new device($$) function returns the impedance instance created.

10.12 Impedance::Model

Inherits from Debug (refer section 10.1).

This module defines how to handle impedance models. It utilises the impedance
elements defined by Impedance::Base and the derived classes.

To obtain an instance, call one of the constructors:

$id = Impedance::Model→new();

$id = Impedance::Model→new($data);

$id = Impedance::Model→new($model ref);

$id = Impedance::Model→new($model ref,$minf,$maxf);

The first constructor merely initialises a new empty model. The second con-
structor initalises an empty model but adds the impedance data in in the
supplied data string to the model instance. The third constructor copies the
model from the supplied model reference and copies the data from that in-
stance as well. The fourth constructor copies as the third, but only copies
those data which lies within the frequency range specified by the last two ar-
guments! This can be used for partial fitting where only a specific frequency
range is needed.

The individual impedance elements are strored in internal data structure
which makes sure that only unique impedance element id’s are used.

The Impedance::Model class implements the Composite patern (together with
the Impedance::Base and Impedance::Complex derived classes) with Impedance::Model
acting as a Gof Component class as well as a Gof Composite class.

All Impedance::Model instance has the following public member functions:

43 of 56 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.7.0

$id→parse($) This function accepts a string defining an
impedance model. The string must be lines
of the format defined by the Impedance::Base
function print line(). The function parses this
string and initialises the correct impedance el-
ements based on this. The function returns
the id number of the last impedance element
added.

$id→print model() Returns a string which can be parsed by
$id→parse($)

$id→device types() Wrapper for Impedance::Device::list device types().
$id→elements() Returns a list of impedance element names

(nr).
$id→element($) Returns the impedance element specified. The

function also gets elements from inside con-
tainers!

$id→elements all() Returns the complete element list of the
model. Recursively calls into any container el-
ements. Note that unlike the elements() func-
tion, the actual device instances are returned
as opposed to the element names.

$id→model text() Returns a string representing the impedance
model

$id→delete element($) Deletes the specified impedance element.
$id→add element($[$]) Adds an impedance element of the specified

type. If an additional arguemnt is specified,
the id of the new element will be set to this
number. If no second argument is specified,
hte next id is simply chosen. The function
returns a reference to the added element.

$id→fit() Returns a list of possible fit paramerters for
current model.

$id→data([$]) Gets or sets the impedance data in the internal
data field.

$id→delete point($) Deletes the point specified from the internal
data array. Returns the new data in the same
way as data(). Note that index 0 is the point
at the highest frequency.

$id→print fit([$]) Returns a string containing all the functions
nescesarry for gnuplot to initialise and fit the
given model to the impedance data either in
the specified filename or (in absence of an ar-
gument) in the internal data field. All data
points are given even weight.

44 of 56 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.7.0

$id→print fit weight([$]) Same as print fit(), however the actual fit-
ting is done with uneven weight, so that data
points with small values (absolute length of
impedance vector) gets higher weight than
points with larger values (weight inversely pro-
portional to length).

$id→set show arcs($) Sets wether the plot functions should include
the individual arcs in the plots or not. An ar-
gument of 0 disabels the arcs, 1 includes them.

$id→print plot([$]) Returns a string containing the function de-
clerations and plot definitions for gnuplot to
plot the specified data (if any) if no datafile
name is specified, it uses the data in the inter-
nal data field.

$id→print plot range($$[$]) Similar to print plot, except it must have the
min and max range specified as the first 2 ar-
guments. The effect is that any labels are only
printed if they have x-values within the spec-
ified range.

$id→print bode([$]) Same as above, but for bode plots.
$id→print plot eps([$]) Same as print plot, but for eps file output.
$id→print bode eps([$]) Same as above, but for bode plots.
$id→print plot error([$]) Returns a string containing the function de-

clerations and plot definitions for gnuplot to
plot the difference between the model and the
specified data (if any) if no datafile name is
specified, it uses the data in the internal data
field.

$id→print imp sim($$) Returns the function declaratioins nescesarry
for gnuplot to plot an impedance plot of the
current model. Arguments are the frequency
range to plot (min and max).

$id→print bode sim($$) Same as above, but for bode plot.
$id→F($) Returns the impedance of the current model

for the specified frequency. The returned
impedance is of type Math::Complex.

$id→subset($$) Returns a subset of the data in the internal
data field based on the specified minimum and
maximum frequency.

$id→subtract model() Returns the residual of the data in the data
field once the impedance of the current model
has been subtracted (subtraction done in the
indivudual data points!).

45 of 56 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.7.0

$id→get error() Returns the mean and maximum error for the
data and model chosen The error is calculated
as the absolute difference of the data from the
mode both the real and for the imaginary part.
The error is then normalised with the modu-
lus of the data value. This is calculated for
all frequencies in the data set and the mean
and maximum values are returned (as percent-
ages).

$id→minf() Returns the minimum frequency in the data
set.

$id→maxf() Returns the maximum frequency in the data
set.

$id→minr() Returns the minimum real part of the
impedance in the data set.

$id→maxr() Returns the maximum real part of the
impedance in the data set.

$id→mini() Returns the minimum imaginary part of the
impedance in the data set.

$id→maxi() Returns the maximum imaginary part of the
impedance in the data set.

$id→scale factor([$]) Sets the scale factor function to the specified
value. If no arguments, the scale factor func-
tion is set to the default 1, that is no scaling.
Note that only simple proportionality scaling
is possible.

$id→get scale() Returns the current scale factor.
$id→set limit($$) Sets the plot limit of one of the fololowing tags:

’xmin’, xmax’, ’ymin’ and ’ymax’ to the spec-
ified value. Arguments: tag, value.

$id→get limit($) Returns the limit of the specified tag (see
set limit()).

$id→set xlabel($) Explicitly sets the text string to be displayed
in the xlabel.

$id→set ylabel($) Explicitly sets the text string to be displayed
in the ylabel.

$id→set ylabel bode($) Explicitly sets the text string to be displayed
in the ylabel in bode plots.

$id→set bode mode($) Sets wether bode plot should only plot imag-
inary value or both real and imaginary (de-
fault). If called with a true argument mode is
set to only imaginary values.

46 of 56 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.7.0

$id→set admittance mode($) Sets wether or not the plots should be of the
impedance, admittance, complex modulus or
compelx capacitance. Default is impedance.
Valid values can be obtained from admit-
tance mode values().

$id→admittance mode values() Returns a list of valid values for
set admittance mode($).

$id→adv opt([@]) Sets or gets a list of additional gnuplot com-
mands (for instance user defined axis labels
etc.). Arguments are a list of commands. If
called without arguments, the current list of
additional commands is returned

Additionally the following private member functions are also defined. Al-
though Perl does not permit true private functions, do not use these functions
from outside the class instances!

$id→print plot common() This function returns the function declarations
for all elements in the impedance model (note
returns a list).

$id→print plot main() This function does the actual work of
print plot() and print bode()

$id→print plot main range() This function does the actual work of
print plot range().

$id→print plot eps common() Similar as above, bur for eps output.
$id→dev sort fmax() Returns a hash of device names and sum-

mit frequencies Only returns devices for which
summit frequencies can be correctly calcu-
lated.

$id→print simulation() This function does the actual work of
print imp sim() and print bode sim().

$id→save() This function saves the content of the data
field to a temporary file (in /temp) It returns
the filename of the temporary file.

$id→file() Returns the name of the data file.

47 of 56 Implemented by Søren Koch

Chapter 11

Web service interface

It is possible to use Elchemea Analytical as an web service. To do so call the
following ajax model.cgi web script with the parameters specified below. The
script is located in host.domain/cgi-bin/analytic/ajax model.cgi (substitute
host.domain with the correct host name and domain name of your Elchemea
Analytical installation).

1. ’ajax’, value: ’1’

2. ’action’, value: ’fit’ or ’fitlist’. If fitlist is selected, the web service returns
a list of possible free fit parameters for the specified model

3. ’model’, value: the impedance model as specified in chapter 3.

4. ’fitmode’, value: ’Even’ or ’Inverse’. Determines if data points have even
weight (which is default) or weight is inversely proportional to absolute
value of impedance (length of impedance vector). Optional parameter,
only used for ’fit’ action.

5. ’data’, value: Impedance data in the form of multiple lines, each line in
the form:
frequency real value imaginary value
Note that the first line must be the highest frequency. Only used for ’fit’
action

6. ’fitlist’, value: comma separated list of free fitting parameters. The
elements specified must be from the list returned by the fitlist action
(refer item 2), only used for ’fit’ action.

In the case ’fit’ action is selected and the fit converges, the resulting response
would start with the string ’OK’ on a single line followed by the fit result.
This would include arc summit frequencies as well as pseudo capacitance’s
(in the case of RQ elements) as well as the full set of final parameter values.
The output would also include references to a number of png files temporarily
located on the web server (of approx 10 minutes or so). These images can

48

DTU Energy Elchemea Analytical 1.7.0

be downloaded separately and shows the fit result and error plot for the data
and model in question.

The file webservice.html found by pointing your browser to
host.domain/analytic/webservice.html contains two web forms with the nec-
essary form elements to do a impedance fitting using the web interface as well
as testing the ’fitlist’ action. By submitting the ’fit’ test form with the default
parameters, the output should look like this (Your browser likely ’eats’ the
newlines, so use view source):

OK

L_1:1.509e-08

R_2:0.01823

R_3:0.009409

Y_3:0.0387

n_3:0.7735

INFO: Maximum frequency for arc for element RQ_3: 4442

INFO: Pseudo capacitance for arc for element RQ_3: 0.003808

R_4:0.00219

Y_4:3.358

n_4:0.8441

INFO: Maximum frequency for arc for element RQ_4: 53.64

INFO: Pseudo capacitance for arc for element RQ_4: 1.355

R_5:0.008561

Y_5:29.01

n_5:0.9397

INFO: Maximum frequency for arc for element RQ_5: 0.7008

INFO: Pseudo capacitance for arc for element RQ_5: 26.53

FITDATA

Wed Dec 7 12:26:16 2011

FIT: data read from ’/tmp/fitset_26083.dat’ u 2:1:3:(1)

#datapoints = 74

function used for fitting: h(x,y)

fitted parameters initialized with current variable values

Iteration 0

WSSR : 1.32424e-05 delta(WSSR)/WSSR : 0

delta(WSSR) : 0 limit for stopping : 1e-05

lambda : 0.00565434

initial set of free parameter values

fl_1 = 1

fr_2 = 1

fy_3 = 1

n_3 = 0.8003

fr_3 = 1

fy_4 = 1

n_4 = 0.7235

fr_4 = 1

fr_5 = 1

fy_5 = 1

n_5 = 0.9762

After 9 iterations the fit converged.

final sum of squares of residuals : 2.32063e-07

rel. change during last iteration : -8.43531e-07

degrees of freedom (ndf) : 63

49 of 56 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.7.0

rms of residuals (stdfit) = sqrt(WSSR/ndf) : 6.06922e-05

variance of residuals (reduced chisquare) = WSSR/ndf : 3.68354e-09

Final set of parameters Asymptotic Standard Error

======================= ==========================

fl_1 = 1.10797 +/- 0.008277 (0.7471%)

fr_2 = 0.97708 +/- 0.003211 (0.3286%)

fy_3 = 1.16728 +/- 0.1147 (9.828%)

n_3 = 0.773495 +/- 0.01046 (1.352%)

fr_3 = 1.01687 +/- 0.01714 (1.686%)

fy_4 = 0.519381 +/- 0.09599 (18.48%)

n_4 = 0.844051 +/- 0.04384 (5.194%)

fr_4 = 0.670101 +/- 0.05151 (7.687%)

fr_5 = 1.08185 +/- 0.01273 (1.177%)

fy_5 = 0.928554 +/- 0.01251 (1.347%)

n_5 = 0.9397 +/- 0.007901 (0.8408%)

correlation matrix of the fit parameters:

fl_1 fr_2 fy_3 n_3 fr_3 fy_4 n_4 fr_4 fr_5 fy_5 n_5

fl_1 1.000

fr_2 -0.623 1.000

fy_3 0.485 -0.773 1.000

n_3 -0.536 0.837 -0.992 1.000

fr_3 0.510 -0.822 0.923 -0.930 1.000

fy_4 -0.104 0.185 -0.319 0.305 -0.483 1.000

n_4 0.225 -0.379 0.586 -0.566 0.742 -0.924 1.000

fr_4 -0.317 0.520 -0.757 0.735 -0.870 0.767 -0.928 1.000

fr_5 0.114 -0.196 0.314 -0.303 0.429 -0.755 0.720 -0.740 1.000

fy_5 -0.102 0.177 -0.282 0.272 -0.380 0.633 -0.612 0.584 -0.441 1.000

n_5 -0.075 0.128 -0.207 0.199 -0.288 0.555 -0.515 0.566 -0.876 0.140 1.000

END_TEXT

FILE:model_26083.png

REPORT:report_model_26083.png

ERROR:report_error_26083.png

Note that some of the numbers may be slightly different as a randum number
generator is invovlved. The last three lines indicates filenames, and in order to
access the individual files, point your browser to host.domain/analytic/png/
and select the file(s) specified.

50 of 56 Implemented by Søren Koch

Chapter 12

Troubleshooting

12.1 Proxy server preventing automatic updating

In order for the automatic software updater (analytic updater.pl) to work
through a web proxy, create the file ’/home/analytic/proxy.conf’. The file
should contain a single line with the proxy server name as well as the proxy
port as shown below:

http://proxy.foo.bar:1234

In this case the proxy port is port 1234.

12.2 Server error is reportet when starting Elchemea

Analytical

• Inspect /var/log/httpd/error log

• If SE-linux running in enforcing mode, try and disable it by using ’seten-
force 0’.

• If htis resolved the error, inscpect the file /var/log/audit/audit.log and
find the files/directories with conflicting SElinux labels. The likely cul-
prits may be
’/var/lock’ and ’/var/SemaforeFile/’, refer SE-linux documentation as
to how to do see and change labels.

• Reenable SE-linux by running ’setenforce 1’ and check.

12.3 Model section of view is mangled

It is known that some versions of Microsoft Internet Explorer® display some
of the html elements wrongly, thus leading to mangled model views. In this

51

DTU Energy Elchemea Analytical 1.7.0

case either upgrade your browser, or switch to Firefox or Google Chrome
(ElchemeaAnalytical has not been tested with Apples Safari browser).

12.4 After fitting, pressing the report button only

says ’no report ready’

• Check that the LATEX server is running. To do this type the following
in a terminal:

ps -ef | grep LATEX

The output should look something like this:

sofc 10320 10297 0 10:17 pts/3 00:00:00 grep LATEX

sofc 19042 1 0 Aug02 ? 00:00:00 /usr/bin/perl /usr/local/bin/analytic/LATEX-server

If the last line is not observed, start it by calling
/usr/local/bin/analytic/start servers as root.

• If the server is running, check that only one version of the LATEX.pm
module is installed. Older versions fo Risø Fuel Cells and Solid State
Chemistry division fuel cell control system installed modules in a differ-
ent location than Elchemea Analytic, and depending on search path, the
Elchemea Analytic installer may not have discovered the older version
and installed the new wersion independently. If this happens, the old
version may be used by the LATEX-server, and unfortunately the old
module misses some functions needed by the server.

To fix this, locate and delete the old module.

• If the problem persists (or only one version of LATEX.pm exists, then if
SE-Linux is running in enforcing mode, then it may prevent the Apache
webserver from accessing the LATEX-server on localhost port 4050. The
easiest way to fix this is to run SE-Linux in permissive mode (nonenforc-
ing). However, be aware that SE-Linux is part of the Linux intrusion
detection system / security system, and thus running SE-Linux in nonen-
forcing mode may potentially expose the system to external threats it
would otherwise be protected from. To run SE-Linux in non-enforcing
mode in oreder to check if this is the cause of the problem, consult
your Linux distribution manual (on CentOS version 6.x SE-Linux can be
turned off by typing ’setenforce 0’ in a root terminal).

The specific problem with SELinux is that Apache needs to be able to
connect to port 4050 (the LATEX-server) and be able to read the cor-
responding PDF file (a separate issue). To allow apache to connect to
port 4050 as well as execute the scripts in /usr/local/bin/analytic/ (on
CentOS) execute the script
set SELinux rules.bash found in the ElchameAnalytics installation di-
rectory.

52 of 56 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.7.0

12.5 Fitting does not finish (page displays ’work-

ing...’ and stops)

Check that the ’utf8.def’ file is included in your LATEX installation, if not,
locate the following line in LATEX.pm and uncoment it (place a # in front)

$res .= ’ \usepackage[utf8]{inputenc}’.’’\n’’ if ($utf8);

Note that this has to be done in the LATEX.pm file used by the implemen-
tation (Not the one in the insttall directory!).

12.6 Fitting takes too short time and no response is

recieved

Likely your model contains one or more of the elements which contains a
trigonometric function in the mathematical description (this includes Ger-
isher, Finite length Warburn and Bounded Warburg) and the fitting routine
hit a value which resulted in infinite impedance (refer section 3.4).

12.7 Multiplot not avaliable

From version 1.7 of ElchemeaAnalytical multiplot needs to be explicitly en-
abled by the system administrators, see section 4.

12.8 Graphs not shown correctly and/or pages does

not finish loading

Check that the default lock file (called SemaforeFile.lock) for the Semafoe-
File.pm module has the right permissions. It is located in /tmp and should
have permissions 666 (Yes, I know the number of evil...) Durring normal
operation, it will be created with this permission, but sometimes the system
mauy clean up the temp directory, and in this case sometimes it may be cre-
ated with the wrong permissions. To resolve this, simply remove the file or
manually set the right permissions (both operations may be nescesarry to do
as root).

53 of 56 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.7.0

12.9 My screen is not wide enough to show all infor-

mation

This can happen if you are using an older screen/projector which only allows
a maximum horisontal resolution of 1024 pixels. To correct this, edit the
file Header.pm in the Impedance direstory (likely placed somewhere under
/lib) and change the size variable from “set size 1.3,1.1” to “set size 0.9,0.7”
as well as the pssize varialbe from “800x600” to “600x400” (Remember to
change both variables!). Notice however that this is a site wide variable, so
all users of Elchemea Analytic on this server will be affected.

12.10 Multiplot graphs are sideways

Make sure that gnuplot, ImageMagick and Ghostscript are up to date. On
Centos/RHEL this can be achieved by executing the following commands as
root:

yum update gnuplot

yum update ImageMagick

yum update ghostscript

Other distributions handle this in a different way, refer the distribution man-
ual as to hwo to update software packages.

12.11 Multiplotting suddenly fails with an error mes-

sage including the string ’all points y value un-

defined’

Due to the multiuser nature of the Elchemea Analytical system, uploaded files
can not be saved indefinite on the server, and if a file has been left unused for
some time (usually an hour) it will be deleted. This usually does not happen
when working normally, but if the user leaves the Elchemea analytical session
for extended time and then returns, this may happen (see section 4).

12.12 Some of the last tics on the graps is missing

(graph goes to 100 but tics only shown to 70

for instance).

This is caused by certain versions of Gnuplot. Version 4.2.6 is known to do
this. To correct this, edit the file Header.pm in the Impedance direstory

54 of 56 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.7.0

(likely placed somewhere under /lib) and change the size variable from “set
size 1.3,1.1” to “set size 1,1”. Notice however that this is a site wide variable,
so all users of Elchemea Analytic on this server will be affected.

12.13 Users can not upload files through the ’Load

impedance file’ resulting in an error like ’No

filename specified!...’

This can be caused if too many files are in the /tmp directory which are
usually cleaned up by the OS regularly, but too heavy use may require manual
cleanup.

To do this as root execute the following commands:

find /tmp/ -mindepth 1 -type f -mtime +15 | grep bode_ | xargs rm

find /tmp/ -mindepth 1 -type f -mtime +15 | grep help_dat | xargs rm

find /tmp/ -mindepth 1 -type f -mtime +15 | grep model_ | xargs rm

find /tmp/ -mindepth 1 -type f -mtime +15 | grep fitset_ | xargs rm

find /tmp/ -mindepth 1 -type f -mtime +15 | grep delete_ | xargs rm

find /tmp/ -mindepth 1 -type f -mtime +15 | grep result_ | xargs rm

find /tmp/ -mindepth 1 -type f -mtime +15 | grep Impedance_ | xargs rm

These commands will explicitly remove ElchemeaAanlytical temporary files
older than 15 days.

12.14 CentOS 7 related issues

The introduction of CentOS 7 has changed a number of ways how the apache
webserver as well as CPAN works. Some of these changes is not ccompatible
with the way ElchemeaAnalytical works and the steps nescesarry to correct
this is described in this setion.

12.14.1 Aapche can not see the modules installed by CPAN.

This is a know problem for CentOS 7 servers as discussed here: http://stackoverflow.com/questions/33636231/installed-
cpan-modules-in-problematic-location

The script ’centos7 CPAN configuration.bash’ script fixes this.

Unforthuately it may be nescesarry to reinstall the CPAN modules required
by elchemea, but this can usualy be fixed by running ’make CPAN’ in the
ElchemeaAnalytical installation directory (as root).

Notice however that the script needs to be run in a separate su sesion (that
is you need to log out from root and log in again) before this wroks!

55 of 56 Implemented by Søren Koch

DTU Energy Elchemea Analytical 1.7.0

12.14.2 UI behaves strangely

CentOS 7 has changed the way /tmp works and has introduced the concept
of PrivateTmp.

This is not compatible with ElchemeaAnalytical and needs to be disabled.

To do this, do the following:

• cd into the /etc/systemd/system/ directory

• copy the httpd.service file to this directory: (use locate to find it)

cp /usr/lib/systemd/system/httpd.system .

• edit this file ad change ’PrivateTmp=true’ to ’PrivateTmp=false’

• restart systemd:

systemctl daemon-rload

• restart apache:

service httpd restart

12.14.3 Report consist only of a single blank page

The Texlive packages installed by CentOS 7 is unfortunately missing some
key components needed by Elchemea Analytical.

The easiest solution to this is to install TexLive directly from https://www.tug.org/texlive/

and then make a symbolic link to latex in /usr/bin:

ln -s /usr/local/texlive/2017/bin/x86 64-linux/latex /usr/bin/latex

In addition it may be needed to install the texlive-metapost package:

yum install texlive-metapost

56 of 56 Implemented by Søren Koch

